Spirolateral

{{Short description|Geometric polygon}}

class=wikitable align=right width=360

|+ Simple spirolaterals

align=center

|120px
390° (4 cycles)

|120px
3108° (5 cycles)

|120px
990° ccw spiral

|120px
990° (4 cycles)

align=center

|colspan=2|240px
100120° spiral

|colspan=2|240px
100120° (4 cycles)

In Euclidean geometry, a spirolateral is a polygon created by a sequence of fixed vertex internal angles and sequential edge lengths 1,2,3,...,n which repeat until the figure closes. The number of repeats needed is called its cycles.Gardner, M. Worm Paths Ch. 17 Knotted Doughnuts and Other Mathematical Entertainments New York: W. H. Freeman, pp. 205-221, 1986. [https://books.google.com/books?id=jU4FEAAAQBAJ&dq=spirolateral+Worm+Paths&pg=PA221] A simple spirolateral has only positive angles. A simple spiral approximates of a portion of an archimedean spiral. A general spirolateral allows positive and negative angles.

A spirolateral which completes in one turn is a simple polygon, while requiring more than 1 turn is a star polygon and must be self-crossing. A simple spirolateral can be an equangular simple polygon <p> with p vertices, or an equiangular star polygon <p/q> with p vertices and q turns.

Spirolaterals were invented and named by Frank C. Odds as a teenager in 1962, as square spirolaterals with 90° angles, drawn on graph paper. In 1970, Odds discovered triangular and hexagonal spirolateral, with 60° and 120° angles, can be drawn on isometric (triangular) graph paper.[http://www.bsmm.org/2020/07/24/obituary-for-professor-frank-odds] Frank Odds, British biochemist, 8/29/1945-7/7/2020 Odds wrote to Martin Gardner who encouraged him to publish the results in Mathematics TeacherOdds, Frank C. Spirolaterals, Mathematics Teacher, Feb 1973, Volume 66: Issue 2, pp. 121–124 [https://doi.org/10.5951/MT.66.2.0121 DOI] in 1973.[https://web.archive.org/web/20110310190929/https://www.ncetm.org.uk/resources/30192 Focus on...Spirolaterals] Secondary Magazine Issue 78

The process can be represented in turtle graphics, alternating turn angle and move forward instructions, but limiting the turn to a fixed rational angle.

The smallest golygon is a spirolateral, 790°4, made with 7 right angles, and length 4 follow concave turns. Golygons are different in that they must close with a single sequence 1,2,3,..n, while a spirolateral will repeat that sequence until it closes.

Classifications

class=wikitable align=right width=360

|+ Varied cases

|120px
Simple 690°, 2 cycle, 3 turn

|120px
Regular unexpected closed spirolateral, 890°1,5

|120px
Unexpectedly closed spirolateral 790°4

|120px
Crossed rectangle
(1,2,-1,-2)60°

120pxCrossed hexagon
(1,1,2,-1,-1,-2)90°

|120px
(-1.2.4.3.2)60°

|120px
(2...4)90°

|120px
(2,1,-2,3,-4,3)120°

A simple spirolateral has turns all the same direction.Abelson, Harold, diSessa, Andera, 1980, Turtle Geometry, MIT Press, pp.37-39, 120-122 It is denoted by nθ, where n is the number of sequential integer edge lengths and θ is the internal angle, as any rational divisor of 360°. Sequential edge lengths can be expressed explicitly as (1,2,...,n)θ.

Note: The angle θ can be confusing because it represents the internal angle, while the supplementary turn angle can make more sense. These two angles are the same for 90°.

This defines an equiangular polygon of the form <kp/kq>, where angle θ = 180(1−2q/p), with k = n/d, and d = gcd(n,p). If d = n, the pattern never closes. Otherwise it has kp vertices and kq density. The cyclic symmetry of a simple spirolateral is p/d-fold.

A regular polygon, {p} is a special case of a spirolateral, 1180(1−2/p. A regular star polygon, {p/q}, is a special case of a spirolateral, 1180(1−2q/p. An isogonal polygon, is a special case spirolateral, 2180(1−2/p or 2180(1−2q/p.

A general spirolateral can turn left or right. It is denoted by nθa1,...,ak, where ai are indices with negative or concave angles.

{{mathworld|title=Spirolateral|urlname=Spirolateral}} For example, 260°2 is a crossed rectangle with ±60° internal angles, bending left or right.

An unexpected closed spirolateral returns to the first vertex on a single cycle. Only general spirolaterals may not close. A golygon is a regular unexpected closed spirolateral that closes from the expected direction. An irregular unexpected closed spirolateral is one that returns to the first point but from the wrong direction. For example 790°4. It takes 4 cycles to return to the start in the correct direction.

A modern spirolateral, also called a [https://recipesforpi.wordpress.com/2015/09/28/loop-de-loops-and-a-contest/ loop-de-loops]Anna Weltman, This is Not a Math Book A Graphic Activity Book, Kane Miller; Act Csm edition, 2017 by Educator Anna Weltman, is denoted by (i1,...,in)θ, allowing any sequence of integers as the edge lengths, i1 to in.{{Cite web|url=https://www.whatdowedoallday.com/simple-spirolateral-math-art-for-kids|title = Practice Multiplication with Simple Spirolateral Math Art|date = 23 July 2015}} For example, (2,3,4)90° has edge lengths 2,3,4 repeating. Opposite direction turns can be given a negative integer edge length. For example, a crossed rectangle can be given as (1,2,−1,−2)θ.

An open spirolateral never closes. A simple spirolateral, nθ, never closes if nθ is a multiple of 360°, gcd(p,n) = p. A general spirolateral can also be open if half of the angles are positive, half negative.

: File:Spirolateral 4 90.svg

{{clear}}

Closure

The number of cycles it takes to close a spirolateral, nθ, with k opposite turns can be computed like so. Define p and q such that p/q=360/(180-θ). if the fraction (p-2q)(n-2k)/2p is reduced fully to a/b, then the figure repeats after b cycles, and complete a total turns. If b=1, the figure never closes.

Explicitly, the number of cycles is 2p/d, where d=gcd((p-2q)(n-2k),2p). If d=2p, it closes on 1 cycle or never.

The number of cycles can be seen as the rotational symmetry order of the spirolateral.

;n90°

Spirolateral 1 90-fill.svg|190°, 4 cycle, 1 turn

Spirolateral 2 90-fill.svg|290°, 2 cycle, 1 turn

Spirolateral 3 90-fill.svg|390°, 4 cycle, 3 turn

Spirolateral 4 90b.svg|490°, never closes

Spirolateral 5 90-fill.svg|590°, 4 cycle, 5 turn

Spirolateral 6 90-fill.svg|690°, 2 cycle, 3 turn

Spirolateral 7 90.svg|790°, 4 cycle, 6 turns

Spirolateral 8 90.svg|890°, never closes

Spirolateral 9 90-fill.svg|990°, 4 cycle, 9 turn

Spirolateral 10 90-fill.svg|1090°, 2 cycle, 5 turn

;n60°:

Spirolateral 1 60-fill.svg|160°, 3 cycle, 1 turn

Spirolateral 2 60-fill.svg|260°, 3 cycle, 2 turn

Spirolateral 3 60.svg|360°, never closes

Spirolateral 4 60-fill.svg|460°, 3 cycle, 4 turn

Spirolateral 5 60-fill.svg|560°, 3 cycle, 5 turn

Spirolateral 6 60.svg|660°, never closes

Spirolateral 7 60-fill.svg|760°, 3 cycle, 7 turn

Spirolateral 8 60-fill.svg|860°, 3 cycle, 8 turn

Spirolateral 9 60.svg|960°, never closes

Spirolateral 10 60-fill.svg|1060°, 3 cycle, 10 turn

Small simple spirolaterals

Spirolaterals can be constructed from any rational divisor of 360°. The first table's columns sample angles from small regular polygons and second table from star polygons, with examples up to n = 6.

An equiangular polygon <p/q> has p vertices and q density. <np/nq> can be reduced by d = gcd(n,p).

; Small whole divisor angles

class=wikitable

|+ Simple spirolaterals (whole divisors p) nθ or (1,2,...,n)θ

θ||60°||90°||108°||120°||128 4/7°||135°||140°||144°||147 3/11°||150°
180-θ
Turn angle||120°||90°||72°||60°||51 3/7°||45°||40°||36°||32 8/11°||30°
nθ \ p||3||4||5||6||7||8||9||10||11||12
align=center valign=bottom

!valign=top|1θ
Regular
{p}

|100px
160°
{3}

|100px
190°
{4}

|100px
1108°
{5}

|100px
1120°
{6}

|100px
1128.57°
{7}

|100px
1135°
{8}

|100px
1140°
{9}

|100px
1144°
{10}

|100px
1147.27°
{11}

|100px
1150°
{12}

align=center valign=bottom

!valign=top|2θ
Isogonal
<2p/2>

|100px
260°
<6/2>

|BGCOLOR="#fff0f0"|100px
290°
<8/2> → <4>

|100px
2108°
<10/2>

|BGCOLOR="#fff0f0"|100px
2120°
<12/2> → <6>

|100px
2128.57°
<14/2>

|BGCOLOR="#fff0f0"|100px
2135°
<16/2> → <8>

|100px
2140°
<18/2>

|BGCOLOR="#fff0f0"|100px
2144°
<20/2> → <10>

|100px
2147°
<22/2>

|BGCOLOR="#fff0f0"|100px
2150°
<24/2> → <12>

align=center valign=bottom

!valign=top|3θ
2-isogonal
<3p/3>

|BGCOLOR="#c0c0c0"|100px
360°
open

|100px
390°
<12/3>

|100px
3108°
<15/3>

|BGCOLOR="#f0fff0"|80px
3120°
<18/3> → <6>

|100px
3128.57°
<21/3>

|100px
3135°
<24/3>

|BGCOLOR="#f0fff0"|100px
3140°
<27/3> → <9>

|100px
3144°
<30/3>

|100px
3147°
<33/3>

|BGCOLOR="#f0fff0"|100px
3150°
<36/3> → <12>

align=center valign=bottom

!valign=top|4θ
3-isogonal
<4p/4>

|100px
460°
<12/4>

|BGCOLOR="#c0c0c0"|80px
490°
open

|100px
4108°
<20/4>

|BGCOLOR="#fff0f0"|100px
4120°
<24/4> → <12/2>

|100px
4128.57°
<28/4>

|BGCOLOR="#ffc0c0"|100px
4135°
<32/4> → <8>

|100px
4140°
<36/4>

|BGCOLOR="#fff0f0"|100px
4144°
<40/4> → <20/2>

|100px
4147°
<44/4>

|BGCOLOR="#ffc0c0"|100px
4150°
<48/4> → <12>

align=center valign=bottom

!valign=top|5θ
4-isogonal
<5p/5>

|100px
560°
<15/5>

|100px
590°
<20/5>

|BGCOLOR="#c0c0c0"|80px
5108°
open

|100px
5120°
<30/5>

|100px
5128.57°
<35/5>

|100px
5135°
<40/5>

|100px
5140°
<45/5>

|BGCOLOR="#e0e0ff"|80px
5144°
<50/5> → <10>

|100px
5147°
<55/5>

|100px
5150°
<60/5>

align=center valign=bottom

!valign=top|6θ
5-isogonal
<6p/6>

|BGCOLOR="#c0c0c0"|100px
660°
Open

|BGCOLOR="#fff0f0"|80px
690°
<24/6> → <12/3>

|100px
6108°
<30/6>

|BGCOLOR="#c0c0c0"|70px
6120°
Open

|100px
6128.57°
<42/6>

|BGCOLOR="#fff0f0"|100px
6135°
<48/6> → <24/3>

|BGCOLOR="#f0fff0"|100px
6140°
<54/6> → <18/2>

|BGCOLOR="#fff0f0"|80px
6144°
<60/6> → <30/3>

|100px
6147°
<66/6>

|BGCOLOR="#ffffc0"|80px
6150°
<72/6> → <12>

; Small rational divisor angles

class=wikitable

|+ Simple spirolaterals (rational divisors p/q) nθ or (1,2,...,n)θ

θ||15°||16 4/11°||20°||25 5/7°||30°||36°||45°||49 1/11°||72°||77 1/7°||81 9/11°||100°||114 6/11°
180-θ
Turn angle||165°||163 7/11°||160°||154 2/7°||150°||144°||135°||130 10/11°||108°||102 6/7°||98 2/11°||80°||65 5/11°
nθ \ p/q||24/11||11/5||9/4||7/3||12/5||5/2||8/3||11/4||10/3||7/2||11/3||9/2||11/2
align=center valign=bottom

!valign=top|1θ
Regular
{p/q}

|100px
115°
{24/11}

|100px
116.36°
{11/5}

|100px
120°
{9/4}

|100px
125.71°
{7/3}

|100px
130°
{12/5}

|100px
136°
{5/2}

|100px
145°
{8/3}

|100px
149.10°
{11/4}

|100px
172°
{10/3}

|100px
177.14°
{7/2}

|100px
181.82°
{11/3}

|100px
1100°
{9/2}

|100px
1114.55°
{11/2}

align=center valign=bottom

!valign=top|2θ
Isogonal
<2p/2q>

|BGCOLOR="#fff0f0"|100px
215°
<48/22> → <24/11>

|100px
216.36°
<22/10>

|100px
220°
<18/8>

|100px
225.71°
<14/6>

|BGCOLOR="#fff0f0"|100px
230°
<24/10> → <12/5>

|100px
236°
<10/4>

|BGCOLOR="#fff0f0"|100px
245°
<16/6> → <8/3>

|100px
249.10°
<22/8>

|BGCOLOR="#fff0f0"|100px
272°
<20/6> → <10/3>

|100px
277.14°
<14/4>

|100px
281.82°
<22/6>

|100px
2100°
<18/4>

|100px
2114.55°
<22/4>

align=center valign=bottom

!valign=top|3θ
2-isogonal
<3p/3q>

|BGCOLOR="#f0fff0"|100px
315°
<72/33> → <24/11>

|100px
316.36°
<33/15>

|BGCOLOR="#f0fff0"|100px
320°
<27/12> → <9/4>

|100px
325.71°
<21/9>

|BGCOLOR="#f0fff0"|100px
330°
<36/15> → <12/5>

|100px
336°
<15/6>

|100px
345°
<24/9>

|100px
349.10°
<33/12>

|100px
372°
<30/9>

|100px
377.14°
<21/6>

|100px
381.82°
<33/9>

|BGCOLOR="#f0fff0"|100px
3100°
<27/6> → <9/2>

|100px
3114.55°
<33/6>

align=center valign=bottom

!valign=top|4θ
3-isogonal
<4p/4q>

|BGCOLOR="#ffc0c0"|100px
415°
<96/44> → <24/11>

|100px
416.36°
<44/20>

|100px
420°
<36/12>

|100px
425.71°
<28/4>

|BGCOLOR="#ffc0c0"|100px
430°
<48/40> → <12/5>

|100px
436°
<20/8>

|BGCOLOR="#ffc0c0"|75px
445°
<32/12> → <8/3>

|100px
449.10°
<44/16>

|BGCOLOR="#fff0f0"|100px
472°
<40/12> → <20/6>

|100px
477.14°
<28/8>

|100px
481.82°
<44/12>

|100px
4100°
<36/8>

|100px
4114.55°
<44/8>

align=center valign=bottom

!valign=top|5θ
4-isogonal
<5p/5q>

|100px
515°
<120/55>

|100px
516.36°
<55/25>

|100px
520°
<45/20>

|100px
525.71°
<35/15>

|100px
530°
<60/25>

|BGCOLOR="#c0c0c0"|100px
536°
open

|100px
545°
<40/15>

|100px
549.10°
<55/20>

|BGCOLOR="#e0e0ff"|100px
572°
<50/15> → <10/3>

|100px
577.14°
<35/10>

|100px
581.82°
<55/15>

|100px
5100°
<45/10>

|100px
5114.55°
<55/10>

align=center valign=bottom

!valign=top|6θ
5-isogonal
<6p/6q>

|BGCOLOR="#ffffc0"|100px
615°
<144/66> → <24/11>

|100px
616.36°
<66/30>

|BGCOLOR="#f0fff0"|100px
620°
<54/24> → <18/8>

|100px
625.71°
<42/18>

|BGCOLOR="#ffffc0"|110px
630°
<72/30> → <12/5>

|100px
636°
<30/12>

|BGCOLOR="#fff0f0"|100px
645°
<48/18> → <24/9>

|100px
649.10°
<66/24>

|BGCOLOR="#fff0f0"|100px
672°
<60/18> → <30/9>

|100px
677.14°
<42/12>

|100px
681.82°
<66/18>

|BGCOLOR="#f0fff0"|100px
6100°
<54/12> → <18/4>

|100px
6114.55°
<66/12>

See also

{{Commons category}}

  • Turtle graphics represent a computer language that defines an open or close path as move lengths and turn angles.

References

{{reflist}}

  • Alice Kaseberg Schwandt Spirolaterals: An advanced Investignation from an Elementary Standpoint, Mathematical Teacher, Vol 72, 1979, 166-169 [https://www.jstor.org/stable/27961580?seq=1]
  • Margaret Kenney and Stanley Bezuszka, Square Spirolaterals Mathematics Teaching, Vol 95, 1981, pp. 22–27 [https://www.atm.org.uk/Mathematics-Teaching-Journal-Archive/28719]
  • Gascoigne, Serafim [https://link.springer.com/chapter/10.1007%2F978-1-349-08240-7_8 Turtle Fun LOGO for the Spectrum 48K pp 42-46 | Spirolaterals] 1985
  • Wells, D. The Penguin Dictionary of Curious and Interesting Geometry London: Penguin, pp. 239–241, 1991.
  • Krawczyk, Robert, "Hilbert's Building Blocks", Mathematics & Design, The University of the Basque Country, pp. 281–288, 1998.
  • Krawczyk, Robert, Spirolaterals, Complexity from Simplicity, International Society of Arts, Mathematics and Architecture 99, The University of the Basque Country, pp. 293–299, 1999. [https://mypages.iit.edu/~krawczyk/isama99.pdf]
  • Krawczyk, Robert J. The Art of Spirolateral reversals [https://www.researchgate.net/publication/2588913_The_Art_Of_Spirolateral_Reversals/link/552f0c040cf2d495071aa80b/download]