Rectified 7-cubes#Rectified 7-cube
class=wikitable style="float:right; margin-left:8px; width:400px" |
align=center
|100px |100px |100px |100px |
align=center
|100px |100px |100px |
colspan=4|Orthogonal projections in B7 Coxeter plane |
---|
In seven-dimensional geometry, a rectified 7-cube is a convex uniform 7-polytope, being a rectification of the regular 7-cube.
There are unique 7 degrees of rectifications, the zeroth being the 7-cube, and the 6th and last being the 7-cube. Vertices of the rectified 7-cube are located at the edge-centers of the 7-ocube. Vertices of the birectified 7-cube are located in the square face centers of the 7-cube. Vertices of the trirectified 7-cube are located in the cube cell centers of the 7-cube.
{{-}}
Rectified 7-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Rectified 7-cube | |
bgcolor=#e7dcc3|Type | uniform 7-polytope |
bgcolor=#e7dcc3|Schläfli symbol | r{4,3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|4|node_1|3|node|3|node|3|node|3|node|3|node}} {{CDD|nodes_11|split2|node|3|node|3|node|3|node|3|node}} |
bgcolor=#e7dcc3|6-faces | 128 + 14 |
bgcolor=#e7dcc3|5-faces | 896 + 84 |
bgcolor=#e7dcc3|4-faces | 2688 + 280 |
bgcolor=#e7dcc3|Cells | 4480 + 560 |
bgcolor=#e7dcc3|Faces | 4480 + 672 |
bgcolor=#e7dcc3|Edges | 2688 |
bgcolor=#e7dcc3|Vertices | 448 |
bgcolor=#e7dcc3|Vertex figure | 5-simplex prism |
bgcolor=#e7dcc3|Coxeter groups | B7, [3,3,3,3,3,4] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names=
- rectified hepteract (Acronym rasa) (Jonathan Bowers)Klitzing, (o3o3o3o3o3x4o - rasa)
= Images =
{{7-cube Coxeter plane graphs|t1|150}}
= Cartesian coordinates =
Cartesian coordinates for the vertices of a rectified 7-cube, centered at the origin, edge length are all permutations of:
: (±1,±1,±1,±1,±1,±1,0)
Birectified 7-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Birectified 7-cube | |
bgcolor=#e7dcc3|Type | uniform 7-polytope |
bgcolor=#e7dcc3|Coxeter symbol | 0411 |
bgcolor=#e7dcc3|Schläfli symbol | 2r{4,3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|4|node|3|node_1|3|node|3|node|3|node|3|node}} {{CDD|nodes|split2|node_1|3|node|3|node|3|node|3|node}} |
bgcolor=#e7dcc3|6-faces | 128 + 14 |
bgcolor=#e7dcc3|5-faces | 448 + 896 + 84 |
bgcolor=#e7dcc3|4-faces | 2688 + 2688 + 280 |
bgcolor=#e7dcc3|Cells | 6720 + 4480 + 560 |
bgcolor=#e7dcc3|Faces | 8960 + 4480 |
bgcolor=#e7dcc3|Edges | 6720 |
bgcolor=#e7dcc3|Vertices | 672 |
bgcolor=#e7dcc3|Vertex figure | {3}x{3,3,3} |
bgcolor=#e7dcc3|Coxeter groups | B7, [3,3,3,3,3,4] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names=
- Birectified hepteract (Acronym bersa) (Jonathan Bowers)Klitzing, (o3o3o3o3x3o4o - bersa)
= Images =
{{7-cube Coxeter plane graphs|t2|150}}
= Cartesian coordinates =
Cartesian coordinates for the vertices of a birectified 7-cube, centered at the origin, edge length are all permutations of:
: (±1,±1,±1,±1,±1,0,0)
Trirectified 7-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Trirectified 7-cube | |
bgcolor=#e7dcc3|Type | uniform 7-polytope |
bgcolor=#e7dcc3|Schläfli symbol | 3r{4,3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|4|node|3|node|3|node_1|3|node|3|node|3|node}} {{CDD|nodes|split2|node|3|node_1|3|node|3|node|3|node}} |
bgcolor=#e7dcc3|6-faces | 128 + 14 |
bgcolor=#e7dcc3|5-faces | 448 + 896 + 84 |
bgcolor=#e7dcc3|4-faces | 672 + 2688 + 2688 + 280 |
bgcolor=#e7dcc3|Cells | 3360 + 6720 + 4480 |
bgcolor=#e7dcc3|Faces | 6720 + 8960 |
bgcolor=#e7dcc3|Edges | 6720 |
bgcolor=#e7dcc3|Vertices | 560 |
bgcolor=#e7dcc3|Vertex figure | {3,3}x{3,3} |
bgcolor=#e7dcc3|Coxeter groups | B7, [3,3,3,3,3,4] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names=
- Trirectified hepteract
- Trirectified 7-orthoplex
- Trirectified heptacross (Acronym sez) (Jonathan Bowers)Klitzing, (o3o3o3x3o3o4o - sez)
= Images =
{{7-cube Coxeter plane graphs|t3|150}}
= Cartesian coordinates =
Cartesian coordinates for the vertices of a trirectified 7-cube, centered at the origin, edge length are all permutations of:
: (±1,±1,±1,±1,0,0,0)
= Related polytopes=
{{2-isotopic_uniform_hypercube_polytopes}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{ISBN|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polyexa.htm|7D|uniform polytopes (polyexa)}} o3o3o3x3o3o4o - sez, o3o3o3o3x3o4o - bersa, o3o3o3o3o3x4o - rasa
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{polytopes}}