Rod group
In mathematics, a rod group is a three-dimensional line group whose point group is one of the axial crystallographic point groups. This constraint means that the point group must be the symmetry of some three-dimensional lattice.
Table of the 75 rod groups, organized by crystal system or lattice type, and by their point groups:
class="wikitable"
! colspan=10 | Triclinic |
1
| p1 !2 | p{{overline|1}} |
---|
colspan=10 | Monoclinic/inclined |
3
| p211 !4 | pm11 !5 | pc11 !6 | p2/m11 !7 | p2/c11 |
colspan=10 | Monoclinic/orthogonal |
8
| p112 !9 | p1121 !10 | p11m !11 | p112/m !12 | p1121/m |
colspan=10 | Orthorhombic |
13
| p222 !14 | p2221 !15 | pmm2 !16 | pcc2 !17 | pmc21 |
18
| p2mm !19 | p2cm !20 | pmmm !21 | pccm !22 | pmcm |
colspan=10 | Tetragonal |
23
| p4 !24 | p41 !25 | p42 !26 | p43 !27 | p{{overline|4}} |
28
| p4/m !29 | p42/m !30 | p422 !31 | p4122 !32 | p4222 |
33
| p4322 !34 | p4mm !35 | p42cm, p42mc !36 | p4cc !37 | p{{overline|4}}2m, p{{overline|4}}m2 |
38
| p{{overline|4}}2c, p{{overline|4}}c2 !39 | p4/mmm !40 | p4/mcc !41 | p42/mmc, p42/mcm |
colspan=10 | Trigonal |
42
| p3 !43 | p31 !44 | p32 !45 | p{{overline|3}} !46 | p312, p321 |
47
| p3112, p3121 !48 | p3212, p3221 !49 | p3m1, p31m !50 | p3c1, p31c !51 | p{{overline|3}}m1, p{{overline|3}}1m |
52
| p{{overline|3}}c1, p{{overline|3}}1c |
colspan=10 | Hexagonal |
53
| p6 !54 | p61 !55 | p62 !56 | p63 !57 | p64 |
58
| p65 !59 | p{{overline|6}} !60 | p6/m !61 | p63/m !62 | p622 |
63
| p6122 !64 | p6222 !65 | p6322 !66 | p6422 !67 | p6522 |
68
| p6mm !69 | p6cc !70 | p63mc, p63cm !71 | p{{overline|6}}m2, p{{overline|6}}2m !72 | p{{overline|6}}c2, p{{overline|6}}2c |
73
| p6/mmm !74 | p6/mcc !75 | p6{{sub|3}}/mmc, p6{{sub|3}}/mcm |
The double entries are for orientation variants of a group relative to the perpendicular-directions lattice.
Among these groups, there are 8 enantiomorphic pairs.
See also
References
- {{Citation | last1=Hitzer | first1=E.S.M. | last2=Ichikawa | first2=D. | title=Representation of crystallographic subperiodic groups by geometric algebra | url=http://sinai.apphy.u-fukui.ac.jp/gcj/publications/RCSGGA/RCSGGA.pdf | journal=Electronic Proc. Of AGACSE | issue=3, 17–19 Aug. 2008 | location=Leipzig, Germany | year=2008 | url-status=dead | archiveurl=https://web.archive.org/web/20120314155923/http://sinai.apphy.u-fukui.ac.jp/gcj/publications/RCSGGA/RCSGGA.pdf | archivedate=2012-03-14 }}
- {{Citation | editor1-last=Kopsky | editor1-first=V. | editor2-last=Litvin | editor2-first=D.B. | title=International Tables for Crystallography, Volume E: Subperiodic groups | url=http://it.iucr.org/E/ | publisher=Springer-Verlag | location=Berlin, New York | edition=5th | isbn=978-1-4020-0715-6 |doi= 10.1107/97809553602060000105 | year=2002 | volume=E| url-access=subscription }}
External links
- [http://www.cryst.ehu.es/ "Subperiodic Groups: Layer, Rod and Frieze Groups"] on Bilbao Crystallographic Server
- [http://www.bk.psu.edu/faculty/litvin/Download/D_IUCr_Report.pdf Nomenclature, Symbols and Classification of the Subperiodic Groups, V. Kopsky and D. B. Litvin]