RASSF9

{{Short description|Protein-coding gene in the species Homo sapiens}}

{{cs1 config|name-list-style=vanc}}

{{Infobox_gene}}

Ras association domain-containing protein 9 (RASSF9), also known as PAM COOH-terminal interactor protein 1 (PCIP1) or peptidylglycine alpha-amidating monooxygenase COOH-terminal interactor (PAMCI) is a protein that in humans is encoded by the RASSF9 gene.{{cite web | title = Entrez Gene: Ras association (RalGDS/AF-6) domain family (N-terminal) member 9| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9182}}

Function

RASSF9 the N-terminal RASSF family member Ras association (RalGDS/AF-6) domain family (N-terminal) member 9 12q21.31,{{cite journal |vauthors=Chen L, Johnson RC, Milgram SL | title = P-CIP1, a novel protein that interacts with the cytosolic domain of peptidylglycine alpha-amidating monooxygenase, is associated with endosomes. | journal = J Biol Chem | volume =273 | issue = 50 | pages =33524–32 |date=December 1998 | pmid = 9837933 | doi = 10.1074/jbc.273.50.33524 | doi-access = free }}{{cite journal |vauthors=Sherwood V, Manbodh R, Sheppard C, Chalmers AD | title =RASSF7 is a member of a new family of RAS association domain-containing proteins and is required for completing mitosis. | journal = Mol Biol Cell | volume = 19 | issue =4 | pages =1772–82 |date=April 2008 | pmid = 18272789 | doi =10.1091/mbc.E07-07-0652 | pmc=2291435 }} is one of two new wild type RASSF9 and RASSF10 proteins. Three proteins that interact with a fragment of the PAM cytosolic domain containing signaling switch I and II the RA1 and RA2ras complex.{{cite journal |vauthors=Bunney TD, Harris R, Gandarillas NL, Josephs MB, Roe SM, Sorli SC, Paterson HF, Rodrigues-Lima F, Esposito D, Ponting CP, Gierschik P, Pearl LH, Driscoll PC, Katan M | title = Structural and mechanistic insights into ras association domains of phospholipase C epsilon. | journal = Mol Cell | volume = 21 | issue = 4 | pages =495–507 |date=February 2006 | pmid = 16483931 | doi = 10.1016/j.molcel.2006.01.008 | doi-access = free }} RASSF7, the first member of the N-terminal RASSF family is required for mitosis. RASSF9 is recently found to be involved in regulation of epidermal homeostasis.{{cite journal|last=Lee|first=CM|author2=Yang P |author3=Chen LC |author4=Chen CC |author5=Wu SC |author6=Cheng HY |author7=Chang YS |title=A Novel Role of RASSF9 in Maintaining Epidermal Homeostasis|journal=PLOS ONE|date=21 March 2011|volume=6|issue=3|pages=e17867|doi=10.1371/journal.pone.0017867|pmid=21445300 |pmc=3061870|bibcode=2011PLoSO...617867L |doi-access=free}}

Regulation

The mutant proregion encoding PAM COOH-terminal interactor protein-1 (P-CIP1) is comparable to that of human band 4.1-like TF (blood plasma protein) as a recycling endosomal pathway in microtubule locations, does NOT bind RasGTP.{{cite journal |vauthors=Wojcik J, Girault JA, Labesse G, Chomilier J, Mornon JP, Callebaut I | title = Sequence analysis identifies a ras-associating (RA)-like domain in the N-termini of band 4.1/JEF domains and in the Grb7/10/14 adapter family. | journal = Biochem Biophys Res Commun | volume =259 | issue =1 | pages =113–20 |date=May 1999 | pmid = 10334925 | doi =10.1006/bbrc.1999.0727 }} Specificity of interaction may all be related to microtubule locations of the endosomal-lysosomal system localized within the centrosome with Transferrin and different Ras proteins or with that one (N-Ras), but on the other hand, it interacts with three{{cite journal |vauthors=Huang L, Weng X, Hofer F, Martin GS, Kim SH | title =Three-dimensional structure of the Ras-interacting domain of RalGDS. | journal = Nature Structural & Molecular Biology | volume =4 | issue =8 | pages =609–15 |date=August 1997 | pmid = 9253406 | doi = 10.1038/nsb0897-609| s2cid =1328881 | url =https://zenodo.org/record/1233566 }} (Ha-Ras, Ki-Ras,{{cite journal |vauthors=Kuriyama M, Harada N, Kuroda S, Yamamoto T, Nakafuku M, Iwamatsu A, Yamamoto D, Prasad R, Croce C, Canaani E, Kaibuchi K | title =Identification of AF-6 and canoe as putative targets for Ras. | journal =J Biol Chem | volume =271 | issue =2 | pages = 607–10 |date=January 1996 | pmid = 8557659 | doi = 10.1074/jbc.271.2.607 | doi-access =free}} and Rap{{cite journal |vauthors=Katagiri K, Imamura M, Kinashi T | title =Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion. | journal = Nat Immunol | volume =7 | issue =9 | pages = 919–28 |date=September 2006 | pmid = 16892067 | doi =10.1038/ni1374 | s2cid =12337748 }}) residues function,{{cite journal |vauthors=Hofer F, Fields S, Schneider C, Martin GS | title =Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator. | journal = Proc Natl Acad Sci U S A | volume = 91 | issue = 23 | pages = 11089–93 |date=November 1994 | pmid = 7972015 | doi = 10.1073/pnas.91.23.11089| pmc= 45172 | bibcode =1994PNAS...9111089H | doi-access =free }} blocked by a mutation that affects Ras effector function{{cite journal | vauthors =Wang J, Williams RW, Manly KF | title = BioGPS: NM_005447,. WebQTL: web-based complex trait analysis. | journal =Neuroinformatics | volume =1 | issue =4 | pages =299–08 | year =2003 | pmid =15043217 | doi =10.1385/NI:1:4:299 | s2cid =195348266 | url =http://www.genenetwork.org/webqtl/WebQTL.py?cmd=sch&refseq=NM_005447&species=human | access-date =2010-12-06 | archive-date =2017-08-10 | archive-url =https://web.archive.org/web/20170810210703/http://www.genenetwork.org/webqtl/WebQTL.py?cmd=sch&refseq=NM_005447&species=human | url-status =dead | url-access =subscription }} is the critical product of the t (6:11) abnormality associated with some human leukemias. Phosphatidylinositol-3-kinase make contacts with both (6:11) switch I and II regions of ras and yeast adenylyl cyclase molecules carrying these mutations are rendered unactivatable by Ras in vitro.{{cite journal |vauthors=Kido M, Shima F, Satoh T, Asato T, Kariya K, Kataoka T | title = Critical function of the Ras-associating domain as a primary Ras-binding site for regulation of Saccharomyces cerevisiae adenylyl cyclase. | journal =J Biol Chem | volume =277 | issue = 5 | pages =3117–23 |date=February 2002 | pmid = 11723130 | doi =10.1074/jbc.M109526200 | doi-access =free| hdl =20.500.14094/D1002436| hdl-access =free}} Ras-interacting residues, are appreciably different from that of RalGDS-RBD{{cite journal |vauthors=Kigawa T, Endo M, Ito Y, Shirouzu M, Kikuchi A, Yokoyama S | title = Solution structure of the Ras-binding domain of RGL. | journal =FEBS Lett. | volume =441 | issue = 3 | pages =413–8 |date=December 1998 | pmid =9891982 | doi =10.1016/S0014-5793(98)01596-8 | s2cid = 23727331 }} through their C-terminal Ras-binding domains (RBD).{{cite journal |vauthors=Esser D, Bauer B, Wolthuis RM, Wittinghofer A, Cool RH, Bayer P | title = Structure determination of the Ras-binding domain of the Ral-specific guanine nucleotide exchange factor Rlf. | journal =Biochemistry | volume = 37 | issue =39 | pages =13453–62 |date=September 1998 | pmid = 9753431 | doi = 10.1021/bi9811664 }} Such outliers as afadin/AF-6 and Rin1 were found to inhibit the binding of Raf to Ras. Adenylyl cyclase molecules carrying these mutations are rendered unactivatable by Ras in vitro with the Ras-associating domain-RA, not all RA domains bind RasGTP it is a primary Ras-binding site.

Interactions

  • PAM Peptidyl-glycine alpha-amidating monooxygenase precursor (PAM)
  • RASSF7 Ras association domain-containing protein 7 (HRAS1-related cluster protein 1)
  • BLOC1S2 Biogenesis of lysosome-related organelles complex-1 subunit 2 (BLOC subunit 2)
  • TF Serotransferrin precursor (Transferrin) (Beta-1-metal- binding globulin)
  • RAB11A Ras-related protein Rab-11A{{cite journal | vauthors = von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P | title = STRING: known and predicted protein-protein associations, integrated and transferred across organisms. | journal = Nucleic Acids Res. | volume = 33 | issue = Database issue | pages = D433–D437 | date = December 2004 | pmid = 15608232 | doi = 10.1093/nar/gki005 | url = http://string-db.org/version_8_3/newstring_cgi/show_network_section.pl?identifier=9606.ENSP00000354884&all_channels_on=1&network_flavor=evidence&targetmode=proteins | pmc = 539959 }}{{Dead link|date=October 2022 |bot=InternetArchiveBot |fix-attempted=yes }}

References

{{reflist}}

Further reading

{{refbegin | 2}}

  • {{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2002 |pmid= 12477932 |doi= 10.1073/pnas.242603899 |pmc=139241|bibcode=2002PNAS...9916899M |doi-access=free }}
  • {{cite journal |vauthors=Ota T, Suzuki Y, Nishikawa T, etal |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |doi-access= free }}

{{refend}}

{{PDB Gallery|geneid=9182}}