Periodic table (crystal structure)#Double hexagonal close packed

{{Short description|Crystalline structure for solid elements}}

This articles gives the crystalline structures of the elements of the periodic table which have been produced in bulk at STP and at their melting point (while still solid) and predictions of the crystalline structures of the rest of the elements.

Standard temperature and pressure

The following table gives the crystalline structure of the most thermodynamically stable form(s) for elements that are solid at standard temperature and pressure. Each element is shaded by a color representing its respective Bravais lattice, except that all orthorhombic lattices are grouped together.

border="0" cellpadding="0" cellspacing="1" style="text-align:center; background:{{Element color|table background}}; border:1px solid {{Element color|table border}}; width:100%; max-width:1300px; margin:0 auto; padding:2px; {{{style|{{{1
}}}}};"

! colspan=20 style="background:{{Element color|table title}}; padding:2px 4px;" | Crystal structure of elements in the periodic table at standard temperature and pressure{{cite book | last=King|first=H.W.|editor-last=Lide | editor-first=David R. | title=CRC Handbook of Chemistry and Physics|edition=87 | publisher=CRC Press | publication-place=Boca Raton, Fla. | date=2006-06-26 | isbn=978-0-8493-0487-3 | page=12-15 to 12-18}}

|- style="background:{{Element color|table colheader}}"

|-

| style="width:3em; border:1px solid #aaaaaa; background-color:white;" |1
H
 

| style="width:3em;" |

| style="width:0.5em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em; border:1px solid #aaaaaa; background-color:white;" |2
He
 

|-

| style="border:1px solid #aaaaaa; background-color:orange;" |3
Li
W

| style="border:1px solid #aaaaaa; background-color:salmon;" |4
Be
Mg

| colspan=11 |

| style="border:1px solid #aaaaaa; background-color:lightblue;" |5
B
β-B

| style="border:1px solid #aaaaaa; background-color:salmon;" |6
C
g-C

| style="border:1px solid #aaaaaa; background-color:white;" |7
N
 

| style="border:1px solid #aaaaaa; background-color:white;" |8
O
 

| style="border:1px solid #aaaaaa; background-color:white;" |9
F
 

| style="border:1px solid #aaaaaa; background-color:white;" |10
Ne
 

|-

| style="border:1px solid #aaaaaa; background-color:orange;" |11
Na
W

| style="border:1px solid #aaaaaa; background-color:salmon;" |12
Mg
Mg

| colspan=11 |

| style="border:1px solid #aaaaaa; background-color:silver;" |13
Al
Cu

| style="border:1px solid #aaaaaa; background-color:silver;" |14
Si
d-C

| style="border:1px solid #aaaaaa; background-color:palegreen;" |15
P
b-P

| style="border:1px solid #aaaaaa; background-color:palegreen;" |16
S
α-S

| style="border:1px solid #aaaaaa; background-color:white;" |17
Cl
 

| style="border:1px solid #aaaaaa; background-color:white;" |18
Ar
 

|-

| style="border:1px solid #aaaaaa; background-color:orange;" |19
K
W

| style="border:1px solid #aaaaaa; background-color:silver;" |20
Ca
Cu

|

| style="border:1px solid #aaaaaa; background-color:salmon;" |21
Sc
Mg

| style="border:1px solid #aaaaaa; background-color:salmon;" |22
Ti
Mg

| style="border:1px solid #aaaaaa; background-color:orange;" |23
V
W

| style="border:1px solid #aaaaaa; background-color:orange;" |24
Cr
W

| style="border:1px solid #aaaaaa; background-color:orange;" |25
Mn
α-Mn

| style="border:1px solid #aaaaaa; background-color:orange;" |26
Fe
W

| style="border:1px solid #aaaaaa; background-color:salmon;" |27
Co
Mg

| style="border:1px solid #aaaaaa; background-color:silver;" |28
Ni
Cu

| style="border:1px solid #aaaaaa; background-color:silver" |29
Cu
Cu

| style="border:1px solid #aaaaaa; background-color:salmon" |30
Zn
Mg

| style="border:1px solid #aaaaaa; background-color:palegreen;" |31
Ga
α-Ga

| style="border:1px solid #aaaaaa; background-color:silver" |32
Ge
d-C

| style="border:1px solid #aaaaaa; background-color:lightblue;" |33
As
α-As

| style="border:1px solid #aaaaaa; background-color:salmon;" |34
Se
γ-Se

| style="border:1px solid #aaaaaa; background-color:white;" |35
Br
 

| style="border:1px solid #aaaaaa; background-color:white;" |36
Kr
 

|-

| style="border:1px solid #aaaaaa; background-color:orange;" |37
Rb
W

| style="border:1px solid #aaaaaa; background-color:silver;" |38
Sr
Cu

|

| style="border:1px solid #aaaaaa; background-color:salmon;" |39
Y
Mg

| style="border:1px solid #aaaaaa; background-color:salmon;" |40
Zr
Mg

| style="border:1px solid #aaaaaa; background-color:orange;" |41
Nb
W

| style="border:1px solid #aaaaaa; background-color:orange;" |42
Mo
W

| style="border:1px solid #aaaaaa; background-color:salmon;" |43
Tc
Mg

| style="border:1px solid #aaaaaa; background-color:salmon;" |44
Ru
Mg

| style="border:1px solid #aaaaaa; background-color:silver;" |45
Rh
Cu

| style="border:1px solid #aaaaaa; background-color:silver;" |46
Pd
Cu

| style="border:1px solid #aaaaaa; background-color:silver;" |47
Ag
Cu

| style="border:1px solid #aaaaaa; background-color:salmon;" |48
Cd
Mg

| style="border:1px solid #aaaaaa; background-color:yellow;" |49
In
In

| style="border:1px solid #aaaaaa; background-color:yellow;" |50
Sn
β-Sn

| style="border:1px solid #aaaaaa; background-color:lightblue;" |51
Sb
α-As

| style="border:1px solid #aaaaaa; background-color:salmon;" |52
Te
γ-Se

| style="border:1px solid #aaaaaa; background-color:palegreen;" |53
I
Cl

| style="border:1px solid #aaaaaa; background-color:white;" |54
Xe
 

|-

| style="border:1px solid #aaaaaa; background-color:orange;" |55
Cs
W

| style="border:1px solid #aaaaaa; background-color:orange;" |56
Ba
W

| {{element cell-asterisk|1|align=right}}

| style="border:1px solid #aaaaaa; background-color:salmon;" | 71
Lu
Mg

| style="border:1px solid #aaaaaa; background-color:salmon;" |72
Hf
Mg

| style="border:1px solid #aaaaaa; background-color:orange;" |73
Ta
W

| style="border:1px solid #aaaaaa; background-color:orange;" |74
W
W

| style="border:1px solid #aaaaaa; background-color:salmon;" |75
Re
Mg

| style="border:1px solid #aaaaaa; background-color:salmon;" |76
Os
Mg

| style="border:1px solid #aaaaaa; background-color:silver;" |77
Ir
Cu

| style="border:1px solid #aaaaaa; background-color:silver;" |78
Pt
Cu

| style="border:1px solid #aaaaaa; background-color:silver;" |79
Au
Cu

| style="border:1px solid #aaaaaa; background-color:white;" |80
Hg
 

| style="border:1px solid #aaaaaa; background-color:salmon;" |81
Tl
Mg

| style="border:1px solid #aaaaaa; background-color:silver;" |82
Pb
Cu

| style="border:1px solid #aaaaaa; background-color:lightblue;" |83
Bi
α-As

| style="border:1px solid #aaaaaa; background-color:mistyrose;" |84
Po
α-Po

| style="border:1px solid #aaaaaa; background-color:white;" |85
At
 

| style="border:1px solid #aaaaaa; background-color:white;" |86
Rn
 

|-

| style="border:1px solid #aaaaaa; background-color:white;" |87
Fr
 

| style="border:1px solid #aaaaaa; background-color:orange;" |88
Ra
W

| {{element cell-asterisk|2|align=right}}

| style="border:1px solid #aaaaaa; background-color:white;" |103
Lr
 

| style="border:1px solid #aaaaaa; background-color:white;" |104
Rf
 

| style="border:1px solid #aaaaaa; background-color:white;" |105
Db
 

| style="border:1px solid #aaaaaa; background-color:white;" |106
Sg
 

| style="border:1px solid #aaaaaa; background-color:white;" |107
Bh
 

| style="border:1px solid #aaaaaa; background-color:white;" |108
Hs
 

| style="border:1px solid #aaaaaa; background-color:white;" |109
Mt
 

| style="border:1px solid #aaaaaa; background-color:white;" |110
Ds
 

| style="border:1px solid #aaaaaa; background-color:white;" |111
Rg
 

| style="border:1px solid #aaaaaa; background-color:white;" |112
Cn
 

| style="border:1px solid #aaaaaa; background-color:white;" |113
Nh
 

| style="border:1px solid #aaaaaa; background-color:white;" |114
Fl
 

| style="border:1px solid #aaaaaa; background-color:white;" |115
Mc
 

| style="border:1px solid #aaaaaa; background-color:white;" |116
Lv
 

| style="border:1px solid #aaaaaa; background-color:white;" |117
Ts
 

| style="border:1px solid #aaaaaa; background-color:white;" |118
Og
 

|-

|

|-

| colspan="3" {{element cell-asterisk|1 right|align=right}}

| style="border:1px solid #aaaaaa; background-color:salmon;" | 57
La
α-La

| style="border:1px solid #aaaaaa; background-color:salmon;" | 58
Ce
α-La

| style="border:1px solid #aaaaaa; background-color:salmon;" | 59
Pr
α-La

| style="border:1px solid #aaaaaa; background-color:salmon;" | 60
Nd
α-La

| style="border:1px solid #aaaaaa; background-color:salmon;" | 61
Pm
α-La

| style="border:1px solid #aaaaaa; background-color:lightblue;" | 62
Sm
α-Sm

| style="border:1px solid #aaaaaa; background-color:orange;" | 63
Eu
W

| style="border:1px solid #aaaaaa; background-color:salmon;" | 64
Gd
Mg

| style="border:1px solid #aaaaaa; background-color:salmon;" | 65
Tb
Mg

| style="border:1px solid #aaaaaa; background-color:salmon;" | 66
Dy
Mg

| style="border:1px solid #aaaaaa; background-color:salmon;" | 67
Ho
Mg

| style="border:1px solid #aaaaaa; background-color:salmon;" | 68
Er
Mg

| style="border:1px solid #aaaaaa; background-color:salmon;" | 69
Tm
Mg

| style="border:1px solid #aaaaaa; background-color:silver;" | 70
Yb
Cu

|-

| colspan="3" {{element cell-asterisk|2|align=right}}

| style="border:1px solid #aaaaaa; background-color:silver;" | 89
Ac
Cu

| style="border:1px solid #aaaaaa; background-color:silver;" | 90
Th
Cu

| style="border:1px solid #aaaaaa; background-color:yellow;" | 91
Pa
α-Pa

| style="border:1px solid #aaaaaa; background-color:palegreen;" | 92
U
α-U

| style="border:1px solid #aaaaaa; background-color:palegreen;" | 93
Np
α-Np

| style="border:1px solid #aaaaaa; background-color:violet;" | 94
Pu
α-Pu

| style="border:1px solid #aaaaaa; background-color:salmon;" | 95
Am
α-La

| style="border:1px solid #aaaaaa; background-color:salmon;" | 96
Cm
α-La

| style="border:1px solid #aaaaaa; background-color:salmon;" | 97
Bk
α-La

| style="border:1px solid #aaaaaa; background-color:salmon;" | 98
Cf
α-La

| style="border:1px solid #aaaaaa; background-color:silver;" | 99
Es
Cu

| style="border:1px solid #aaaaaa; background-color:white;" |100
Fm
 

| style="border:1px solid #aaaaaa; background-color:white;" |101
Md
 

| style="border:1px solid #aaaaaa; background-color:white;" |102
No
 

|}

style="text-align:left;"

! Legend:

{{legend|violet|Primitive monoclinic structures: α-Pu}}
{{legend|palegreen|Orthorhombic structures: b-P, α-Ga, Cl, α-U, α-S, α-Np}}
{{legend|yellow|Body-centered tetragonal structures: In, β-Sn, α-Pa}}
{{legend|lightblue|Rhombohedral structures: β-B, α-As, α-Sm}}
{{legend|salmon|Hexagonal structures: Mg, α-La, g-C, γ-Se}}
{{legend|mistyrose|Primitive cubic structures: α-Po}}
{{legend|orange|Body-centered cubic structures: W, α-Mn}}
{{legend|silver|Face-centered cubic structures: d-C, Cu}}
{{legend|white|Not solid at standard temperature and pressure or uncertain}}

Melting point and standard pressure

The following table gives the most stable crystalline structure of each element at its melting point at atmospheric pressure (H, He, N, O, F, Ne, Cl, Ar, Kr, Xe, and Rn are gases at STP; Br and Hg are liquids at STP.) Note that helium does not have a melting point at atmospheric pressure, but it adopts a magnesium-type hexagonal close-packed structure under high pressure.

border="0" cellpadding="0" cellspacing="1" style="text-align:center; background:{{Element color|table background}}; border:1px solid {{Element color|table border}}; width:100%; max-width:1300px; margin:0 auto; padding:2px; {{{style|{{{1
}}}}};"

! colspan=20 style="background:{{Element color|table title}}; padding:2px 4px;" | Crystal structures of elements at their melting points at atmospheric pressure

|- style="background:{{Element color|table colheader}}"

|-

| style="width:3em; border:1px solid #aaaaaa; background-color:salmon;" |1
H
13 K
Mg

| style="width:3em;" |

| style="width:0.5em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em; border:1px solid #aaaaaa; background-color:white;" |2
He
*

|-

| style="border:1px solid #aaaaaa; background-color:orange;" |3
Li
453 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" |4
Be
1560 K
W

| colspan=11 |

| style="border:1px solid #aaaaaa; background-color:lightblue;" |5
B
2349 K
β-B

| style="border:1px solid #aaaaaa; background-color:salmon;" |6
C
3800 K
g-C

| style="border:1px solid #aaaaaa; background-color:salmon;" |7
N
63 K
β-N

| style="border:1px solid #aaaaaa; background-color:mistyrose;" |8
O
54 K
γ-O

| style="border:1px solid #aaaaaa; background-color:mistyrose;" |9
F
53 K
γ-O

| style="border:1px solid #aaaaaa; background-color:silver;" |10
Ne
24 K
Cu

|-

| style="border:1px solid #aaaaaa; background-color:orange;" |11
Na
370 K
W

| style="border:1px solid #aaaaaa; background-color:salmon;" |12
Mg
923 K
Mg

| colspan=11 |

| style="border:1px solid #aaaaaa; background-color:silver;" |13
Al
933 K
Cu

| style="border:1px solid #aaaaaa; background-color:silver;" |14
Si
1687 K
d-C

| style="border:1px solid #aaaaaa; background-color:palegreen;" |15
P
883 K
b-P

| style="border:1px solid #aaaaaa; background-color:violet;" |16
S
393 K
β-S

| style="border:1px solid #aaaaaa; background-color:palegreen;" |17
Cl
171 K
Cl

| style="border:1px solid #aaaaaa; background-color:silver;" |18
Ar
83 K
Cu

|-

| style="border:1px solid #aaaaaa; background-color:orange;" |19
K
336 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" |20
Ca
1115 K
W

|

| style="border:1px solid #aaaaaa; background-color:orange;" |21
Sc
1814 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" |22
Ti
1941 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" |23
V
2183 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" |24
Cr
2180 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" |25
Mn
1519 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" |26
Fe
1811 K
W

| style="border:1px solid #aaaaaa; background-color:silver;" |27
Co
1768 K
Cu

| style="border:1px solid #aaaaaa; background-color:silver;" |28
Ni
1728 K
Cu

| style="border:1px solid #aaaaaa; background-color:silver" |29
Cu
1357 K
Cu

| style="border:1px solid #aaaaaa; background-color:salmon" |30
Zn
692 K
Mg

| style="border:1px solid #aaaaaa; background-color:palegreen;" |31
Ga
302 K
α-Ga

| style="border:1px solid #aaaaaa; background-color:silver" |32
Ge
1211 K
d-C

| style="border:1px solid #aaaaaa; background-color:palegreen;" |33
As
1090 K
b-P

| style="border:1px solid #aaaaaa; background-color:salmon;" |34
Se
494 K
γ-Se

| style="border:1px solid #aaaaaa; background-color:palegreen;" |35
Br
265 K
Cl

| style="border:1px solid #aaaaaa; background-color:silver;" |36
Kr
115 K
Cu

|-

| style="border:1px solid #aaaaaa; background-color:orange;" |37
Rb
312 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" |38
Sr
1050 K
W

|

| style="border:1px solid #aaaaaa; background-color:orange;" |39
Y
1799 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" |40
Zr
2128 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" |41
Nb
2750 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" |42
Mo
2896 K
W

| style="border:1px solid #aaaaaa; background-color:salmon;" |43
Tc
2430 K
Mg

| style="border:1px solid #aaaaaa; background-color:salmon;" |44
Ru
2607 K
Mg

| style="border:1px solid #aaaaaa; background-color:silver;" |45
Rh
2237 K
Cu

| style="border:1px solid #aaaaaa; background-color:silver;" |46
Pd
1828 K
Cu

| style="border:1px solid #aaaaaa; background-color:silver;" |47
Ag
1234 K
Cu

| style="border:1px solid #aaaaaa; background-color:salmon;" |48
Cd
594 K
Mg

| style="border:1px solid #aaaaaa; background-color:yellow;" |49
In
429 K
In

| style="border:1px solid #aaaaaa; background-color:yellow;" |50
Sn
505 K
β-Sn

| style="border:1px solid #aaaaaa; background-color:lightblue;" |51
Sb
903 K
α-As

| style="border:1px solid #aaaaaa; background-color:salmon;" |52
Te
722 K
γ-Se

| style="border:1px solid #aaaaaa; background-color:palegreen;" |53
I
386 K
Cl

| style="border:1px solid #aaaaaa; background-color:silver;" |54
Xe
161 K
Cu

|-

| style="border:1px solid #aaaaaa; background-color:orange;" |55
Cs
301 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" |56
Ba
1000 K
W

| {{element cell-asterisk|1|align=right}}

| style="border:1px solid #aaaaaa; background-color:salmon;" | 71
Lu
1925 K
Mg

| style="border:1px solid #aaaaaa; background-color:orange;" |72
Hf
2506 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" |73
Ta
3290 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" |74
W
3695 K
W

| style="border:1px solid #aaaaaa; background-color:salmon;" |75
Re
3459 K
Mg

| style="border:1px solid #aaaaaa; background-color:salmon;" |76
Os
3306 K
Mg

| style="border:1px solid #aaaaaa; background-color:silver;" |77
Ir
2719 K
Cu

| style="border:1px solid #aaaaaa; background-color:silver;" |78
Pt
2041 K
Cu

| style="border:1px solid #aaaaaa; background-color:silver;" |79
Au
1337 K
Cu

| style="border:1px solid #aaaaaa; background-color:lightblue;" |80
Hg
234 K
α-Hg

| style="border:1px solid #aaaaaa; background-color:orange;" |81
Tl
557 K
W

| style="border:1px solid #aaaaaa; background-color:silver;" |82
Pb
600 K
Cu

| style="border:1px solid #aaaaaa; background-color:lightblue;" |83
Bi
544 K
α-As

| style="border:1px solid #aaaaaa; background-color:lightblue;" |84
Po
527 K
β-Po

| style="border:1px solid #aaaaaa; background-color:white;" |85
At
575 K?
?

| style="border:1px solid #aaaaaa; background-color:white;" |86
Rn
202 K
?

|-

| style="border:1px solid #aaaaaa; background-color:white;" |87
Fr
281 K?
?

| style="border:1px solid #aaaaaa; background-color:orange;" |88
Ra
973 K
W

| {{element cell-asterisk|2|align=right}}

| style="border:1px solid #aaaaaa; background-color:white;" |103
Lr
1900 K?
?

| style="border:1px solid #aaaaaa; background-color:white;" |104
Rf
?

| style="border:1px solid #aaaaaa; background-color:white;" |105
Db
?

| style="border:1px solid #aaaaaa; background-color:white;" |106
Sg
?

| style="border:1px solid #aaaaaa; background-color:white;" |107
Bh
?

| style="border:1px solid #aaaaaa; background-color:white;" |108
Hs
?

| style="border:1px solid #aaaaaa; background-color:white;" |109
Mt
?

| style="border:1px solid #aaaaaa; background-color:white;" |110
Ds
?

| style="border:1px solid #aaaaaa; background-color:white;" |111
Rg
?

| style="border:1px solid #aaaaaa; background-color:white;" |112
Cn
?

| style="border:1px solid #aaaaaa; background-color:white;" |113
Nh
?

| style="border:1px solid #aaaaaa; background-color:white;" |114
Fl
?

| style="border:1px solid #aaaaaa; background-color:white;" |115
Mc
?

| style="border:1px solid #aaaaaa; background-color:white;" |116
Lv
?

| style="border:1px solid #aaaaaa; background-color:white;" |117
Ts
?

| style="border:1px solid #aaaaaa; background-color:white;" |118
Og
?

|-

|

|-

| colspan="3" {{element cell-asterisk|1 right|align=right}}

| style="border:1px solid #aaaaaa; background-color:orange;" | 57
La
1193 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" | 58
Ce
1068 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" | 59
Pr
1208 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" | 60
Nd
1297 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" | 61
Pm
1315 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" | 62
Sm
1345 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" | 63
Eu
1099 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" | 64
Gd
1585 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" | 65
Tb
1629 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" | 66
Dy
1680 K
W

| style="border:1px solid #aaaaaa; background-color:salmon;" | 67
Ho
1734 K
Mg

| style="border:1px solid #aaaaaa; background-color:salmon;" | 68
Er
1802 K
Mg

| style="border:1px solid #aaaaaa; background-color:salmon;" | 69
Tm
1818 K
Mg

| style="border:1px solid #aaaaaa; background-color:orange;" | 70
Yb
1097 K
W

|-

| colspan="3" {{element cell-asterisk|2|align=right}}

| style="border:1px solid #aaaaaa; background-color:silver;" | 89
Ac
1323 K
Cu

| style="border:1px solid #aaaaaa; background-color:orange;" | 90
Th
2115 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" | 91
Pa
1841 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" | 92
U
1405 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" | 93
Np
917 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" | 94
Pu
912 K
W

| style="border:1px solid #aaaaaa; background-color:orange;" | 95
Am
1449 K
W

| style="border:1px solid #aaaaaa; background-color:silver;" | 96
Cm
1613 K
Cu

| style="border:1px solid #aaaaaa; background-color:silver;" | 97
Bk
1259 K
Cu

| style="border:1px solid #aaaaaa; background-color:silver;" | 98
Cf
1173 K
Cu

| style="border:1px solid #aaaaaa; background-color:silver;" | 99
Es
1133 K
Cu

| style="border:1px solid #aaaaaa; background-color:white;" |100
Fm
1800 K?
?

| style="border:1px solid #aaaaaa; background-color:white;" |101
Md
1100 K?
?

| style="border:1px solid #aaaaaa; background-color:white;" |102
No
1100 K?
?

|}

style="text-align:left;"

! Legend:

{{legend|violet|Primitive monoclinic structures: β-S}}
{{legend|palegreen|Orthorhombic structures: b-P, α-S, Cl, α-Ga}}
{{legend|yellow|Body-centered tetragonal structures: In, β-Sn}}
{{legend|lightblue|Rhombohedral structures: β-B, α-As, α-Hg, α-Po}}
{{legend|salmon|Primitive Hexagonal structures: Mg, g-C, β-N, γ-Se}}
{{legend|mistyrose|Primitive cubic structure: γ-O}}
{{legend|orange|Body-centered cubic structure: W}}
{{legend|silver|Face-centered cubic structures: Cu, d-C}}
{{legend|white|unknown or uncertain}}

Predicted structures

The following table give predictions for the crystalline structure of elements 85–87, 100–113 and 118; all but radon{{cite journal |title=Some Physical Properties of Radium Emanation |author=R. W. Gray |author2=W. Ramsay |journal=J. Chem. Soc. Trans. |volume=1909 |pages=1073–1085 |date=1909|doi=10.1039/CT9099501073 |url=https://zenodo.org/record/1529110 }} have not been produced in bulk. Most probably Cn and Fl would be liquids at STP (ignoring radioactive self-heating concerns). Calculations have difficulty replicating the experimentally known structures of the stable alkali metals, and the same problem affects Fr;{{cite journal |last1=Koufos |first1=Alexander P. |last2=Papaconstantopoulos |first2=Dimitrios A. |date=2013 |title=Electronic Structure of Francium |url= |journal=International Journal of Quantum Chemistry |volume=113 |issue=17 |pages=2070–2077 |doi=10.1002/qua.24466 |access-date=}} nonetheless, it is probably isostructural to its lighter congeners.{{cite book |last=Arblaster |first=John W. |author-link= |date=2018 |title=Selected Values of the Crystallographic Properties of Elements |url= |location= |publisher=ASM International |page=608 |isbn=978-1-62708-154-2}} The latest predictions for Fl could not distinguish between FCC and HCP structures, which were predicted to be close in energy.{{cite journal |last1=Florez |first1=Edison |last2=Smits |first2=Odile R. |last3=Mewes |first3=Jan-Michael |last4=Jerabek |first4=Paul |last5=Schwerdtfeger |first5=Peter |date=2022 |title=From the gas phase to the solid state: The chemical bonding in the superheavy element flerovium |journal=The Journal of Chemical Physics |volume=157 |doi=10.1063/5.0097642}} No predictions are available for elements 115–117.

border="0" cellpadding="0" cellspacing="1" style="text-align:center; background:{{Element color|table background}}; border:1px solid {{Element color|table border}}; width:100%; max-width:1300px; margin:0 auto; padding:2px; {{{style|{{{1
}}}}};"

! colspan=20 style="background:{{Element color|table title}}; padding:2px 4px;" | Predicted crystal structures of highly unstable elements

|- style="background:{{Element color|table colheader}}"

|-

| style="width:3em; border:1px solid #aaaaaa; background-color:grey;" |1
H

| style="width:3em;" |

| style="width:0.5em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em;" |

| style="width:3em; border:1px solid #aaaaaa; background-color:grey;" |2
He

|-

| style="border:1px solid #aaaaaa; background-color:grey;" |3
Li

| style="border:1px solid #aaaaaa; background-color:grey;" |4
Be

| colspan=11 |

| style="border:1px solid #aaaaaa; background-color:grey;" |5
B

| style="border:1px solid #aaaaaa; background-color:grey;" |6
C

| style="border:1px solid #aaaaaa; background-color:grey;" |7
N

| style="border:1px solid #aaaaaa; background-color:grey;" |8
O

| style="border:1px solid #aaaaaa; background-color:grey;" |9
F

| style="border:1px solid #aaaaaa; background-color:grey;" |10
Ne

|-

| style="border:1px solid #aaaaaa; background-color:grey;" |11
Na

| style="border:1px solid #aaaaaa; background-color:grey;" |12
Mg

| colspan=11 |

| style="border:1px solid #aaaaaa; background-color:grey;" |13
Al

| style="border:1px solid #aaaaaa; background-color:grey;" |14
Si

| style="border:1px solid #aaaaaa; background-color:grey;" |15
P

| style="border:1px solid #aaaaaa; background-color:grey;" |16
S

| style="border:1px solid #aaaaaa; background-color:grey;" |17
Cl

| style="border:1px solid #aaaaaa; background-color:grey;" |18
Ar

|-

| style="border:1px solid #aaaaaa; background-color:grey;" |19
K

| style="border:1px solid #aaaaaa; background-color:grey;" |20
Ca

|

| style="border:1px solid #aaaaaa; background-color:grey;" |21
Sc

| style="border:1px solid #aaaaaa; background-color:grey;" |22
Ti

| style="border:1px solid #aaaaaa; background-color:grey;" |23
V

| style="border:1px solid #aaaaaa; background-color:grey;" |24
Cr

| style="border:1px solid #aaaaaa; background-color:grey;" |25
Mn

| style="border:1px solid #aaaaaa; background-color:grey;" |26
Fe

| style="border:1px solid #aaaaaa; background-color:grey;" |27
Co

| style="border:1px solid #aaaaaa; background-color:grey;" |28
Ni

| style="border:1px solid #aaaaaa; background-color:grey" |29
Cu

| style="border:1px solid #aaaaaa; background-color:grey" |30
Zn

| style="border:1px solid #aaaaaa; background-color:grey;" |31
Ga

| style="border:1px solid #aaaaaa; background-color:grey" |32
Ge

| style="border:1px solid #aaaaaa; background-color:grey;" |33
As

| style="border:1px solid #aaaaaa; background-color:grey;" |34
Se

| style="border:1px solid #aaaaaa; background-color:grey;" |35
Br

| style="border:1px solid #aaaaaa; background-color:grey;" |36
Kr

|-

| style="border:1px solid #aaaaaa; background-color:grey;" |37
Rb

| style="border:1px solid #aaaaaa; background-color:grey;" |38
Sr

|

| style="border:1px solid #aaaaaa; background-color:grey;" |39
Y

| style="border:1px solid #aaaaaa; background-color:grey;" |40
Zr

| style="border:1px solid #aaaaaa; background-color:grey;" |41
Nb

| style="border:1px solid #aaaaaa; background-color:grey;" |42
Mo

| style="border:1px solid #aaaaaa; background-color:grey;" |43
Tc

| style="border:1px solid #aaaaaa; background-color:grey;" |44
Ru

| style="border:1px solid #aaaaaa; background-color:grey;" |45
Rh

| style="border:1px solid #aaaaaa; background-color:grey;" |46
Pd

| style="border:1px solid #aaaaaa; background-color:grey;" |47
Ag

| style="border:1px solid #aaaaaa; background-color:grey;" |48
Cd

| style="border:1px solid #aaaaaa; background-color:grey;" |49
In

| style="border:1px solid #aaaaaa; background-color:grey;" |50
Sn

| style="border:1px solid #aaaaaa; background-color:grey;" |51
Sb

| style="border:1px solid #aaaaaa; background-color:grey;" |52
Te

| style="border:1px solid #aaaaaa; background-color:grey;" |53
I

| style="border:1px solid #aaaaaa; background-color:grey;" |54
Xe

|-

| style="border:1px solid #aaaaaa; background-color:grey;" |55
Cs

| style="border:1px solid #aaaaaa; background-color:grey;" |56
Ba

| {{element cell-asterisk|1|align=right}}

| style="border:1px solid #aaaaaa; background-color:grey;" | 71
Lu

| style="border:1px solid #aaaaaa; background-color:grey;" |72
Hf

| style="border:1px solid #aaaaaa; background-color:grey;" |73
Ta

| style="border:1px solid #aaaaaa; background-color:grey;" |74
W

| style="border:1px solid #aaaaaa; background-color:grey;" |75
Re

| style="border:1px solid #aaaaaa; background-color:grey;" |76
Os

| style="border:1px solid #aaaaaa; background-color:grey;" |77
Ir

| style="border:1px solid #aaaaaa; background-color:grey;" |78
Pt

| style="border:1px solid #aaaaaa; background-color:grey;" |79
Au

| style="border:1px solid #aaaaaa; background-color:grey;" |80
Hg

| style="border:1px solid #aaaaaa; background-color:grey;" |81
Tl

| style="border:1px solid #aaaaaa; background-color:grey;" |82
Pb

| style="border:1px solid #aaaaaa; background-color:grey;" |83
Bi

| style="border:1px solid #aaaaaa; background-color:grey;" |84
Po

| style="border:1px solid #aaaaaa; background-color:silver;" |85
At
[Cu]{{cite journal

|doi=10.1103/PhysRevLett.111.116404|title=Condensed Astatine: Monatomic and Metallic|year=2013|last1=Hermann|first1=A.|last2=Hoffmann|first2=R.|last3=Ashcroft|first3=N. W.|journal=Physical Review Letters|volume=111|issue=11|pages=116404-1–116404-5|bibcode=2013PhRvL.111k6404H|pmid=24074111}}

| style="border:1px solid #aaaaaa; background-color:silver;" |86
Rn
[Cu]

|-

| style="border:1px solid #aaaaaa; background-color:orange;" |87
Fr
[W]

| style="border:1px solid #aaaaaa; background-color:grey;" |88
Ra

| {{element cell-asterisk|2|align=right}}

| style="border:1px solid #aaaaaa; background-color:salmon;" |103
Lr
[Mg]{{cite journal|doi=10.1103/PhysRevB.84.113104|title=First-principles calculation of the structural stability of 6d transition metals|year=2011|last1=Östlin|first1=A.|last2=Vitos|first2=L.|journal=Physical Review B|volume=84|issue=11|page=113104|bibcode=2011PhRvB..84k3104O }}

| style="border:1px solid #aaaaaa; background-color:salmon;" |104
Rf
[Mg]

| style="border:1px solid #aaaaaa; background-color:orange;" |105
Db
[W]

| style="border:1px solid #aaaaaa; background-color:orange;" |106
Sg
[W]

| style="border:1px solid #aaaaaa; background-color:salmon;" |107
Bh
[Mg]

| style="border:1px solid #aaaaaa; background-color:salmon;" |108
Hs
[Mg]{{cite thesis |last=Östlin |first=A. |date=2013 |title=Electronic Structure Studies and Method Development for Complex Materials |type=Licentiate |chapter=Transition metals |pages=15–16 |url=https://www.diva-portal.org/smash/get/diva2:606386/FULLTEXT01.pdf |access-date=24 October 2019}}

| style="border:1px solid #aaaaaa; background-color:silver;" |109
Mt
[Cu]

| style="border:1px solid #aaaaaa; background-color:orange;" |110
Ds
[W]

| style="border:1px solid #aaaaaa; background-color:orange;" |111
Rg
[W]

| style="border:1px solid #aaaaaa; background-color:salmon;" |112
Cn
[Mg]{{cite journal |last=Mewes |first=J.-M. |last2=Smits |first2=O. R. |last3=Kresse |first3=G. |last4=Schwerdtfeger |first4=P. |title=Copernicium is a Relativistic Noble Liquid |journal=Angewandte Chemie International Edition |date=2019 |doi=10.1002/anie.201906966 |url=https://www.researchgate.net/publication/336389017|doi-access=free |pmc=6916354 }}

| style="border:1px solid #aaaaaa; background-color:salmon;" |113
Nh
[Mg]

{{cite journal |last1=Atarah |first1=Samuel A. |last2=Egblewogbe |first2=Martin N. H. |last3=Hagoss |first3=Gebreyesus G. |date=2020 |title=First principle study of the structural and electronic properties of Nihonium |journal=MRS Advances |pages=1–9 |doi=10.1557/adv.2020.159}}

| style="border:1px solid #aaaaaa; background-color:white;" |114
Fl
 

| style="border:1px solid #aaaaaa; background-color:white;" |115
Mc
 

| style="border:1px solid #aaaaaa; background-color:white;" |116
Lv
 

| style="border:1px solid #aaaaaa; background-color:white;" |117
Ts
 

| style="border:1px solid #aaaaaa; background-color:silver;" |118
Og
[Cu]{{cite journal|doi=10.1016/0022-1902(65)80255-X|date=1965|publisher=Elsevier Science Ltd.|title=Some physical and chemical properties of element 118 (Eka-Em) and element 86 (Em)|first=A. V.|last=Grosse|journal=Journal of Inorganic and Nuclear Chemistry|volume=27|issue=3|pages=509–19}}

|-

|

|-

| colspan="3" {{element cell-asterisk|1 right|align=right}}

| style="border:1px solid #aaaaaa; background-color:grey;" | 57
La

| style="border:1px solid #aaaaaa; background-color:grey;" | 58
Ce

| style="border:1px solid #aaaaaa; background-color:grey;" | 59
Pr

| style="border:1px solid #aaaaaa; background-color:grey;" | 60
Nd

| style="border:1px solid #aaaaaa; background-color:grey;" | 61
Pm

| style="border:1px solid #aaaaaa; background-color:grey;" | 62
Sm

| style="border:1px solid #aaaaaa; background-color:grey;" | 63
Eu

| style="border:1px solid #aaaaaa; background-color:grey;" | 64
Gd

| style="border:1px solid #aaaaaa; background-color:grey;" | 65
Tb

| style="border:1px solid #aaaaaa; background-color:grey;" | 66
Dy

| style="border:1px solid #aaaaaa; background-color:grey;" | 67
Ho

| style="border:1px solid #aaaaaa; background-color:grey;" | 68
Er

| style="border:1px solid #aaaaaa; background-color:grey;" | 69
Tm

| style="border:1px solid #aaaaaa; background-color:grey;" | 70
Yb

|-

| colspan="3" {{element cell-asterisk|2|align=right}}

| style="border:1px solid #aaaaaa; background-color:grey;" | 89
Ac

| style="border:1px solid #aaaaaa; background-color:grey;" | 90
Th

| style="border:1px solid #aaaaaa; background-color:grey;" | 91
Pa

| style="border:1px solid #aaaaaa; background-color:grey;" | 92
U

| style="border:1px solid #aaaaaa; background-color:grey;" | 93
Np

| style="border:1px solid #aaaaaa; background-color:grey;" | 94
Pu

| style="border:1px solid #aaaaaa; background-color:grey;" | 95
Am

| style="border:1px solid #aaaaaa; background-color:grey;" | 96
Cm

| style="border:1px solid #aaaaaa; background-color:grey;" | 97
Bk

| style="border:1px solid #aaaaaa; background-color:grey;" | 98
Cf

| style="border:1px solid #aaaaaa; background-color:grey;" | 99
Es

| style="border:1px solid #aaaaaa; background-color:silver;" |100
Fm
[Cu]

| style="border:1px solid #aaaaaa; background-color:silver;" |101
Md
[Cu]

| style="border:1px solid #aaaaaa; background-color:silver;" |102
No
[Cu]{{cite journal |last=Fournier |first=Jean-Marc |date=1976 |title=Bonding and the electronic structure of the actinide metals |journal=Journal of Physics and Chemistry of Solids |volume=37 |issue=2 |pages=235–244 |doi=10.1016/0022-3697(76)90167-0 |bibcode=1976JPCS...37..235F }}

|}

style="text-align:left;"

! Legend:

[…] predicted structure
{{legend|grey|Elements with known structure.}}
{{legend|orange|Body-centered cubic structure: W}}
{{legend|silver|Face-centered cubic structures: Cu}}
{{legend|salmon|Primitive Hexagonal structures: Mg}}
{{legend|white|unknown or uncertain}}

Structure types

The following is a list of structure types which appear in the tables above. Regarding the number of atoms in the unit cell, structures in the rhombohedral lattice system have a rhombohedral primitive cell and have trigonal point symmetry but are also often also described in terms of an equivalent but nonprimitive hexagonal unit cell with three times the volume and three times the number of atoms.

class="wikitable"

! Prototype!! Strukturbericht !!Diagram !! Lattice system!! Space group !! Atoms per unit cell !!Coordination !! notes

style="background:violet;"| α-Pu(none)50pxMonoclinicP21/m
(No. 11)
16slightly distorted hexagonal structure. Lattice parameters: a = 618.3 pm, b = 482.2 pm, c = 1096.3 pm, β = 101.79° Lemire, R. J. et al.,2001URL {{cite web |url=http://cst-www.nrl.navy.mil/lattice/struk/aPu.html |title=The alpha-Pu Structure |access-date=2012-02-05 |url-status=dead |archive-url=https://web.archive.org/web/20111230075857/http://cst-www.nrl.navy.mil/lattice/struk/aPu.html |archive-date=2011-12-30 }}
style="background:violet;"|β-S(none)MonoclinicP21/c
(No. 14)
32
style="background:palegreen;"| α-NpAcOrthorhombicPnma
(No. 62)
8highly distorted bcc structure. Lattice parameters: a = 666.3 pm, b = 472.3 pm, c = 488.7 pm Lemire, R.J. et al.,Chemical Thermodynamics of Neptunium and Plutonium, Elsevier, Amsterdam, 2001URL {{cite web |url=http://cst-www.nrl.navy.mil/lattice/struk/a_c.html |title=The alpha Np (A_c) Structure |access-date=2013-10-16 |url-status=dead |archive-url=https://web.archive.org/web/20121002050018/http://cst-www.nrl.navy.mil/lattice/struk/a_c.html |archive-date=2012-10-02 }}
style="background:palegreen;"| α-UA2050pxOrthorhombicCmcm
(No. 63)
4Each atom has four near neighbours, 2 at 275.4 pm, 2 at 285.4 pm. The next four at distances 326.3 pm and four more at 334.2 pm.Harry L. Yakel, A REVIEW OF X-RAY DIFFRACTION STUDIES IN URANIUM ALLOYS. The Physical Metallurgy of Uranium Alloys Conference, Vail, Colorado, Feb. 1974Strongly distorted hcp structure.
style="background:palegreen;"|α-GaA1150pxOrthorhombicCmce
(No. 64)
8each Ga atom has one nearest neighbour at 244 pm, 2 at 270 pm, 2 at 273 pm, 2 at 279 pm.The structure is related to that of iodine.
style="background:palegreen;"|b-PA1750pxOrthorhombicCmce
(No. 64)
8Specifically the black phosphorus form of phosphorus.
style="background:palegreen;"|ClA1450pxOrthorhombicCmce
(No. 64)
8
style="background:palegreen;"|α-SA16OrthorhombicFddd
(No. 70)
16
style="background:yellow;"| InA650pxTetragonalI4/mmm
(No. 139)
2Identical symmetry to the α-Pa type structure. Can be considered slightly distorted from an ideal Cu type face-centered cubic structure which has c/a=\sqrt{2}.
style="background:yellow;"| α-PaAaTetragonalI4/mmm
(No. 139)
2Identical symmetry to the In type structure. Can be considered slightly distorted from an ideal W type body centered cubic structure which has c/a=1.
style="background:yellow;"| β-SnA5TetragonalI41/amd
(No. 141)
44 neighbours at 302 pm; 2 at 318 pm; 4 at 377 pm; 8 at 441 pm white tin form (thermodynamical stable above 286.4 K)
style="background:lightblue;"| β-B(none)50pxRhombohedralR{{overline|3}}m
(No. 166)
105 (rh.)
315 (hex.)
Partly due to its complexity, whether this structure is the ground state of Boron has not been fully settled.
style="background:lightblue;"| α-AsA750pxRhombohedralR{{overline|3}}m
(No. 166)
2 (rh.)
6 (hex.)
in grey metallic form, each As atom has 3 neighbours in the same sheet at 251.7pm; 3 in adjacent sheet at 312.0 pm.
each Bi atom has 3 neighbours in the same sheet at 307.2 pm; 3 in adjacent sheet at 352.9 pm.
each Sb atom has 3 neighbours in the same sheet at 290.8pm; 3 in adjacent sheet at 335.5 pm.
puckered sheet
style="background:lightblue;"| α-Sm(none)50pxRhombohedralR{{overline|3}}m
(No. 166)
3 (rh.)
9 (hex.)
12 nearest neighbourscomplex hcp with 9-layer repeat: ABCBCACAB....A.F Wells (1962) Structural Inorganic Chemistry 3d Edition Oxford University Press
style="background:lightblue;"| α-HgA1050pxRhombohedralR{{overline|3}}m
(No. 166)
1 (rh.)
3 (hex.)
6 nearest neighbours at 234 K and 1 atm (it is liquid at room temperature and thus has no crystal structure at ambient conditions!)Identical symmetry to the β-Po structure, distinguished based on details about the basis vectors of its unit cell. This structure can also be considered to be a distorted hcp lattice with the nearest neighbours in the same plane being approx 16% farther away
style="background:lightblue;"| β-PoAiRhombohedralR{{overline|3}}m
(No. 166)
1 (rh.)
3 (hex.)
Identical symmetry to the α-Hg structure, distinguished based on details about the basis vectors of its unit cell.
style="background:salmon;"| γ-SeA850pxHexagonalP321
(No. 154)
3
style="background:salmon;"| MgA350pxHexagonalP63/mmc
(No. 194)
2Zn has 6 nearest neighbors in same plane: 6 in adjacent planes 14% farther away
Cd has 6 nearest neighbours in the same plane- 6 in adjacent planes 15% farther away
If the unit cell axial ratio is exactly 2\sqrt{\frac 2 3} \approx 1.633 the structure would be a mathematical hexagonal close packed (HCP) structure. However, in real materials there are deviations from this in some metals where the unit cell is distorted in one direction but the structure still retains the hcp space group—remarkable all the elements have a ratio of lattice parameters c/a < 1.633 (best are Mg and Co and worst Be with c/a ~ 1.568). In others like Zn and Cd the deviations from the ideal change the symmetry of the structure and these have a lattice parameter ratio c/a > 1.85.
style="background:salmon;"| g-CA950pxHexagonalP63/mmc
(No. 194)
4Specifically the graphite form of carbon.
style="background:salmon;"| α-LaA3'50pxHexagonalP63/mmc
(No. 194)
4The Double hexagonal close packed (DHCP) structure. Similar to the ideal hcp structure, the perfect dhcp structure should have a lattice parameter ratio of \frac{c}{a} = 4\sqrt{\frac 2 3} \approx 3.267. In the real dhcp structures of 5 lanthanides (including β-Ce) c/2a variates between 1.596 (Pm) and 1.6128 (Nd). For the four known actinides dhcp lattices the corresponding number vary between 1.620 (Bk) and 1.625 (Cf).Nevill Gonalez Swacki & Teresa Swacka, Basic elements of Crystallography, Pan Standford Publishing Pte. Ltd., 2010
style="background:salmon;"| β-N(none)HexagonalP63/mmc
(No. 194)
4
style="background:mistyrose;"| α-PoAh50pxCubicPm{{overline|3}}m
(No. 221)
16 nearest neighbourssimple cubic lattice. The atoms in the unit cell are at the corner of a cube.
style="background:mistyrose;"| γ-O(none)50pxCubicPm{{overline|3}}n
(No. 223)
16Closely related to the β-W structure, except with a diatomic oxygen molecule in place of each tungsten atom. The molecules can rotate in place, but the direction of rotation for some of the molecules is restricted.
style="background:orange;"| α-MnA1250pxCubicI{{overline|4}}3m
(No. 217)
58Unit cell contains Mn atoms in 4 different environments.{{Greenwood&Earnshaw}}Distorted bcc
style="background:orange;" | WA250pxCubicIm{{overline|3}}m
(No. 229)
2The Body centered cubic structure (BCC). It is not a close packed structure. In this each metal atom is at the centre of a cube with 8 nearest neighbors, however the 6 atoms at the centres of the adjacent cubes are only approximately 15% further away so the coordination number can therefore be considered to be 14 when these are on one 4 fold axe structure becomes face-centred cubic (cubic close packed).
style="background:silver;" | CuA150pxCubicFm{{overline|3}}m
(No. 225)
4The face-centered cubic (cubic close packed) structure. More content relating to number of planes within structure and implications for glide/slide e.g. ductility.
style="background:silver;" | d-CA450pxCubicFd{{overline|3}}m
(No. 227)
8The diamond cubic (DC) structure. Specifically the diamond form of Carbon.

=Close packed metal structures=

{{see also|Close-packing of equal spheres}}

The observed crystal structures of many metals can be described as a nearly mathematical close-packing of equal spheres. A simple model for both of these is to assume that the metal atoms are spherical and are packed together as closely as possible. In closest packing, every atom has 12 equidistant nearest neighbours, and therefore a coordination number of 12. If the close packed structures are considered as being built of layers of spheres, then the difference between hexagonal close packing and face-centred cubic is how each layer is positioned relative to others. The following types can be viewed as a regular buildup of close-packed layers:

  • Mg type (hexagonal close packing) has alternate layers positioned directly above/below each other: A,B,A,B,...
  • Cu type (face-centered cubic) has every third layer directly above/below each other: A,B,C,A,B,C,...
  • α-La type (double hexagonal close packing) has layers directly above/below each other, A,B,A,C,A,B,A,C,.... of period length 4 like an alternative mixture of fcc and hcp packing.URL {{cite web |url=http://cst-www.nrl.navy.mil/lattice/struk/a3p.html |title=The alpha la (A3') Structure |access-date=2012-02-05 |url-status=dead |archive-url=https://web.archive.org/web/20111223180730/http://cst-www.nrl.navy.mil/lattice/struk/a3p.html |archive-date=2011-12-23 }}
  • α-Sm type has a period of 9 layers A,B,A,B,C,B,C,A,C,...URL {{cite web |url=http://cst-www.nrl.navy.mil/lattice/struk/c19.html |title=The alpha Sm (C19) Structure |access-date=2012-02-05 |url-status=dead |archive-url=https://web.archive.org/web/20120112082753/http://cst-www.nrl.navy.mil/lattice/struk/c19.html |archive-date=2012-01-12 }}

Precisely speaking, the structures of many of the elements in the groups above are slightly distorted from the ideal closest packing. While they retain the lattice symmetry as the ideal structure, they often have nonideal c/a ratios for their unit cell. Less precisely speaking, there are also other elements are nearly close-packed but have distortions which have at least one broken symmetry with respect to the close-packed structure:

  • In type is slightly distorted from a cubic close packed structure
  • α-Pa type is distorted from a hexagonal close packed structure

See also

References

{{reflist|30em}}

;General

  • {{cite conference|title=Actinides and the Environment |conference=NATO ASI Series |book-title=Proc. of the NATO Advanced Study Institute on Actinides and the Environment |location=Maleme, Crete, Greece |date=July 1996 |editor1=P.A. Sterne |editor2=A. Gonis |editor3=A.A. Borovoi |publisher=Kluver Academic Publishers |isbn=0-7923-4968-7|pages= 59–61}}
  • {{cite book|title=The Chemistry of the Actinide and Transactinide Elements |editor1=L.R. Morss |editor2=Norman M. Edelstein |editor3=Jean Fuger |edition=3rd |publisher=Springer |date=2007 | isbn=978-1402035555}}