point group

{{Short description|Group of geometric symmetries with at least one fixed point}}

class=wikitable align=right width=400
valign=top

|240px
The Bauhinia blakeana flower on the Hong Kong region flag has C5 symmetry; the star on each petal has D5 symmetry.

|160px
The Yin and Yang symbol has C2 symmetry of geometry with inverted colors

In geometry, a point group is a mathematical group of symmetry operations (isometries in a Euclidean space) that have a fixed point in common. The coordinate origin of the Euclidean space is conventionally taken to be a fixed point, and every point group in dimension d is then a subgroup of the orthogonal group O(d). Point groups are used to describe the symmetries of geometric figures and physical objects such as molecules.

Each point group can be represented as sets of orthogonal matrices M that transform point x into point y according to {{nowrap|1=y = Mx}}. Each element of a point group is either a rotation (determinant of {{nowrap|1=M = 1}}), or it is a reflection or improper rotation (determinant of {{nowrap|1=M = −1}}).

The geometric symmetries of crystals are described by space groups, which allow translations and contain point groups as subgroups. Discrete point groups in more than one dimension come in infinite families, but from the crystallographic restriction theorem and one of Bieberbach's theorems, each number of dimensions has only a finite number of point groups that are symmetric over some lattice or grid with that number of dimensions. These are the crystallographic point groups.

Chiral and achiral point groups, reflection groups

Point groups can be classified into chiral (or purely rotational) groups and achiral groups.{{refn|name="Conway-Smith"|{{cite book |last1=Conway |first1=John H. |authorlink1=John H Conway |last2=Smith |first2=Derek A. |title=On quaternions and octonions: their geometry, arithmetic, and symmetry |year=2003 |publisher=A K Peters|isbn= 978-1-56881-134-5}}}}

The chiral groups are subgroups of the special orthogonal group SO(d): they contain only orientation-preserving orthogonal transformations, i.e., those of determinant +1. The achiral groups contain also transformations of determinant −1. In an achiral group, the orientation-preserving transformations form a (chiral) subgroup of index 2.

Finite Coxeter groups or reflection groups are those point groups that are generated purely by a set of reflectional mirrors passing through the same point. A rank n Coxeter group has n mirrors and is represented by a Coxeter–Dynkin diagram. Coxeter notation offers a bracketed notation equivalent to the Coxeter diagram, with markup symbols for rotational and other subsymmetry point groups. Reflection groups are necessarily achiral (except for the trivial group containing only the identity element).

List of point groups

= One dimension =

There are only two one-dimensional point groups, the identity group and the reflection group.

class=wikitable

!Group

!Coxeter

!Coxeter diagram

!Order

!Description

align=centerC1[ ]+1identity
align=centerD1[ ]{{CDD|node
}||2||reflection group

|}

= Two dimensions =

Point groups in two dimensions, sometimes called rosette groups.

They come in two infinite families:

  1. Cyclic groups Cn of n-fold rotation groups
  2. Dihedral groups Dn of n-fold rotation and reflection groups

Applying the crystallographic restriction theorem restricts n to values 1, 2, 3, 4, and 6 for both families, yielding 10 groups.

class="wikitable"
Group

! Intl

! Orbifold

! Coxeter

! Order

! Description

align=center

| Cn

| n

| n

| [n]+

| n

|align=left|cyclic: n-fold rotations; abstract group Zn, the group of integers under addition modulo n

align=center

| Dn

| nm

| *n

| [n]

| 2n

|align=left|dihedral: cyclic with reflections; abstract group Dihn, the dihedral group

File:Coxeter diagram finite rank2 correspondence.png

The subset of pure reflectional point groups, defined by 1 or 2 mirrors, can also be given by their Coxeter group and related polygons. These include 5 crystallographic groups. The symmetry of the reflectional groups can be doubled by an isomorphism, mapping both mirrors onto each other by a bisecting mirror, doubling the symmetry order.

class=wikitable style="text-align:center;"

! colspan=6 | Reflective

! colspan=3 | Rotational

! rowspan=2 | Related
polygons

Group

! colspan=2 | Coxeter group

! colspan=2 | Coxeter diagram

! Order

! Subgroup

! Coxeter

! Order

D1A1[ ]{{CDD|node}}{{CDD|node_c1}}2C1[]+1

| digon

D2A12[2]{{CDD|node|2|node}}{{CDD|node_c1|2|node_c2}}4C2[2]+2

| rectangle

D3A2[3]{{CDD|node|3|node}}{{CDD|node_c1|3|node_c2}}6C3[3]+3

| equilateral triangle

D4BC2[4]{{CDD|node|4|node}}{{CDD|node_c1|4|node_c2}}8C4[4]+4

| square

D5H2[5]{{CDD|node|5|node}}{{CDD|node_c1|5|node_c2}}10C5[5]+5

| regular pentagon

D6G2[6]{{CDD|node|6|node}}{{CDD|node_c1|6|node_c2}}12C6[6]+6

| regular hexagon

DnI2(n)[n]{{CDD|node|n|node}}{{CDD|node_c1|n|node_c2}}2nCn[n]+n

| regular polygon

D2×2A12×2{{brackets|2}} = [4]{{CDD|node|2|node}}{{CDD|node_c1|2|node_c1}} = {{CDD|node_c1|4|node}}8
D3×2A2×2{{brackets|3}} = [6]{{CDD|node|3|node}}{{CDD|node_c1|3|node_c1}} = {{CDD|node_c1|6|node}}12
D4×2BC2×2{{brackets|4}} = [8]{{CDD|node|4|node}}{{CDD|node_c1|4|node_c1}} = {{CDD|node_c1|8|node}}16
D5×2H2×2{{brackets|5}} = [10]{{CDD|node|5|node}}{{CDD|node_c1|5|node_c1}} = {{CDD|node_c1|10|node}}20
D6×2G2×2{{brackets|6}} = [12]{{CDD|node|6|node}}{{CDD|node_c1|6|node_c1}} = {{CDD|node_c1|12|node}}24
Dn×2I2(n)×2{{brackets|n}} = [2n]{{CDD|node|n|node}}{{CDD|node_c1|n|node_c1}} = {{CDD|node_c1|2x|n|node}}4n

= Three dimensions =

{{main|Point groups in three dimensions}}

Point groups in three dimensions, sometimes called molecular point groups after their wide use in studying symmetries of molecules.

They come in 7 infinite families of axial groups (also called prismatic), and 7 additional polyhedral groups (also called Platonic). In Schoenflies notation,

  • Axial groups: Cn, S2n, Cnh, Cnv, Dn, Dnd, Dnh
  • Polyhedral groups: T, Td, Th, O, Oh, I, Ih

Applying the crystallographic restriction theorem to these groups yields the 32 crystallographic point groups.

class="wikitable"

|+ Even/odd colored fundamental domains of the reflective groups

C1v
Order 2

! C2v
Order 4

! C3v
Order 6

! C4v
Order 8

! C5v
Order 10

! C6v
Order 12

!...

80px

| 80px

| 80px

| 80px

| 80px

| 80px

D1h
Order 4

! D2h
Order 8

! D3h
Order 12

! D4h
Order 16

! D5h
Order 20

! D6h
Order 24

! ...

80px

| 80px

| 80px

| 80px

| 80px

| 80px

Td
Order 24

! Oh
Order 48

! Ih
Order 120

80px

| 80px

| 80px

class="wikitable"
valign=top

|

{| class="wikitable"

Intl*

! Geo
{{refn|[https://davidhestenes.net/geocalc/pdf/CrystalGA.pdf The Crystallographic Space groups in Geometric algebra], D. Hestenes and J. Holt, Journal of Mathematical Physics. 48, 023514 (2007) (22 pages)}}

! Orbifold

! Schoenflies

! Coxeter

! Order

align=center

| 1

| {{overline|1}}

| 1

| C1

| [ ]+

| 1

align=center

| {{overline|1}}

| {{overline|22}}

| ×1

| Ci = S2

| [2+,2+]

| 2

align=center

| {{overline|2}} = m

| 1

| *1

| Cs = C1v = C1h

| [ ]

| 2

align=center valign=top

| 2
3
4
5
6
n

| {{overline|2}}
{{overline|3}}
{{overline|4}}
{{overline|5}}
{{overline|6}}
{{overline|n}}

| 22
33
44
55
66
nn

| C2
C3
C4
C5
C6
Cn

| [2]+
[3]+
[4]+
[5]+
[6]+
[n]+

| 2
3
4
5
6
n

align=center valign=top

| mm2
3m
4mm
5m
6mm
nmm
nm

| 2
3
4
5
6
n

| *22
*33
*44
*55
*66
*nn

| C2v
C3v
C4v
C5v
C6v
Cnv

| [2]
[3]
[4]
[5]
[6]
[n]

| 4
6
8
10
12
2n

align=center valign=top

| 2/m
{{overline|6}}
4/m
{{overline|10}}
6/m
n/m
{{overline|2n}}

| {{overline|2}} 2
{{overline|3}} 2
{{overline|4}} 2
{{overline|5}} 2
{{overline|6}} 2
{{overline|n}} 2

| 2*
3*
4*
5*
6*
n*

| C2h
C3h
C4h
C5h
C6h
Cnh

| [2,2+]
[2,3+]
[2,4+]
[2,5+]
[2,6+]
[2,n+]

| 4
6
8
10
12
2n

align=center valign=top

| {{overline|4}}
{{overline|3}}
{{overline|8}}
{{overline|5}}
{{overline|12}}
{{overline|2n}}
{{overline|n}}

| {{overline|4 2}}
{{overline|6 2}}
{{overline|8 2}}
{{overline|10 2}}
{{overline|12 2}}
{{overline|2n 2}}

| 2×




n×

| S4
S6
S8
S10
S12
S2n

| [2+,4+]
[2+,6+]
[2+,8+]
[2+,10+]
[2+,12+]
[2+,2n+]

| 4
6
8
10
12
2n

|

class="wikitable"
Intl

! Geo

! Orbifold

! Schoenflies

! Coxeter

! Order

align=center valign=top

| 222
32
422
52
622
n22
n2

| {{overline|2}} {{overline|2}}
{{overline|3}} {{overline|2}}
{{overline|4}} {{overline|2}}
{{overline|5}} {{overline|2}}
{{overline|6}} {{overline|2}}
{{overline|n}} {{overline|2}}

| 222
223
224
225
226
22n

| D2
D3
D4
D5
D6
Dn

| [2,2]+
[2,3]+
[2,4]+
[2,5]+
[2,6]+
[2,n]+

| 4
6
8
10
12
2n

align=center valign=top

| mmm
{{overline|6}}m2
4/mmm
{{overline|10}}m2
6/mmm
n/mmm
{{overline|2n}}m2

| 2 2
3 2
4 2
5 2
6 2
n 2

| *222
*223
*224
*225
*226
*22n

| D2h
D3h
D4h
D5h
D6h
Dnh

| [2,2]
[2,3]
[2,4]
[2,5]
[2,6]
[2,n]

| 8
12
16
20
24
4n

align=center valign=top

| {{Overline|4}}2m
{{Overline|3}}m
{{Overline|8}}2m
{{Overline|5}}m
{{Overline|12}}2m
{{Overline|2n}}2m
{{Overline|n}}m

| 4 {{overline|2}}
6 {{overline|2}}
8 {{overline|2}}
10 {{overline|2}}
12 {{overline|2}}
n {{overline|2}}

| 2*2
2*3
2*4
2*5
2*6
2*n

| D2d
D3d
D4d
D5d
D6d
Dnd

| [2+,4]
[2+,6]
[2+,8]
[2+,10]
[2+,12]
[2+,2n]

| 8
12
16
20
24
4n

align=center

| 23

| {{overline|3}} {{overline|3}}

| 332

| T

| [3,3]+

| 12

align=center

| m{{overline|3}}

| 4 {{overline|3}}

| 3*2

| Th

| [3+,4]

| 24

align=center

| {{overline|4}}3m

| 3 3

| *332

| Td

| [3,3]

| 24

align=center

| 432

| {{overline|4}} {{overline|3}}

| 432

| O

| [3,4]+

| 24

align=center

| m{{overline|3}}m

| 4 3

| *432

| Oh

| [3,4]

| 48

align=center

| 532

| {{overline|5}} {{overline|3}}

| 532

| I

| [3,5]+

| 60

align=center

| {{overline|5}}{{overline|3}}m

| 5 3

| *532

| Ih

| [3,5]

| 120

|-

|colspan=2|(*) When the Intl entries are duplicated, the first is for even n, the second for odd n.

|}

== Reflection groups ==

File:Coxeter diagram finite rank3 correspondence.png

The reflection point groups, defined by 1 to 3 mirror planes, can also be given by their Coxeter group and related polyhedra. The [3,3] group can be doubled, written as {{brackets|3,3}}, mapping the first and last mirrors onto each other, doubling the symmetry to 48, and isomorphic to the [4,3] group.

class=wikitable

! Schoenflies

! colspan=2 | Coxeter group

! colspan=3 | Coxeter diagram

! Order

! Related regular and
prismatic polyhedra

align=centerTdA3[3,3]

|rowspan=2|{{CDD|node|3|node|3|node}}

{{CDD|node_c1|3|node_c2|3|node_c3}}24tetrahedron
align=centerTd×Dih1 = OhA3×2 = BC3{{brackets|3,3}} = [4,3]{{CDD|node_c1|3|node_c2|3|node_c1}}= {{CDD|node|4|node_c1|3|node_c2}}48stellated octahedron
align=centerOhBC3[4,3]{{CDD|node|4|node|3|node}}{{CDD|node_c1|4|node_c2|3|node_c3}}48cube, octahedron
align=centerIhH3[5,3]{{CDD|node|5|node|3|node}}{{CDD|node_c1|5|node_c2|3|node_c3}}120icosahedron, dodecahedron
align=centerD3hA2×A1[3,2]

|rowspan=2|{{CDD|node|3|node|2|node}}

{{CDD|node_c1|3|node_c2|2|node_c3}}12triangular prism
align=centerD3h×Dih1 = D6hA2×A1×23],2]{{CDD
align=centerD4hBC2×A1[4,2]

|rowspan=2|{{CDD|node|4|node|2|node}}

{{CDD|node_c1|4|node_c2|2|node_c3}}16square prism
align=centerD4h×Dih1 = D8hBC2×A1×24],2] = [8,2]{{CDD
align=centerD5hH2×A1[5,2]{{CDD|node|5|node|2|node}}{{CDD|node_c1|5|node_c2|2|node_c3}}20pentagonal prism
align=centerD6hG2×A1[6,2]{{CDD|node|6|node|2|node}}{{CDD|node_c1|6|node_c2|2|node_c3}}24hexagonal prism
align=centerDnhI2(n)×A1[n,2]

|rowspan=2|{{CDD|node|n|node|2|node}}

{{CDD|node_c1|n|node_c2|2|node_c3}}4nn-gonal prism
align=centerDnh×Dih1 = D2nhI2(n)×A1×2[[n],2]{{CDD|node_c1|n|node_c1|2|node_c2}}= {{CDD|node_c1|2x|n|node|2|node_c2}}8n
align=centerD2hA13[2,2]

|rowspan=3|{{CDD|node|2|node|2|node}}

|{{CDD|node_c1|2|node_c2|2|node_c3}}

8

|rowspan=3|cuboid

align=centerD2h×Dih1A13×22],2] = [4,2]{{CDD = [4,3]{{CDD|node_c1|2|node_c1|2|node_c1}}= {{CDD|node_c1|4|node|3|node}}48
align=centerC3vA2[1,3]{{CDD|node|3|node}}{{CDD|node_c1|3|node_c2}}6

|rowspan=9|hosohedron

align=centerC4vBC2[1,4]{{CDD|node|4|node}}{{CDD|node_c1|4|node_c2}}8
align=centerC5vH2[1,5]{{CDD|node|5|node}}{{CDD|node_c1|5|node_c2}}10
align=centerC6vG2[1,6]{{CDD|node|6|node}}{{CDD|node_c1|6|node_c2}}12
align=centerCnvI2(n)[1,n]

|rowspan=2|{{CDD|node|n|node}}

{{CDD|node_c1|n|node_c2}}2n
align=centerCnv×Dih1 = C2nvI2(n)×2[1,[n]] = [1,2n]{{CDD|node_c1|n|node_c1}}= {{CDD|node_c1|2x|n|node}}4n
align=centerC2vA12[1,2]

|rowspan=2|{{CDD|node|2|node}}

{{CDD|node_c1|2|node_c2}}4
align=centerC2v×Dih1A12×2[1,[2]]{{CDD|node_c1|2|node_c1}}= {{CDD|node_c1|4|node}}8
align=centerCsA1[1,1]{{CDD|node}}{{CDD|node_c1}}2

= Four dimensions =

{{main|Point groups in four dimensions}}

The four-dimensional point groups (chiral as well as achiral) are listed in Conway and Smith, Section 4, Tables 4.1–4.3.

File:Coxeter diagram finite rank4 correspondence.png

The following list gives the four-dimensional reflection groups (excluding those that leave a subspace fixed and that are therefore lower-dimensional reflection groups). Each group is specified as a Coxeter group, and like the polyhedral groups of 3D, it can be named by its related convex regular 4-polytope. Related pure rotational groups exist for each with half the order, and can be represented by the bracket Coxeter notation with a '+' exponent, for example [3,3,3]+ has three 3-fold gyration points and symmetry order 60. Front-back symmetric groups like [3,3,3] and [3,4,3] can be doubled, shown as double brackets in Coxeter's notation, for example {{brackets|3,3,3}} with its order doubled to 240.

class=wikitable

!colspan=2|Coxeter group/notation

!colspan=2|Coxeter diagram

!Order

!Related polytopes

align=center

| A4

[3,3,3]{{CDD|node_c1|3|node_c2|3|node_c3|3|node_c4}}1205-cell
align=center

| A4×2

{{brackets|3,3,3}}{{CDD|node_c1|3|node_c2|3|node_c2|3|node_c1}}2405-cell dual compound
align=center

| BC4

[4,3,3]{{CDD|node_c1|4|node_c2|3|node_c3|3|node_c4}}38416-cell / tesseract
align=center

| D4

[31,1,1]{{CDD|nodeab_c1-2|split2|node_c3|3|node_c4}}192

|rowspan=3|demitesseractic

align=center

| D4×2 = BC4

<[3,31,1]> = [4,3,3]{{CDD|nodeab_c1|split2|node_c2|3|node_c3}}= {{CDD|node|4|node_c1|3|node_c2|3|node_c3}}384
align=center

| D4×6 = F4

[3[31,1,1]] = [3,4,3]{{CDD|nodeab_c1|split2|node_c2|3|node_c1}}= {{CDD|node_c2|3|node_c1|4|node|3|node}}1152
align=center

| F4

[3,4,3]{{CDD|node_c1|3|node_c2|4|node_c3|3|node_c4}}115224-cell
align=center

| F4×2

{{brackets|3,4,3}}{{CDD|node_c1|3|node_c2|4|node_c2|3|node_c1}}230424-cell dual compound
align=center

| H4

[5,3,3]{{CDD|node_c1|5|node_c2|3|node_c3|3|node_c4}}14400120-cell / 600-cell
align=center

| A3×A1

[3,3,2]{{CDD|node_c1|3|node_c2|3|node_c3|2|node_c4}}48tetrahedral prism
align=center

| A3×A1×2

[[3,3],2] = [4,3,2]{{CDD|node_c1|3|node_c2|3|node_c1|2|node_c3}}= {{CDD|node|4|node_c1|3|node_c2|2|node_c3}}96

|rowspan=2|octahedral prism

align=center

| BC3×A1

[4,3,2]{{CDD|node_c1|4|node_c2|3|node_c3|2|node_c4}}96
align=center

| H3×A1

[5,3,2]{{CDD|node_c1|5|node_c2|3|node_c3|2|node_c4}}240icosahedral prism
align=center

| A2×A2

[3,2,3]{{CDD|node_c1|3|node_c2|2|node_c3|3|node_c4}}36

|rowspan=24|duoprism

align=center

| A2×BC2

[3,2,4]{{CDD|node_c1|3|node_c2|2|node_c3|4|node_c4}}48
align=center

| A2×H2

[3,2,5]{{CDD|node_c1|3|node_c2|2|node_c3|5|node_c4}}60
align=center

| A2×G2

[3,2,6]{{CDD|node_c1|3|node_c2|2|node_c3|6|node_c4}}72
align=center

| BC2×BC2

[4,2,4]{{CDD|node_c1|4|node_c2|2|node_c3|4|node_c4}}64
align=center

| BC22×2

{{brackets|4,2,4}}{{CDD|node_c1|4|node_c2|2|node_c2|4|node_c1}}128
align=center

| BC2×H2

[4,2,5]{{CDD|node_c1|4|node_c2|2|node_c3|5|node_c4}}80
align=center

| BC2×G2

[4,2,6]{{CDD|node_c1|4|node_c2|2|node_c3|6|node_c4}}96
align=center

| H2×H2

[5,2,5]{{CDD|node_c1|5|node_c2|2|node_c3|5|node_c4}}100
align=center

| H2×G2

[5,2,6]{{CDD|node_c1|5|node_c2|2|node_c3|6|node_c4}}120
align=center

| G2×G2

[6,2,6]{{CDD|node_c1|6|node_c2|2|node_c3|6|node_c4}}144
align=center

| I2(p)×I2(q)

[p,2,q]{{CDD|node_c1|p|node_c2|2|node_c3|q|node_c4}}4pq
align=center

| I2(2p)×I2(q)

[[p],2,q] = [2p,2,q]{{CDD|node_c1|p|node_c1|2|node_c2|q|node_c3}}= {{CDD|node_c1|2x|p|node|2|node_c2|q|node_c3}}8pq
align=center

| I2(2p)×I2(2q)

{{brackets|p}},2,{{brackets|q}} = [2p,2,2q]{{CDD|node_c1|p|node_c1|2|node_c2|q|node_c2}}= {{CDD|node_c1|2x|p|node|2|node_c2|2x|q|node}}16pq
align=center

| I2(p)2×2

{{brackets|p,2,p}}{{CDD|node_c1|p|node_c2|2|node_c2|p|node_c1}}8p2
align=center

| I2(2p)2×2

[p,2,[p]]] = {{brackets|2p,2,2p}}{{CDD|node_c1|p|node_c1|2|node_c1|p|node_c1}}= {{CDD|node_c1|2x|p|node|2|node_c1|2x|p|node}}32p2
align=center

| A2×A1×A1

[3,2,2]{{CDD|node_c1|3|node_c2|2|node_c3|2|node_c4}}24
align=center

| BC2×A1×A1

[4,2,2]{{CDD|node_c1|4|node_c2|2|node_c3|2|node_c4}}32
align=center

| H2×A1×A1

[5,2,2]{{CDD|node_c1|5|node_c2|2|node_c3|2|node_c4}}40
align=center

| G2×A1×A1

[6,2,2]{{CDD|node_c1|6|node_c2|2|node_c3|2|node_c4}}48
align=center

| I2(p)×A1×A1

[p,2,2]{{CDD|node_c1|p|node_c2|2|node_c3|2|node_c4}}8p
align=center

| I2(2p)×A1×A1×2

[[p],2,2] = [2p,2,2]{{CDD|node_c1|p|node_c1|2|node_c2|2|node_c3}}= {{CDD|node_c1|2x|p|node|2|node_c2|2|node_c3}}16p
align=center

| I2(p)×A12×2

[p,2,[2]] = [p,2,4]{{CDD|node_c1|p|node_c2|2|node_c3|2|node_c3}}= {{CDD|node_c1|p|node_c2|2|node_c3|4|node}}16p
align=center

| I2(2p)×A12×4

{{brackets|p}},2,{{brackets|2}} = [2p,2,4]{{CDD|node_c1|p|node_c1|2|node_c2|2|node_c2}}= {{CDD|node_c1|2x|p|node|2|node_c2|4|node}}32p
align=center

| A1×A1×A1×A1

[2,2,2]{{CDD|node_c1|2|node_c2|2|node_c3|2|node_c4}}16

|rowspan=5|4-orthotope

align=center

| A12×A1×A1×2

[[2],2,2] = [4,2,2]{{CDD|node_c1|2|node_c1|2|node_c2|2|node_c3}}= {{CDD|node_c1|4|node|2|node_c2|2|node_c3}}32
align=center

| A12×A12×4

{{brackets|2}},2,{{brackets|2}} = [4,2,4]{{CDD|node_c1|2|node_c1|2|node_c2|2|node_c2}}= {{CDD|node_c1|4|node|2|node_c2|4|node}}64
align=center

| A13×A1×6

[3[2,2],2] = [4,3,2]{{CDD|node_c1|2|node_c1|2|node_c1|2|node_c2}}= {{CDD|node_c1|4|node|3|node|2|node_c2}}96
align=center

| A14×24

[3,3[2,2,2]] = [4,3,3]{{CDD|node_c1|2|node_c1|2|node_c1|2|node_c1}}= {{CDD|node_c1|4|node|3|node|3|node}}384

= Five dimensions =

File:Coxeter diagram finite rank5 correspondence.png

The following table gives the five-dimensional reflection groups (excluding those that are lower-dimensional reflection groups), by listing them as Coxeter groups. Related chiral groups exist for each with half the order, and can be represented by the bracket Coxeter notation with a '+' exponent, for example [3,3,3,3]+ has four 3-fold gyration points and symmetry order 360.

class=wikitable

! colspan=2 | Coxeter group/notation

! colspan=2 | Coxeter
diagrams

! Order

! Related regular and
prismatic polytopes

align=centerA5[3,3,3,3]{{CDD|node|3|node|3|node|3|node|3|node}}{{CDD|node_c1|3|node_c2|3|node_c3|3|node_c4|3|node_c5}}7205-simplex
align=centerA5×2{{brackets|3,3,3,3}}{{CDD|node|3|node|3|node|3|node|3|node}}{{CDD|node_c1|3|node_c2|3|node_c3|3|node_c2|3|node_c1}}14405-simplex dual compound
align=centerBC5[4,3,3,3]{{CDD|node|4|node|3|node|3|node|3|node}}{{CDD|node_c1|4|node_c2|3|node_c3|3|node_c4|3|node_c5}}38405-cube, 5-orthoplex
align=centerD5[32,1,1]{{CDD|nodes|split2|node|3|node|3|node}}{{CDD|nodeab_c1-2|split2|node_c3|3|node_c4|3|node_c5}}19205-demicube
align=centerD5×2<[3,3,31,1]>{{CDD|nodes|split2|node|3|node|3|node}}{{CDD|nodeab_c1|split2|node_c2|3|node_c3|3|node_c4}} = {{CDD|node|4|node_c1|3|node_c2|3|node_c3|3|node_c4}}3840
align=center

| A4×A1

[3,3,3,2]{{CDD|node|3|node|3|node|3|node|2|node}}{{CDD|node_c1|3|node_c2|3|node_c3|3|node_c4|2|node_c5}}2405-cell prism
align=center

| A4×A1×2

[[3,3,3],2]{{CDD|node|3|node|3|node|3|node|2|node}}{{CDD|node_c1|3|node_c2|3|node_c2|3|node_c1|2|node_c3}}480
align=center

| BC4×A1

[4,3,3,2]{{CDD|node|4|node|3|node|3|node|2|node}}{{CDD|node_c1|4|node_c2|3|node_c3|3|node_c4|2|node_c5}}768tesseract prism
align=center

| F4×A1

[3,4,3,2]{{CDD|node|3|node|4|node|3|node|2|node}}{{CDD|node_c1|3|node_c2|4|node_c3|3|node_c4|2|node_c5}}2304

|rowspan=2|24-cell prism

align=center

| F4×A1×2

[[3,4,3],2]{{CDD|node|3|node|4|node|3|node|2|node}}{{CDD|node_c1|3|node_c2|4|node_c2|3|node_c1|2|node_c3}}4608
align=center

| H4×A1

[5,3,3,2]{{CDD|node|5|node|3|node|3|node|2|node}}{{CDD|node_c1|5|node_c2|3|node_c3|3|node_c4|2|node_c5}}28800600-cell or 120-cell prism
align=center

| D4×A1

[31,1,1,2]{{CDD|nodes|split2|node|3|node|2|node}}{{CDD|nodeab_c1-2|split2|node_c3|3|node_c4|2|node_c5}}384demitesseract prism
align=center

| A3×A2

[3,3,2,3]{{CDD|node|3|node|3|node|2|node|3|node}}{{CDD|node_c1|3|node_c2|3|node_c3|2|node_c4|3|node_c5}}144

|rowspan=19|duoprism

align=center

| A3×A2×2

[[3,3],2,3]{{CDD|node|3|node|3|node|2|node|3|node}}{{CDD|node_c1|3|node_c2|3|node_c1|2|node_c3|3|node_c4}}288
align=center

| A3×BC2

[3,3,2,4]{{CDD|node|3|node|3|node|2|node|4|node}}{{CDD|node_c1|3|node_c2|3|node_c3|2|node_c4|4|node_c5}}192
align=center

| A3×H2

[3,3,2,5]{{CDD|node|3|node|3|node|2|node|5|node}}{{CDD|node_c1|3|node_c2|3|node_c3|2|node_c4|5|node_c5}}240
align=center

| A3×G2

[3,3,2,6]{{CDD|node|3|node|3|node|2|node|6|node}}{{CDD|node_c1|3|node_c2|3|node_c3|2|node_c4|6|node_c5}}288
align=center

| A3×I2(p)

[3,3,2,p]{{CDD|node|3|node|3|node|2|node|p|node}}{{CDD|node_c1|3|node_c2|3|node_c3|2|node_c4|p|node_c5}}48p
align=center

| BC3×A2

[4,3,2,3]{{CDD|node|4|node|3|node|2|node|3|node}}{{CDD|node_c1|4|node_c2|3|node_c3|2|node_c4|3|node_c5}}288
align=center

| BC3×BC2

[4,3,2,4]{{CDD|node|4|node|3|node|2|node|4|node}}{{CDD|node_c1|4|node_c2|3|node_c3|2|node_c4|4|node_c5}}384
align=center

| BC3×H2

[4,3,2,5]{{CDD|node|4|node|3|node|2|node|5|node}}{{CDD|node_c1|4|node_c2|3|node_c3|2|node_c4|5|node_c5}}480
align=center

| BC3×G2

[4,3,2,6]{{CDD|node|4|node|3|node|2|node|6|node}}{{CDD|node_c1|4|node_c2|3|node_c3|2|node_c4|6|node_c5}}576
align=center

| BC3×I2(p)

[4,3,2,p]{{CDD|node|4|node|3|node|2|node|p|node}}{{CDD|node_c1|4|node_c2|3|node_c3|2|node_c4|p|node_c5}}96p
align=center

| H3×A2

[5,3,2,3]{{CDD|node|5|node|3|node|2|node|3|node}}{{CDD|node_c1|5|node_c2|3|node_c3|2|node_c4|3|node_c5}}720
align=center

| H3×BC2

[5,3,2,4]{{CDD|node|5|node|3|node|2|node|4|node}}{{CDD|node_c1|5|node_c2|3|node_c3|2|node_c4|4|node_c5}}960
align=center

| H3×H2

[5,3,2,5]{{CDD|node|5|node|3|node|2|node|5|node}}{{CDD|node_c1|5|node_c2|3|node_c3|2|node_c4|5|node_c5}}1200
align=center

| H3×G2

[5,3,2,6]{{CDD|node|5|node|3|node|2|node|6|node}}{{CDD|node_c1|5|node_c2|3|node_c3|2|node_c4|6|node_c5}}1440
align=center

| H3×I2(p)

[5,3,2,p]{{CDD|node|5|node|3|node|2|node|p|node}}240p
align=center

| A3×A12

[3,3,2,2]{{CDD|node|3|node|3|node|2|node|2|node}}96
align=center

| BC3×A12

[4,3,2,2]{{CDD|node|4|node|3|node|2|node|2|node}}192
align=center

| H3×A12

[5,3,2,2]{{CDD|node|5|node|3|node|2|node|2|node}}480
align=center

| A22×A1

[3,2,3,2]{{CDD|node|3|node|2|node|3|node|2|node}}72

|rowspan=16|duoprism prism

align=center

| A2×BC2×A1

[3,2,4,2]{{CDD|node|3|node|2|node|4|node|2|node}}96
align=center

| A2×H2×A1

[3,2,5,2]{{CDD|node|3|node|2|node|5|node|2|node}}120
align=center

| A2×G2×A1

[3,2,6,2]{{CDD|node|3|node|2|node|6|node|2|node}}144
align=center

| BC22×A1

[4,2,4,2]{{CDD|node|4|node|2|node|4|node|2|node}}128
align=center

| BC2×H2×A1

[4,2,5,2]{{CDD|node|4|node|2|node|5|node|2|node}}160
align=center

| BC2×G2×A1

[4,2,6,2]{{CDD|node|4|node|2|node|6|node|2|node}}192
align=center

| H22×A1

[5,2,5,2]{{CDD|node|5|node|2|node|5|node|2|node}}200
align=center

| H2×G2×A1

[5,2,6,2]{{CDD|node|5|node|2|node|6|node|2|node}}240
align=center

| G22×A1

[6,2,6,2]{{CDD|node|6|node|2|node|6|node|2|node}}288
align=center

| I2(p)×I2(q)×A1

[p,2,q,2]{{CDD|node|p|node|2|node|q|node|2|node}}8pq
align=center

| A2×A13

[3,2,2,2]{{CDD|node|3|node|2|node|2|node|2|node}}48
align=center

| BC2×A13

[4,2,2,2]{{CDD|node|4|node|2|node|2|node|2|node}}64
align=center

| H2×A13

[5,2,2,2]{{CDD|node|5|node|2|node|2|node|2|node}}80
align=center

| G2×A13

[6,2,2,2]{{CDD|node|6|node|2|node|2|node|2|node}}96
align=center

| I2(p)×A13

[p,2,2,2]{{CDD|node|p|node|2|node|2|node|2|node}}16p
align=center

| A15

[2,2,2,2]{{CDD|node|2|node|2|node|2|node|2|node}}{{CDD|node_c1|2|node_c2|2|node_c3|2|node_c4|2|node_c5}}32

|rowspan=7|5-orthotope

align=center

| A15×(2!)

[[2],2,2,2]{{CDD|node|2|node|2|node|2|node|2|node}}{{CDD|node_c1|2|node_c1|2|node_c2|2|node_c3|2|node_c4}} = {{CDD|node_c1|4|node|2|node_c2|2|node_c3|2|node_c4}}64
align=center

| A15×(2!×2!)

{{brackets|2}},2,[2],2]{{CDD|node|2|node|2|node|2|node|2|node}}{{CDD|node_c1|2|node_c1|2|node_c2|2|node_c2|2|node_c3}} = {{CDD|node_c1|4|node|2|node_c2|4|node|2|node_c3}}128
align=center

| A15×(3!)

[3[2,2],2,2]{{CDD|node|2|node|2|node|2|node|2|node}}{{CDD|node_c1|2|node_c1|2|node_c1|2|node_c2|2|node_c3}} = {{CDD|node_c1|4|node|3|node|2|node_c2|2|node_c3}}192
align=center

| A15×(3!×2!)

[3[2,2],2,{{brackets|2}}{{CDD|node|2|node|2|node|2|node|2|node}}{{CDD|node_c1|2|node_c1|2|node_c1|2|node_c2|2|node_c2}} = {{CDD|node_c1|4|node|3|node|2|node_c2|4|node}}384
align=center

| A15×(4!)

[3,3[2,2,2],2]]{{CDD|node|2|node|2|node|2|node|2|node}}{{CDD|node_c1|2|node_c1|2|node_c1|2|node_c1|2|node_c2}} = {{CDD|node_c1|4|node|3|node|3|node|2|node_c2}}768
align=center

| A15×(5!)

[3,3,3[2,2,2,2]]{{CDD|node|2|node|2|node|2|node|2|node}}{{CDD|node_c1|2|node_c1|2|node_c1|2|node_c1|2|node_c1}} = {{CDD|node_c1|4|node|3|node|3|node|3|node}}3840

= Six dimensions =

File:Coxeter diagram finite rank6 correspondence.png

The following table gives the six-dimensional reflection groups (excluding those that are lower-dimensional reflection groups), by listing them as Coxeter groups. Related pure rotational groups exist for each with half the order, and can be represented by the bracket Coxeter notation with a '+' exponent, for example [3,3,3,3,3]+ has five 3-fold gyration points and symmetry order 2520.

class=wikitable
colspan=2 | Coxeter group

! Coxeter
diagram

! Order

! Related regular and
prismatic polytopes

align=centerA6[3,3,3,3,3]{{CDD|node|3|node|3|node|3|node|3|node|3|node}}5040 (7!)6-simplex
align=centerA6×2{{brackets|3,3,3,3,3}}{{CDD|branch|3ab|nodes|3ab|nodes}}10080 (2×7!)6-simplex dual compound
align=centerBC6[4,3,3,3,3]{{CDD|node|4|node|3|node|3|node|3|node|3|node}}46080 (26×6!)6-cube, 6-orthoplex
align=centerD6[3,3,3,31,1]{{CDD|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}}23040 (25×6!)6-demicube
align=centerE6[3,32,2]{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea}}51840 (72×6!)122, 221
align=centerA5×A1[3,3,3,3,2]{{CDD|node|3|node|3|node|3|node|3|node|2|node}}1440 (2×6!)5-simplex prism
align=centerBC5×A1[4,3,3,3,2]{{CDD|node|4|node|3|node|3|node|3|node|2|node}}7680 (26×5!)5-cube prism
align=centerD5×A1[3,3,31,1,2]{{CDD|nodes|split2|node|3|node|3|node|2|node}}3840 (25×5!)5-demicube prism
align=centerA4×I2(p)[3,3,3,2,p]{{CDD|node|3|node|3|node|3|node|2|node|p|node}}240p

|rowspan=16|duoprism

align=centerBC4×I2(p)[4,3,3,2,p]{{CDD|node|4|node|3|node|3|node|2|node|p|node}}768p
align=centerF4×I2(p)[3,4,3,2,p]{{CDD|node|3|node|4|node|3|node|2|node|p|node}}2304p
align=centerH4×I2(p)[5,3,3,2,p]{{CDD|node|5|node|3|node|3|node|2|node|p|node}}28800p
align=centerD4×I2(p)[3,31,1,2,p]{{CDD|nodes|split2|node|3|node|2|node|p|node}}384p
align=centerA4×A12[3,3,3,2,2]{{CDD|node|3|node|3|node|3|node|2|node|2|node}}480
align=centerBC4×A12[4,3,3,2,2]{{CDD|node|4|node|3|node|3|node|2|node|2|node}}1536
align=centerF4×A12[3,4,3,2,2]{{CDD|node|3|node|4|node|3|node|2|node|2|node}}4608
align=centerH4×A12[5,3,3,2,2]{{CDD|node|5|node|3|node|3|node|2|node|2|node}}57600
align=centerD4×A12[3,31,1,2,2]{{CDD|nodes|split2|node|3|node|2|node|2|node}}768
align=centerA32[3,3,2,3,3]{{CDD|node|3|node|3|node|2|node|3|node|3|node}}576
align=centerA3×BC3[3,3,2,4,3]{{CDD|node|3|node|3|node|2|node|4|node|3|node}}1152
align=centerA3×H3[3,3,2,5,3]{{CDD|node|3|node|3|node|2|node|5|node|3|node}}2880
align=centerBC32[4,3,2,4,3]{{CDD|node|4|node|3|node|2|node|4|node|3|node}}2304
align=centerBC3×H3[4,3,2,5,3]{{CDD|node|4|node|3|node|2|node|5|node|3|node}}5760
align=centerH32[5,3,2,5,3]{{CDD|node|5|node|3|node|2|node|5|node|3|node}}14400
align=centerA3×I2(p)×A1[3,3,2,p,2]{{CDD|node|3|node|3|node|2|node|p|node|2|node}}96p

|rowspan=6|duoprism prism

align=centerBC3×I2(p)×A1[4,3,2,p,2]{{CDD|node|4|node|3|node|2|node|p|node|2|node}}192p
align=centerH3×I2(p)×A1[5,3,2,p,2]{{CDD|node|5|node|3|node|2|node|p|node|2|node}}480p
align=centerA3×A13[3,3,2,2,2]{{CDD|node|3|node|3|node|2|node|2|node|2|node}}192
align=centerBC3×A13[4,3,2,2,2]{{CDD|node|4|node|3|node|2|node|2|node|2|node}}384
align=centerH3×A13[5,3,2,2,2]{{CDD|node|5|node|3|node|2|node|2|node|2|node}}960
align=centerI2(p)×I2(q)×I2(r)[p,2,q,2,r]{{CDD|node|p|node|2|node|q|node|2|node|r|node}}8pqr''

|rowspan=3|triaprism

align=centerI2(p)×I2(q)×A12[p,2,q,2,2]{{CDD|node|p|node|2|node|q|node|2|node|2|node}}16pq
align=centerI2(p)×A14[p,2,2,2,2]{{CDD|node|p|node|2|node|2|node|2|node|2|node}}32p
align=centerA16[2,2,2,2,2]{{CDD|node|2|node|2|node|2|node|2|node|2|node}}646-orthotope

= Seven dimensions =

The following table gives the seven-dimensional reflection groups (excluding those that are lower-dimensional reflection groups), by listing them as Coxeter groups. Related chiral groups exist for each with half the order, defined by an even number of reflections, and can be represented by the bracket Coxeter notation with a '+' exponent, for example [3,3,3,3,3,3]+ has six 3-fold gyration points and symmetry order 20160.

class="wikitable"
align=center

!colspan=2|Coxeter group

!Coxeter diagram

!Order

!Related polytopes

align=centerA7[3,3,3,3,3,3]{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node}}40320 (8!)7-simplex
align=centerA7×2{{brackets|3,3,3,3,3,3}}{{CDD|node|split1|nodes|3ab|nodes|3ab|nodes}}80640 (2×8!)7-simplex dual compound
align=centerBC7[4,3,3,3,3,3]{{CDD|node|4|node|3|node|3|node|3|node|3|node|3|node}}645120 (27×7!)7-cube, 7-orthoplex
align=centerD7[3,3,3,3,31,1]{{CDD|nodes|split2|node|3|node|3|node|3|node|3|node}}322560 (26×7!)7-demicube
align=centerE7[3,3,3,32,1]{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}}2903040 (8×9!)321, 231, 132
align=centerA6×A1[3,3,3,3,3,2]{{CDD|node|3|node|3|node|3|node|3|node|3|node|2|node}}10080 (2×7!)
align=centerBC6×A1[4,3,3,3,3,2]{{CDD|node|4|node|3|node|3|node|3|node|3|node|2|node}}92160 (27×6!)
align=centerD6×A1[3,3,3,31,1,2]{{CDD|nodes|split2|node|3|node|3|node|3|node|2|node}}46080 (26×6!)
align=centerE6×A1[3,3,32,1,2]{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|2|nodea}}103680 (144×6!)
align=centerA5×I2(p)[3,3,3,3,2,p]{{CDD|node|3|node|3|node|3|node|3|node|2|node|p|node}}1440p
align=centerBC5×I2(p)[4,3,3,3,2,p]{{CDD|node|4|node|3|node|3|node|3|node|2|node|p|node}}7680p
align=centerD5×I2(p)[3,3,31,1,2,p]{{CDD|nodes|split2|node|3|node|3|node|2|node|p|node}}3840p
align=centerA5×A12[3,3,3,3,2,2]{{CDD|node|3|node|3|node|3|node|3|node|2|node|2|node}}2880
align=centerBC5×A12[4,3,3,3,2,2]{{CDD|node|4|node|3|node|3|node|3|node|2|node|2|node}}15360
align=centerD5×A12[3,3,31,1,2,2]{{CDD|nodes|split2|node|3|node|3|node|2|node|2|node}}7680
align=centerA4×A3[3,3,3,2,3,3]{{CDD|node|3|node|3|node|3|node|2|node|3|node|3|node}}2880
align=centerA4×BC3[3,3,3,2,4,3]{{CDD|node|3|node|3|node|3|node|2|node|4|node|3|node}}5760
align=centerA4×H3[3,3,3,2,5,3]{{CDD|node|3|node|3|node|3|node|2|node|5|node|3|node}}14400
align=centerBC4×A3[4,3,3,2,3,3]{{CDD|node|4|node|3|node|3|node|2|node|3|node|3|node}}9216
align=centerBC4×BC3[4,3,3,2,4,3]{{CDD|node|4|node|3|node|3|node|2|node|4|node|3|node}}18432
align=centerBC4×H3[4,3,3,2,5,3]{{CDD|node|4|node|3|node|3|node|2|node|5|node|3|node}}46080
align=centerH4×A3[5,3,3,2,3,3]{{CDD|node|5|node|3|node|3|node|2|node|3|node|3|node}}345600
align=centerH4×BC3[5,3,3,2,4,3]{{CDD|node|5|node|3|node|3|node|2|node|4|node|3|node}}691200
align=centerH4×H3[5,3,3,2,5,3]{{CDD|node|5|node|3|node|3|node|2|node|5|node|3|node}}1728000
align=centerF4×A3[3,4,3,2,3,3]{{CDD|node|3|node|4|node|3|node|2|node|3|node|3|node}}27648
align=centerF4×BC3[3,4,3,2,4,3]{{CDD|node|3|node|4|node|3|node|2|node|4|node|3|node}}55296
align=centerF4×H3[3,4,3,2,5,3]{{CDD|node|3|node|4|node|3|node|2|node|5|node|3|node}}138240
align=centerD4×A3[31,1,1,2,3,3]{{CDD|nodes|split2|node|3|node|2|node|3|node|3|node}}4608
align=centerD4×BC3[3,31,1,2,4,3]{{CDD|nodes|split2|node|3|node|2|node|4|node|3|node}}9216
align=centerD4×H3[3,31,1,2,5,3]{{CDD|nodes|split2|node|3|node|2|node|5|node|3|node}}23040
align=centerA4×I2(p)×A1[3,3,3,2,p,2]{{CDD|node|3|node|3|node|3|node|2|node|p|node|2|node}}480p
align=centerBC4×I2(p)×A1[4,3,3,2,p,2]{{CDD|node|4|node|3|node|3|node|2|node|p|node|2|node}}1536p
align=centerD4×I2(p)×A1[3,31,1,2,p,2]{{CDD|nodes|split2|node|3|node|2|node|p|node|2|node}}768p
align=centerF4×I2(p)×A1[3,4,3,2,p,2]{{CDD|node|3|node|4|node|3|node|2|node|p|node|2|node}}4608p
align=centerH4×I2(p)×A1[5,3,3,2,p,2]{{CDD|node|5|node|3|node|3|node|2|node|p|node|2|node}}57600p
align=centerA4×A13[3,3,3,2,2,2]{{CDD|node|3|node|3|node|3|node|2|node|2|node|2|node}}960
align=centerBC4×A13[4,3,3,2,2,2]{{CDD|node|4|node|3|node|3|node|2|node|2|node|2|node}}3072
align=centerF4×A13[3,4,3,2,2,2]{{CDD|node|3|node|4|node|3|node|2|node|2|node|2|node}}9216
align=centerH4×A13[5,3,3,2,2,2]{{CDD|node|5|node|3|node|3|node|2|node|2|node|2|node}}115200
align=centerD4×A13[3,31,1,2,2,2]{{CDD|nodes|split2|node|3|node|2|node|2|node|2|node}}1536
align=centerA32×A1[3,3,2,3,3,2]{{CDD|node|3|node|3|node|2|node|3|node|3|node|2|node}}1152
align=centerA3×BC3×A1[3,3,2,4,3,2]{{CDD|node|3|node|3|node|2|node|4|node|3|node|2|node}}2304
align=centerA3×H3×A1[3,3,2,5,3,2]{{CDD|node|3|node|3|node|2|node|5|node|3|node|2|node}}5760
align=centerBC32×A1[4,3,2,4,3,2]{{CDD|node|4|node|3|node|2|node|4|node|3|node|2|node}}4608
align=centerBC3×H3×A1[4,3,2,5,3,2]{{CDD|node|4|node|3|node|2|node|5|node|3|node|2|node}}11520
align=centerH32×A1[5,3,2,5,3,2]{{CDD|node|5|node|3|node|2|node|5|node|3|node|2|node}}28800
align=centerA3×I2(p)×I2(q)[3,3,2,p,2,q]{{CDD|node|3|node|3|node|2|node|p|node|2|node|q|node}}96pq
align=centerBC3×I2(p)×I2(q)[4,3,2,p,2,q]{{CDD|node|4|node|3|node|2|node|p|node|2|node|q|node}}192pq
align=centerH3×I2(p)×I2(q)[5,3,2,p,2,q]{{CDD|node|5|node|3|node|2|node|p|node|2|node|q|node}}480pq
align=centerA3×I2(p)×A12[3,3,2,p,2,2]{{CDD|node|3|node|3|node|2|node|p|node|2|node|2|node}}192p
align=centerBC3×I2(p)×A12[4,3,2,p,2,2]{{CDD|node|4|node|3|node|2|node|p|node|2|node|2|node}}384p
align=centerH3×I2(p)×A12[5,3,2,p,2,2]{{CDD|node|5|node|3|node|2|node|p|node|2|node|2|node}}960p
align=centerA3×A14[3,3,2,2,2,2]{{CDD|node|3|node|3|node|2|node|2|node|2|node|2|node}}384
align=centerBC3×A14[4,3,2,2,2,2]{{CDD|node|4|node|3|node|2|node|2|node|2|node|2|node}}768
align=centerH3×A14[5,3,2,2,2,2]{{CDD|node|5|node|3|node|2|node|2|node|2|node|2|node}}1920
align=centerI2(p)×I2(q)×I2(r)×A1[p,2,q,2,r,2]{{CDD|node|p|node|2|node|q|node|2|node|r|node|2|node}}16pqr
align=centerI2(p)×I2(q)×A13[p,2,q,2,2,2]{{CDD|node|p|node|2|node|q|node|2|node|2|node|2|node}}32pq
align=centerI2(p)×A15[p,2,2,2,2,2]{{CDD|node|p|node|2|node|2|node|2|node|2|node|2|node}}64p
align=centerA17[2,2,2,2,2,2]{{CDD|node|2|node|2|node|2|node|2|node|2|node|2|node}}128

= Eight dimensions =

The following table gives the eight-dimensional reflection groups (excluding those that are lower-dimensional reflection groups), by listing them as Coxeter groups. Related chiral groups exist for each with half the order, defined by an even number of reflections, and can be represented by the bracket Coxeter notation with a '+' exponent, for example [3,3,3,3,3,3,3]+ has seven 3-fold gyration points and symmetry order 181440.

class="wikitable"
align=center

!colspan=2|Coxeter group

!Coxeter diagram

!Order

!Related polytopes

align=centerA8[3,3,3,3,3,3,3]{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}362880 (9!)8-simplex
align=centerA8×2{{brackets|3,3,3,3,3,3,3}}{{CDD|branch|3ab|nodes|3ab|nodes|3ab|nodes}}725760 (2×9!)8-simplex dual compound
align=centerBC8[4,3,3,3,3,3,3]{{CDD|node|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}10321920 (288!)8-cube, 8-orthoplex
align=centerD8[3,3,3,3,3,31,1]{{CDD|nodes|split2|node|3|node|3|node|3|node|3|node|3|node}}5160960 (278!)8-demicube
align=centerE8[3,3,3,3,32,1]{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}696729600 (192×10!)421, 241, 142
align=centerA7×A1[3,3,3,3,3,3,2]{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node|2|node}}806407-simplex prism
align=centerBC7×A1[4,3,3,3,3,3,2]{{CDD|node|4|node|3|node|3|node|3|node|3|node|3|node|2|node}}6451207-cube prism
align=centerD7×A1[3,3,3,3,31,1,2]{{CDD|nodes|split2|node|3|node|3|node|3|node|3|node|2|node}}3225607-demicube prism
align=centerE7×A1[3,3,3,32,1,2]{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|2|nodea}}5806080321 prism, 231 prism, 142 prism
align=centerA6×I2(p)[3,3,3,3,3,2,p]{{CDD|node|3|node|3|node|3|node|3|node|3|node|2|node|p|node}}10080p

|rowspan=38|duoprism

align=centerBC6×I2(p)[4,3,3,3,3,2,p]{{CDD|node|4|node|3|node|3|node|3|node|3|node|2|node|p|node}}92160p
align=centerD6×I2(p)[3,3,3,31,1,2,p]{{CDD|nodes|split2|node|3|node|3|node|3|node|2|node|p|node}}46080p
align=centerE6×I2(p)[3,3,32,1,2,p]{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|2|node|p|node}}103680p
align=centerA6×A12[3,3,3,3,3,2,2]{{CDD|node|3|node|3|node|3|node|3|node|3|node|2|node|2|node}}20160
align=centerBC6×A12[4,3,3,3,3,2,2]{{CDD|node|4|node|3|node|3|node|3|node|3|node|2|node|2|node}}184320
align=centerD6×A12[33,1,1,2,2]{{CDD|nodes|split2|node|3|node|3|node|3|node|2|node|2|node}}92160
align=centerE6×A12[3,3,32,1,2,2]{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|2|nodea|2|nodea}}207360
align=centerA5×A3[3,3,3,3,2,3,3]{{CDD|node|3|node|3|node|3|node|3|node|2|node|3|node|3|node}}17280
align=centerBC5×A3[4,3,3,3,2,3,3]{{CDD|node|4|node|3|node|3|node|3|node|2|node|3|node|3|node}}92160
align=centerD5×A3[32,1,1,2,3,3]{{CDD|nodes|split2|node|3|node|3|node|2|node|3|node|3|node}}46080
align=centerA5×BC3[3,3,3,3,2,4,3]{{CDD|node|3|node|3|node|3|node|3|node|2|node|4|node|3|node}}34560
align=centerBC5×BC3[4,3,3,3,2,4,3]{{CDD|node|4|node|3|node|3|node|3|node|2|node|4|node|3|node}}184320
align=centerD5×BC3[32,1,1,2,4,3]{{CDD|nodes|split2|node|3|node|3|node|2|node|4|node|3|node}}92160
align=centerA5×H3[3,3,3,3,2,5,3]{{CDD|node|3|node|3|node|3|node|3|node|2|node|5|node|3|node}}
align=centerBC5×H3[4,3,3,3,2,5,3]{{CDD|node|4|node|3|node|3|node|3|node|2|node|5|node|3|node}}
align=centerD5×H3[32,1,1,2,5,3]{{CDD|nodes|split2|node|3|node|3|node|2|node|5|node|3|node}}
align=centerA5×I2(p)×A1[3,3,3,3,2,p,2]{{CDD|node|3|node|3|node|3|node|3|node|2|node|p|node|2|node}}
align=centerBC5×I2(p)×A1[4,3,3,3,2,p,2]{{CDD|node|4|node|3|node|3|node|3|node|2|node|p|node|2|node}}
align=centerD5×I2(p)×A1[32,1,1,2,p,2]{{CDD|nodes|split2|node|3|node|3|node|2|node|p|node|2|node}}
align=centerA5×A13[3,3,3,3,2,2,2]{{CDD|node|3|node|3|node|3|node|3|node|2|node|2|node|2|node}}
align=centerBC5×A13[4,3,3,3,2,2,2]{{CDD|node|4|node|3|node|3|node|3|node|2|node|2|node|2|node}}
align=centerD5×A13[32,1,1,2,2,2]{{CDD|nodes|split2|node|3|node|3|node|2|node|2|node|2|node}}
align=centerA4×A4[3,3,3,2,3,3,3]{{CDD|node|3|node|3|node|3|node|2|node|3|node|3|node|3|node}}
align=centerBC4×A4[4,3,3,2,3,3,3]{{CDD|node|4|node|3|node|3|node|2|node|3|node|3|node|3|node}}
align=centerD4×A4[31,1,1,2,3,3,3]{{CDD|nodes|split2|node|3|node|2|node|3|node|3|node|3|node}}
align=centerF4×A4[3,4,3,2,3,3,3]{{CDD|node|3|node|4|node|3|node|2|node|3|node|3|node|3|node}}
align=centerH4×A4[5,3,3,2,3,3,3]{{CDD|node|5|node|3|node|3|node|2|node|3|node|3|node|3|node}}
align=centerBC4×BC4[4,3,3,2,4,3,3]{{CDD|node|4|node|3|node|3|node|2|node|4|node|3|node|3|node}}
align=centerD4×BC4[31,1,1,2,4,3,3]{{CDD|nodes|split2|node|3|node|2|node|4|node|3|node|3|node}}
align=centerF4×BC4[3,4,3,2,4,3,3]{{CDD|node|3|node|4|node|3|node|2|node|4|node|3|node|3|node}}
align=centerH4×BC4[5,3,3,2,4,3,3]{{CDD|node|5|node|3|node|3|node|2|node|4|node|3|node|3|node}}
align=centerD4×D4[31,1,1,2,31,1,1]{{CDD|nodes|split2|node|3|node|2|nodes|split2|node|3|node}}
align=centerF4×D4[3,4,3,2,31,1,1]{{CDD|node|3|node|4|node|3|node|2|nodes|split2|node|3|node}}
align=centerH4×D4[5,3,3,2,31,1,1]{{CDD|node|5|node|3|node|3|node|2|nodes|split2|node|3|node}}
align=centerF4×F4[3,4,3,2,3,4,3]{{CDD|node|3|node|4|node|3|node|2|node|3|node|4|node|3|node}}
align=centerH4×F4[5,3,3,2,3,4,3]{{CDD|node|5|node|3|node|3|node|2|node|3|node|4|node|3|node}}
align=centerH4×H4[5,3,3,2,5,3,3]{{CDD|node|5|node|3|node|3|node|2|node|5|node|3|node|3|node}}
align=centerA4×A3×A1[3,3,3,2,3,3,2]{{CDD|node|3|node|3|node|3|node|2|node|3|node|3|node|2|node}}|rowspan=15|duoprism prisms
align=centerA4×BC3×A1[3,3,3,2,4,3,2]{{CDD|node|3|node|3|node|3|node|2|node|4|node|3|node|2|node}}
align=centerA4×H3×A1[3,3,3,2,5,3,2]{{CDD|node|3|node|3|node|3|node|2|node|5|node|3|node|2|node}}
align=centerBC4×A3×A1[4,3,3,2,3,3,2]{{CDD|node|4|node|3|node|3|node|2|node|3|node|3|node|2|node}}
align=centerBC4×BC3×A1[4,3,3,2,4,3,2]{{CDD|node|4|node|3|node|3|node|2|node|4|node|3|node|2|node}}
align=centerBC4×H3×A1[4,3,3,2,5,3,2]{{CDD|node|4|node|3|node|3|node|2|node|5|node|3|node|2|node}}
align=centerH4×A3×A1[5,3,3,2,3,3,2]{{CDD|node|5|node|3|node|3|node|2|node|3|node|3|node|2|node}}
align=centerH4×BC3×A1[5,3,3,2,4,3,2]{{CDD|node|5|node|3|node|3|node|2|node|4|node|3|node|2|node}}
align=centerH4×H3×A1[5,3,3,2,5,3,2]{{CDD|node|5|node|3|node|3|node|2|node|5|node|3|node|2|node}}
align=centerF4×A3×A1[3,4,3,2,3,3,2]{{CDD|node|3|node|4|node|3|node|2|node|3|node|3|node|2|node}}
align=centerF4×BC3×A1[3,4,3,2,4,3,2]{{CDD|node|3|node|4|node|3|node|2|node|4|node|3|node|2|node}}
align=centerF4×H3×A1[3,4,2,3,5,3,2]{{CDD|node|3|node|4|node|3|node|2|node|5|node|3|node|2|node}}
align=centerD4×A3×A1[31,1,1,2,3,3,2]{{CDD|nodes|split2|node|3|node|2|node|3|node|3|node|2|node}}
align=centerD4×BC3×A1[31,1,1,2,4,3,2]{{CDD|nodes|split2|node|3|node|2|node|4|node|3|node|2|node}}
align=centerD4×H3×A1[31,1,1,2,5,3,2]{{CDD|nodes|split2|node|3|node|2|node|5|node|3|node|2|node}}
align=centerA4×I2(p)×I2(q)[3,3,3,2,p,2,q]{{CDD|node|3|node|3|node|3|node|2|node|p|node|2|node|q|node}}|rowspan=5|triaprism
align=centerBC4×I2(p)×I2(q)[4,3,3,2,p,2,q]{{CDD|node|4|node|3|node|3|node|2|node|p|node|2|node|q|node}}
align=centerF4×I2(p)×I2(q)[3,4,3,2,p,2,q]{{CDD|node|3|node|4|node|3|node|2|node|p|node|2|node|q|node}}
align=centerH4×I2(p)×I2(q)[5,3,3,2,p,2,q]{{CDD|node|5|node|3|node|3|node|2|node|p|node|2|node|q|node}}
align=centerD4×I2(p)×I2(q)[31,1,1,2,p,2,q]{{CDD|nodes|split2|node|3|node|2|node|p|node|2|node|q|node}}
align=centerA4×I2(p)×A12[3,3,3,2,p,2,2]{{CDD|node|3|node|3|node|3|node|2|node|p|node|2|node|2|node}}
align=centerBC4×I2(p)×A12[4,3,3,2,p,2,2]{{CDD|node|4|node|3|node|3|node|2|node|p|node|2|node|2|node}}
align=centerF4×I2(p)×A12[3,4,3,2,p,2,2]{{CDD|node|3|node|4|node|3|node|2|node|p|node|2|node|2|node}}
align=centerH4×I2(p)×A12[5,3,3,2,p,2,2]{{CDD|node|5|node|3|node|3|node|2|node|p|node|2|node|2|node}}
align=centerD4×I2(p)×A12[31,1,1,2,p,2,2]{{CDD|nodes|split2|node|3|node|2|node|p|node|2|node|2|node}}
align=centerA4×A14[3,3,3,2,2,2,2]{{CDD|node|3|node|3|node|3|node|2|node|2|node|2|node|2|node}}
align=centerBC4×A14[4,3,3,2,2,2,2]{{CDD|node|4|node|3|node|3|node|2|node|2|node|2|node|2|node}}
align=centerF4×A14[3,4,3,2,2,2,2]{{CDD|node|3|node|4|node|3|node|2|node|2|node|2|node|2|node}}
align=centerH4×A14[5,3,3,2,2,2,2]{{CDD|node|5|node|3|node|3|node|2|node|2|node|2|node|2|node}}
align=centerD4×A14[31,1,1,2,2,2,2]{{CDD|nodes|split2|node|3|node|2|node|2|node|2|node|2|node}}
align=centerA3×A3×I2(p)[3,3,2,3,3,2,p]{{CDD|node|3|node|3|node|2|node|3|node|3|node|2|node|p|node}}
align=centerBC3×A3×I2(p)[4,3,2,3,3,2,p]{{CDD|node|4|node|3|node|2|node|3|node|3|node|2|node|p|node}}
align=centerH3×A3×I2(p)[5,3,2,3,3,2,p]{{CDD|node|5|node|3|node|2|node|3|node|3|node|2|node|p|node}}
align=centerBC3×BC3×I2(p)[4,3,2,4,3,2,p]{{CDD|node|4|node|3|node|2|node|4|node|3|node|2|node|p|node}}
align=centerH3×BC3×I2(p)[5,3,2,4,3,2,p]{{CDD|node|5|node|3|node|2|node|4|node|3|node|2|node|p|node}}
align=centerH3×H3×I2(p)[5,3,2,5,3,2,p]{{CDD|node|5|node|3|node|2|node|5|node|3|node|2|node|p|node}}
align=centerA3×A3×A12[3,3,2,3,3,2,2]{{CDD|node|3|node|3|node|2|node|3|node|3|node|2|node|2|node}}
align=centerBC3×A3×A12[4,3,2,3,3,2,2]{{CDD|node|4|node|3|node|2|node|3|node|3|node|2|node|2|node}}
align=centerH3×A3×A12[5,3,2,3,3,2,2]{{CDD|node|5|node|3|node|2|node|3|node|3|node|2|node|2|node}}
align=centerBC3×BC3×A12[4,3,2,4,3,2,2]{{CDD|node|4|node|3|node|2|node|4|node|3|node|2|node|2|node}}
align=centerH3×BC3×A12[5,3,2,4,3,2,2]{{CDD|node|5|node|3|node|2|node|4|node|3|node|2|node|2|node}}
align=centerH3×H3×A12[5,3,2,5,3,2,2]{{CDD|node|5|node|3|node|2|node|5|node|3|node|2|node|2|node}}
align=centerA3×I2(p)×I2(q)×A1[3,3,2,p,2,q,2]{{CDD|node|3|node|3|node|2|node|p|node|2|node|q|node|2|node}}
align=centerBC3×I2(p)×I2(q)×A1[4,3,2,p,2,q,2]{{CDD|node|4|node|3|node|2|node|p|node|2|node|q|node|2|node}}
align=centerH3×I2(p)×I2(q)×A1[5,3,2,p,2,q,2]{{CDD|node|5|node|3|node|2|node|p|node|2|node|q|node|2|node}}
align=centerA3×I2(p)×A13[3,3,2,p,2,2,2]{{CDD|node|3|node|3|node|2|node|p|node|2|node|2|node|2|node}}
align=centerBC3×I2(p)×A13[4,3,2,p,2,2,2]{{CDD|node|4|node|3|node|2|node|p|node|2|node|2|node|2|node}}
align=centerH3×I2(p)×A13[5,3,2,p,2,2,2]{{CDD|node|5|node|3|node|2|node|p|node|2|node|2|node|2|node}}
align=centerA3×A15[3,3,2,2,2,2,2]{{CDD|node|3|node|3|node|2|node|2|node|2|node|2|node|2|node}}
align=centerBC3×A15[4,3,2,2,2,2,2]{{CDD|node|4|node|3|node|2|node|2|node|2|node|2|node|2|node}}
align=centerH3×A15[5,3,2,2,2,2,2]{{CDD|node|5|node|3|node|2|node|2|node|2|node|2|node|2|node}}
align=centerI2(p)×I2(q)×I2(r)×I2(s)[p,2,q,2,r,2,s]{{CDD|node|p|node|2|node|q|node|2|node|r|node|2|node|s|node}}16pqrs
align=centerI2(p)×I2(q)×I2(r)×A12[p,2,q,2,r,2,2]{{CDD|node|p|node|2|node|q|node|2|node|r|node|2|node|2|node}}32pqr
align=centerI2(p)×I2(q)×A14[p,2,q,2,2,2,2]{{CDD|node|p|node|2|node|q|node|2|node|2|node|2|node|2|node}}64pq
align=centerI2(p)×A16[p,2,2,2,2,2,2]{{CDD|node|p|node|2|node|2|node|2|node|2|node|2|node|2|node}}128p
align=centerA18[2,2,2,2,2,2,2]{{CDD|node|2|node|2|node|2|node|2|node|2|node|2|node|2|node}}256

See also

References

{{reflist}}

Further reading

  • {{citation |author-link=Harold Scott MacDonald Coxeter |author=H. S. M. Coxeter |title=Kaleidoscopes: Selected Writings of H. S. M. Coxeter |editor1=F. Arthur Sherk |editor2=Peter McMullen |editor3=Anthony C. Thompson |editor4=Asia Ivic Weiss |publisher=Wiley-Interscience Publication |year=1995 |isbn=978-0-471-01003-6 |url=http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html }}
  • (Paper 23) H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
  • {{citation |author1=H. S. M. Coxeter |author1-link=Harold Scott MacDonald Coxeter |author2=W. O. J. Moser |title=Generators and Relations for Discrete Groups |edition=4th |publisher=Springer-Verlag |location=New York |year=1980 }}
  • {{citation |author=N. W. Johnson |author-link=Norman Johnson (mathematician) |title=Geometries and Transformations |year=2018 |chapter=Chapter 11: Finite symmetry groups }}