equiangular polygon
{{Short description|Polygon with equally angled vertices}}
class=wikitable align=right width=360
|+ Example equiangular polygons !Direct | Indirect | Skew |
valign=top
|100px |100px |120px | ||
Direct||Indirect||Counter-turned | ||
---|---|---|
valign=top
|120px |120px |120px |
In Euclidean geometry, an equiangular polygon is a polygon whose vertex angles are equal. If the lengths of the sides are also equal (that is, if it is also equilateral) then it is a regular polygon. Isogonal polygons are equiangular polygons which alternate two edge lengths.
For clarity, a planar equiangular polygon can be called direct or indirect. A direct equiangular polygon has all angles turning in the same direction in a plane and can include multiple turns. Convex equiangular polygons are always direct. An indirect equiangular polygon can include angles turning right or left in any combination. A skew equiangular polygon may be isogonal, but can't be considered direct since it is nonplanar.
A spirolateral nθ is a special case of an equiangular polygon with a set of n integer edge lengths repeating sequence until returning to the start, with vertex internal angles θ.
Construction
An equiangular polygon can be constructed from a regular polygon or regular star polygon where edges are extended as infinite lines. Each edges can be independently moved perpendicular to the line's direction. Vertices represent the intersection point between pairs of neighboring line. Each moved line adjusts its edge-length and the lengths of its two neighboring edges.Marius Munteanu, Laura Munteanu, [https://www.researchgate.net/publication/271296486_Rational_Equiangular_Polygons Rational Equiangular Polygons] Applied Mathematics, Vol.4 No.10, October 2013 If edges are reduced to zero length, the polygon becomes degenerate, or if reduced to negative lengths, this will reverse the internal and external angles.
For an even-sided direct equiangular polygon, with internal angles θ°, moving alternate edges can invert all vertices into supplementary angles, 180-θ°. Odd-sided direct equiangular polygons can only be partially inverted, leaving a mixture of supplementary angles.
Every equiangular polygon can be adjusted in proportions by this construction and still preserve equiangular status.
class=wikitable width=320
|160px |160px |
Equiangular polygon theorem
For a convex equiangular p-gon, each internal angle is 180(1−2/p)°; this is the equiangular polygon theorem.
For a direct equiangular p/q star polygon, density q, each internal angle is 180(1−2q/p)°, with {{math|1 < 2q < p}}. For {{math|1=w = gcd(p,q) > 1}}, this represents a w-wound {{sfrac|p/w|q/w}} star polygon, which is degenerate for the regular case.
A concave indirect equiangular {{math|(pr+pl)}}-gon, with {{math|pr}} right turn vertices and {{math|pl}} left turn vertices, will have internal angles of {{math|180(1−2/{{abs|pr−pl}}))°}}, regardless of their sequence. An indirect star equiangular {{math|(pr+pl)}}-gon, with {{math|pr}} right turn vertices and {{math|pl}} left turn vertices and q total turns, will have internal angles of {{math|180(1−2q/{{abs|pr−pl}}))°}}, regardless of their sequence. An equiangular polygon with the same number of right and left turns has zero total turns, and has no constraints on its angles.
Notation
Every direct equiangular p-gon can be given a notation {{angbr|p}} or {{angbr|p/q}}, like regular polygons {p} and regular star polygons {p/q}, containing p vertices, and stars having density q.
Convex equiangular p-gons {{angbr|p}} have internal angles 180(1−2/p)°, while direct star equiangular polygons, {{angbr|p/q}}, have internal angles 180(1−2q/p)°.
A concave indirect equiangular p-gon can be given the notation {{angbr|p−2c}}, with c counter-turn vertices. For example, {{angbr|6−2}} is a hexagon with 90° internal angles of the difference, {{angbr|4}}, 1 counter-turned vertex. A multiturn indirect equilateral p-gon can be given the notation {{angbr|p−2c/q}} with c counter turn vertices, and q total turns. An equiangular polygon <p−p> is a p-gon with undefined internal angles {{mvar|θ}}, but can be expressed explicitly as {{angbr|p−p}}θ.
Other properties
Viviani's theorem holds for equiangular polygons:[https://arxiv.org/abs/0903.0753v3 Elias Abboud "On Viviani's Theorem and its Extensions"] pp. 2, 11
:The sum of distances from an interior point to the sides of an equiangular polygon does not depend on the location of the point, and is that polygon's invariant.
A cyclic polygon is equiangular if and only if the alternate sides are equal (that is, sides 1, 3, 5, ... are equal and sides 2, 4, ... are equal). Thus if n is odd, a cyclic polygon is equiangular if and only if it is regular.De Villiers, Michael, "Equiangular cyclic and equilateral circumscribed polygons", Mathematical Gazette 95, March 2011, 102-107.
For prime p, every integer-sided equiangular p-gon is regular. Moreover, every integer-sided equiangular pk-gon has p-fold rotational symmetry.McLean, K. Robin. "A powerful algebraic tool for equiangular polygons", Mathematical Gazette 88, November 2004, 513-514.
An ordered set of side lengths gives rise to an equiangular n-gon if and only if either of two equivalent conditions holds for the polynomial it equals zero at the complex value it is divisible by M. Bras-Amorós, M. Pujol: "Side Lengths of Equiangular Polygons (as seen by a coding theorist)", The American Mathematical Monthly, vol. 122, n. 5, pp. 476–478, May 2015. {{ISSN|0002-9890}}.
{{clear|left}}
Direct equiangular polygons by sides
Direct equiangular polygons can be regular, isogonal, or lower symmetries. Examples for <p/q> are grouped into sections by p and subgrouped by density q.
= Equiangular triangles=
Equiangular triangles must be convex and have 60° internal angles. It is an equilateral triangle and a regular triangle, {{angbr|3}}={3}. The only degree of freedom is edge-length.
Regular polygon 3 annotated.svg|Regular, {3}, r6
= Equiangular quadrilaterals =
Direct equiangular quadrilaterals have 90° internal angles. The only equiangular quadrilaterals are rectangles, {{angbr|4}}, and squares, {4}.
An equiangular quadrilateral with integer side lengths may be tiled by unit squares.{{citation|first=Derek|last=Ball|title=Equiangular polygons|journal=The Mathematical Gazette|volume=86|issue=507|year=2002|pages=396–407|doi=10.2307/3621131|jstor=3621131|s2cid=233358516}}.
Regular polygon 4 annotated.svg|Regular, {4}, r8
Spirolateral_2_90.svg|Spirolateral 290°, p4
= Equiangular pentagons =
Direct equiangular pentagons, {{angbr|5}} and {{angbr|5/2}}, have 108° and 36° internal angles respectively.
; 108° internal angle from an equiangular pentagon, {{angbr|5}}
Equiangular pentagons can be regular, have bilateral symmetry, or no symmetry.
Equiangular pentagon 03.svg|Regular, r10
Equiangular pentagon 02.svg|Bilateral symmetry, i2
Equiangular pentagon 01.svg|No symmetry, a1
; 36° internal angles from an equiangular pentagram, {{angbr|5/2}}
File:Regular star polygon 5-2.svg|Regular pentagram, r10
Equiangular_pentagram1.svg|Irregular, d2
= Equiangular hexagons =
File:Equiangular_hexagon-1-2.svg 2120°.]]
Direct equiangular hexagons, {{angbr|6}} and {{angbr|6/2}}, have 120° and 60° internal angles respectively.
; 120° internal angles of an equiangular hexagon, {{angbr|6}}:
An equiangular hexagon with integer side lengths may be tiled by unit equilateral triangles.
Regular polygon 6 annotated.svg|Regular, {6}, r12
Spirolateral_2_120.svg|Spirolateral (1,2)120°, p6
Spirolateral_3_120.svg|Spirolateral (1…3)120°, g2
Spirolateral 1-2-2 120.svg|Spirolateral (1,2,2)120°, i4
Spirolateral 1-2-2-2-1-3 120.svg|Spirolateral (1,2,2,2,1,3)120°, p2
; 60° internal angles of an equiangular double-wound triangle, {{angbr|6/2}}:
Regular polygon 3 annotated.svg|Regular, degenerate, r6
Spirolateral 1-3 60.svg|Spirolateral (1,3)60°, p6
Spirolateral_2_60.svg|Spirolateral (1,2)60°, p6
Spirolateral 2-3 60.svg|Spirolateral (2,3)60°, p6
Spirolateral_1-2-3-4-3-2_60.svg|Spirolateral (1,2,3,4,3,2)60°, p2
{{clear|left}}
= Equiangular heptagons =
Direct equiangular heptagons, {{angbr|7}}, {{angbr|7/2}}, and {{angbr|7/3}} have 128 4/7°, 77 1/7° and 25 5/7° internal angles respectively.
; 128.57° internal angles of an equiangular heptagon, {{angbr|7}}:
Regular polygon 7 annotated.svg|Regular, {7}, r14
Equiangular heptagon.svg|Irregular, i2
; 77.14° internal angles of an equiangular heptagram, {{angbr|7/2}}:
Regular star polygon 7-2.svg|Regular, r14
Equiangular heptagram1.svg|Irregular, i2
; 25.71° internal angles of an equiangular heptagram, {{angbr|7/3}}:
Regular star polygon 7-3.svg|Regular, r14
Equiangular heptagram2.svg|Irregular, i2
= Equiangular octagons =
Direct equiangular octagons, {{angbr|8}}, {{angbr|8/2}} and {{angbr|8/3}}, have 135°, 90° and 45° internal angles respectively.
; 135° internal angles from an equiangular octagon, {{angbr|8}}:
Regular polygon 8 annotated.svg|Regular, r16
Spirolateral_2_135.svg|Spirolateral (1,2)135°, p8
Spirolateral_4_135.svg|Spirolateral (1…4)135°, g2
Equiangular_octagon.svg|Unequal truncated square, p2
; 90° internal angles from an equiangular double-wound square, {{angbr|8/2}}:
Regular polygon 4 annotated.svg|Regular degenerate, r8
Spirolateral 1-2-2-3-3-2-2-1 90.svg|Spirolateral (1,2,2,3,3,2,2,1)90°, d2
Spirolateral 2-1-3-2-2-3-1-2 90.svg|Spirolateral (2,1,3,2,2,3,1,2)90°, d2
; 45° internal angles from an equiangular octagram, {{angbr|8/3}}:
Regular star polygon 8-3.svg|Regular, r16
Regular truncation 4 2.svg|Isogonal, p8
Regular truncation 4 -4.svg|Isogonal, p8
Spirolateral_2_45.svg|Spirolateral, (1,2)45°, p8
Regular truncation 4 -0.2.svg|Isogonal, p8
Spirolateral_4_45.svg|Spirolateral (1…4)45°, g2
= Equiangular enneagons =
Direct equiangular enneagons, {{angbr|9}}, {{angbr|9/2}}, {{angbr|9/3}}, and {{angbr|9/4}} have 140°, 100°, 60° and 20° internal angles respectively.
;140° internal angles from an equiangular enneagon {{angbr|9}}
Regular polygon 9 annotated.svg|Regular, r18
Spirolateral 1-1-3 140.svg|Spirolateral (1,1,3)140°, i6
;100° internal angles from an equiangular enneagram, {{angbr|9/2}}:
Regular star polygon 9-2.svg|Regular {9/2}, p9
Spirolateral 1-1-5 140.svg|Spirolateral (1,1,5)100°, i6
File:Spirolateral 3 100.svg|Spirolateral 3100°, g3
;60° internal angles from an equiangular triple-wound triangle, {{angbr|9/3}}:
Regular polygon 3 annotated.svg|Regular, degenerate, r6
Equiangular_triple-triangle1.svg|Irregular, a1
Equiangular_triple-triangle2.svg|Irregular, a1
Equiangular_triple-triangle3.svg|Irregular, a1
;20° internal angles from an equiangular enneagram, {{angbr|9/4}}:
Regular star polygon 9-4.svg|Regular {9/4}, r18
Spirolateral 3 20.svg|Spirolateral 320°, g3
Equiangular enneagram2.svg|Irregular, i2
= Equiangular decagons =
Direct equiangular decagons, {{angbr|10}}, {{angbr|10/2}}, {{angbr|10/3}}, {{angbr|10/4}}, have 144°, 108°, 72° and 36° internal angles respectively.
;144° internal angles from an equiangular decagon {{angbr|10}}
Regular polygon 10 annotated.svg|Regular, r20
Spirolateral 2 144.svg|Spirolateral (1,2)144°, p10
Spirolateral_5_144.svg|Spirolateral (1…5)144°, g2
;108° internal angles from an equiangular double-wound pentagon {{angbr|10/2}}
Regular polygon 5 annotated.svg|Regular, degenerate
Spirolateral 2 108.svg|Spirolateral (1,2)108°, p10
Equiangular_double-pentagon1.svg|Irregular, p2
;72° internal angles from an equiangular decagram {{angbr|10/3}}
Regular star polygon 10-3.svg|Regular {10/3}, r20
Regular star truncation 5-3 3.svg|Isogonal, p10
Spirolateral_2_72.svg|Spirolateral (1,2)72°, p10
Equiangular_double-pentagon2.svg|Irregular, i4
Spirolateral 5 72.svg|Spirolateral (1…5)72°, g2
;36° internal angles from an equiangular double-wound pentagram {{angbr|10/4}}
Regular star polygon 5-2.svg|Regular, degenerate, r10
Spirolateral 2 36.svg|Spirolateral (1,2)36°, p10
Regular polygon truncation 5 3.svg|Isogonal, p10
Regular truncation 5 4.svg|Isogonal, p10
Equiangular double-pentagram3.svg|Irregular, p2
Equiangular_double-pentagon5.svg|Irregular, p2
Equiangular_double-pentagram2.svg|Irregular, p2
= Equiangular hendecagons =
Direct equiangular hendecagons, {{angbr|11}}, {{angbr|11/2}}, {{angbr|11/3}}, {{angbr|11/4}}, and {{angbr|11/5}} have 147 3/11°, 114 6/11°, 81 9/11°, 49 1/11°, and 16 4/11° internal angles respectively.
;147° internal angles from an equiangular hendecagon, {{angbr|11}}:
Regular polygon 11 annotated.svg|Regular, {11}, r22
;114° internal angles from an equiangular hendecagram, {{angbr|11/2}}:
Regular star polygon 11-2.svg|Regular {11/2}, r22
;81° internal angles from an equiangular hendecagram, {{angbr|11/3}}:
Regular star polygon 11-3.svg|Regular {11/3}, r22
;49° internal angles from an equiangular hendecagram, {{angbr|11/4}}:
Regular star polygon 11-4.svg|Regular {11/4}, r22
;16° internal angles from an equiangular hendecagram, {{angbr|11/5}}:
Regular star polygon 11-5.svg|Regular {11/5}, r22
= Equiangular dodecagons =
Direct equiangular dodecagons, {{angbr|12}}, {{angbr|12/2}}, {{angbr|12/3}}, {{angbr|12/4}}, and {{angbr|12/5}} have 150°, 120°, 90°, 60°, and 30° internal angles respectively.
;150° internal angles from an equiangular dodecagon, {{angbr|12}}:
Convex solutions with integer edge lengths may be tiled by pattern blocks, squares, equilateral triangles, and 30° rhombi.
Regular polygon 12 annotated.svg|Regular, {12}, r24
Regular truncation 6 0.45.svg|Isogonal, p12
Spirolateral_2_150.svg|Spirolateral (1,2)150°, p12
Spirolateral_3_150.svg|Spirolateral (1…3)150°, g4
Spirolateral_4_150.svg|Spirolateral (1…4)150°, g3
Spirolateral_6_150.svg|Spirolateral (1…6)150°, g2
; 120° internal angles from an equiangular double-wound hexagon, {{angbr|12/2}}
Regular polygon 6 annotated.svg|Regular degenerate, r12
Spirolateral 4 120.svg|Spirolateral, (1…4)120°, g3
Equiangular double-hexagon3.svg|Irregular, d2
Equiangular double-hexagon2.svg|Irregular, d2
; 90° internal angles from an equiangular triple-wound square, {{angbr|12/3}}
Regular polygon 4 annotated.svg|Regular, degenerate, r8
Spirolateral_3_90.svg|Spirolateral (1…3)90°, g2
Spirolateral 2-3-4-90.svg|Spirolateral (2…4)90°, g4
Equiangular triple-square3.svg|Spirolateral (1,1,3)90°, i8
Spirolateral 1-2-2 90.svg|Spirolateral (1,2,2)90°, i8
Spirolateral_6_90.svg|Spirolateral (1…6)90°, g2
Equiangular_triple-square1.svg|Irregular, a1
; 60° internal angles from an equiangular quadruple-wound triangle, {{angbr|12/4}}
Regular polygon 3 annotated.svg|Regular, degenerate, r6
Equiangular double-hexagon4.svg|Spirolateral (1,3,5,1)60°, p6
Spirolateral 4 60.svg|Spirolateral (1…4)60°, g3
Equiangular_quadruple-triangle1.svg|Irregular, a1
; 30° internal angles from an equiangular dodecagram, {{angbr|12/5}}
Regular star polygon 12-5.svg|Regular {12/5}, r24
Regular truncation 6 1.5.svg|Isogonal, p12
Spirolateral_2_30.svg|Spirolateral (1,2)30°, p12
Spirolateral_3_30.svg|Spirolateral (1…3)30°, g4
Spirolateral_4_30.svg|Spirolateral (1…4)30°, g3
Spirolateral_6_30.svg|Spirolateral (1…6)30°, g2
= Equiangular tetradecagons =
Direct equiangular tetradecagons, {{angbr|14}}, {{angbr|14/2}}, {{angbr|14/3}}, {{angbr|14/4}}, and {{angbr|14/5}}, {{angbr|14/6}}, have 154 2/7°, 128 4/7°, 102 6/7°, 77 1/7°, 51 3/7° and 25 5/7° internal angles respectively.
;154.28° internal angles from an equiangular tetradecagon, {{angbr|14}}:
Regular polygon 14 annotated.svg|Regular {14}, r28
File:Regular truncation 7 0.1.svg|Isogonal, t{7}, p14
;128.57° internal angles from an equiangular double-wound regular heptagon, {{angbr|14/2}}:
Regular polygon 7 annotated.svg|Regular degenerate, r14
regular_star_truncation_7-5_3.svg|Isogonal, t{7/2}, p14
Spirolateral_2_129.svg|Spirolateral 2128.57°
;102.85° internal angles from an equiangular tetradecagram, {{angbr|14/3}}:
Regular star polygon 14-3.svg|Regular {14/3}, r28
regular_star_truncation_7-3_3.svg|Isogonal t{7/3}, p14
;77.14° internal angles from an equiangular double-wound heptagram {{angbr|14/4}}:
Regular star polygon 7-2.svg|Regular degenerate, r14
regular_star_truncation_7-3_2.svg|Isogonal, p14
regular_star_truncation_7-3_4.svg|Isogonal, p14
File:Spirolateral 2 77.svg|Spirolateral 277.14°
;51.43° internal angles from an equiangular tetradecagram, {{angbr|14/5}}:
Regular star polygon 14-5.svg|Regular {14/5}, r28
regular_star_truncation_7-5_2.svg|Isogonal, p14
regular_star_truncation_7-5_4.svg|Isogonal, p14
;25.71° internal angles from an equiangular double-wound heptagram, {{angbr|14/6}}:
Regular star polygon 7-3.svg|Regular degenerate, r14
Regular truncation 7 1000.svg|Isogonal, p14
File:Regular truncation 7 4.svg|Isogonal, p14
File:Regular truncation 7 -0.5.svg|Isogonal, p14
Equiangular_star-14-6.svg|Irregular, d2
= Equiangular pentadecagons =
Direct equiangular pentadecagons, {{angbr|15}}, {{angbr|15/2}}, {{angbr|15/3}}, {{angbr|15/4}}, {{angbr|15/5}}, {{angbr|15/6}}, and {{angbr|15/7}}, have 156°, 132°, 108°, 84°, 60° and 12° internal angles respectively.
;156° internal angles from an equiangular pentadecagon, {{angbr|15}}:
Regular polygon 15 annotated.svg|Regular, {15}, r30
;132° internal angles from an equiangular pentadecagram, {{angbr|15/2}}:
Regular star polygon 15-2.svg|Regular, {15/2}, r30
;108° internal angles from an equiangular triple-wound pentagon, {{angbr|15/3}}:
Regular polygon 5 annotated.svg|Regular, degenerate, r10
Equiangular_triple-pentagon1.svg|spirolateral (1…3)108°, g5
;84° internal angles from an equiangular pentadecagram, {{angbr|15/4}}:
Regular star polygon 15-4.svg|Regular, {15/4}, r30
;60° internal angles from an equiangular 5-wound triangle, {{angbr|15/5}}:
Regular polygon 3 annotated.svg|Regular, degenerate, r6
Equiangular 5-wound triangle1.svg|Irregular, a1
;36° internal angles from an equiangular triple-wound pentagram, {{angbr|15/6}}:
Regular star polygon 5-2.svg|Regular, degenerate, r10
Equiangular triple-pentagram2.svg|Irregular, a1
File:Spirolateral 4 36.svg|Spirolateral (1…4)36°, g5
;12° internal angles from an equiangular pentadecagram, {{angbr|15/7}}:
Regular star polygon 15-7.svg|Regular, {15/7}, r30
= Equiangular hexadecagons =
Direct equiangular hexadecagons, {{angbr|16}}, {{angbr|16/2}}, {{angbr|16/3}}, {{angbr|16/4}}, {{angbr|16/5}}, {{angbr|16/6}}, and {{angbr|16/7}}, have 157.5°, 135°, 112.5°, 90°, 67.5° 45° and 22.5° internal angles respectively.
;157.5° internal angles from an equiangular hexadecagon, {{angbr|16}}:
Regular polygon 16 annotated.svg|Regular, {16}, r32
File:Regular truncation 8 0.45.svg|Isogonal, t{8}, p16
File:Spirolateral 4 1575.svg|Spirolateral (1…4)157.5°, g4
;135° internal angles from an equiangular double-wound octagon, {{angbr|16/2}}:
Regular polygon 8 annotated.svg|Regular, degenerate, r16
Equiangular double octagon1.svg|Irregular, p16
;112.5° internal angles from an equiangular hexadecagram, {{angbr|16/3}}:
Regular star polygon 16-3.svg|Regular, {16/3}, r32
;90° internal angles from an equiangular 4-wound square, {{angbr|16/4}}:
Regular polygon 4 annotated.svg|Regular, degenerate, r8
Equiangular 4-wound square1.svg|Irregular, a1
;67.5° internal angles from an equiangular hexadecagram, {{angbr|16/5}}:
Regular star polygon 16-5.svg|Regular, {16/5}, r32
;45° internal angles from an equiangular double-wound regular octagram, {{angbr|16/6}}:
Regular star polygon 8-3.svg|Regular, degenerate, r16
Spirolateral 3 45.svg|spirolateral (1…3)45°, g8
;22.5° internal angles from an equiangular hexadecagram, {{angbr|16/7}}:
Regular star polygon 16-7.svg|Regular, {16/7}, r32
File:Regular truncation 8 -10.svg|Isogonal, p16
= Equiangular octadecagons =
Direct equiangular octadecagons, <18}, {{angbr|18/2}}, {{angbr|18/3}}, {{angbr|18/4}}, {{angbr|18/5}}, {{angbr|18/6}}, {{angbr|18/7}}, and {{angbr|18/8}}, have 160°, 140°, 120°, 100°, 80°, 60°, 40° and 20° internal angles respectively.
;160° internal angles from an equiangular octadecagon, {{angbr|18}}:
Regular polygon 18 annotated.svg|Regular, {18}, r36
File:Regular truncation 9 0.1.svg|Isogonal, t{9}, p18
;140° internal angles from an equiangular double-wound enneagon, {{angbr|18/2}}:
Regular polygon 9.svg|Regular, degenerate
Spirolateral 2 140.svg|Spirolateral 2140°, p18
; 120° internal angles of an equiangular 3-wound hexagon {{angbr|18/3}}:
Regular polygon 6.svg|Regular, degenerate, r18
Equilateral triple-wound-hexagon1.svg|irregular, a1
; 100° internal angles of an equiangular double-wound enneagram {{angbr|18/4}}:
Regular star polygon 9-2.svg|Regular, degenerate, r18
File:Spirolateral_6_100.svg|Spirolateral 2100°, g3
; 80° internal angles of an equiangular octadecagram {18/5}:
Regular star polygon 18-5.svg|Regular, {18/5}, r36
; 60° internal angles of an equiangular 6-wound triangle {{angbr|18/6}}:
Regular polygon 3.svg|Regular, degenerate, r6
Equilateral 6-wound-triangle1.svg|irregular, a1
; 40° internal angles of an equiangular octadecagram {{angbr|18/7}}:
Regular star polygon 18-7.svg|Regular, {18/7}, r36
regular_star_truncation_9-7_2.svg|Isogonal, p18
regular_star_truncation_9-7_4.svg|Isogonal, p18
regular_star_truncation_9-7_5.svg|Isogonal, p18
; 20° internal angles of an equiangular double-wound enneagram {{angbr|18/8}}:
Regular star polygon 9-4.svg|Regular, degenerate, r18
regular_polygon_truncation_9_5.svg|Isogonal, p18
regular_polygon_truncation_9_4.svg|Isogonal, p18
regular_polygon_truncation_9_3.svg|Isogonal, p18
regular_polygon_truncation_9_2.svg|Isogonal, p18
Spirolateral 2 20.svg|Spirolateral 220°, p18
File:Spirolateral 6 20.svg|Spirolateral 620°, g3
= Equiangular icosagons =
Direct equiangular icosagon, {{angbr|20}}, {{angbr|20/3}}, {{angbr|20/4}}, {{angbr|20/5}}, {{angbr|20/6}}, {{angbr|20/7}}, and {{angbr|20/9}}, have 162°, 126°, 108°, 90°, 72°, 54° and 18° internal angles respectively.
;162° internal angles from an equiangular icosagon, {{angbr|20}}:
Regular polygon 20 annotated.svg|Regular, {20}, r40
Spirolateral 1-3 162.svg|Spirolateral (1,3)162°, p20
;144° internal angles from an equiangular double-wound decagon, {{angbr|20/2}}:
Regular polygon 10 annotated.svg|Regular, degenerate, r20
Spirolateral_4_144.svg|Spirolateral (1…4)144°, g5
;126° internal angles from an equiangular icosagram, {{angbr|20/3}}:
Regular star polygon 20-3.svg|Regular {20/3}, p40
Spirolateral_1-3_126.svg|Spirolateral (1,3)126°, p20
;108° internal angles from an equiangular 4-wound pentagon, {{angbr|20/4}}:
Regular polygon 5 annotated.svg|Regular degenerate, r10
Spirolateral 4 108.svg|Spirolateral (1…4)108°, g5
Equiangular quadruple-pentagon1.svg|Irregular, a1
;90° internal angles from an equiangular 5-wound square, {{angbr|20/5}}:
Regular polygon 4 annotated.svg|Regular degenerate, r8
Spirolateral 5 90.svg|Spirolateral (1…5)90°, g4
Spirolateral 1-2-3-2-1 90.svg|Spirolateral (1,2,3,2,1)90°, i8
;72° internal angles from an equiangular double-wound decagram, {{angbr|20/6}}:
Regular star polygon 10-3.svg|Regular degenerate, r20
Spirolateral 2 72.svg|Spirolateral (1,2)72°, p10
Spirolateral 4 72.svg|Spirolateral (1…4)72°, g5
;54° internal angles from an equiangular icosagram, {{angbr|20/7}}:
Regular star polygon 20-7.svg|Regular {20/7}, r40
regular_star_truncation_10-3_2.svg|Isogonal, p20
regular_star_truncation_10-3_3.svg|Isogonal, p20
regular_star_truncation_10-3_5.svg|Isogonal, p20
;36° internal angles from an equiangular quadruple-wound pentagram, {{angbr|20/8}}:
Regular star polygon 5-2.svg|Regular degenerate, r10
Spirolateral_4_36.svg|Spirolateral (1…4)36°, g5
Equiangular quadruple-pentagram1.svg|irregular, a1
;18° internal angles from an equiangular icosagram, {{angbr|20/9}}:
Regular star polygon 20-9.svg|Regular {20/9}, r40
regular_polygon_truncation_10_5.svg|Isogonal, p20
regular_polygon_truncation_10_4.svg|Isogonal, p20
regular_polygon_truncation_10_3.svg|Isogonal, p20
regular_polygon_truncation_10_2.svg|Isogonal, p20
See also
References
{{reflist}}
- Williams, R. The Geometrical Foundation of Natural Structure: A Source Book of Design. New York: Dover Publications, 1979. p. 32
External links
- [http://www.cut-the-knot.org/Curriculum/Geometry/EquiangularPoly.shtml A Property of Equiangular Polygons: What Is It About?] a discussion of Viviani's theorem at Cut-the-knot.
- {{MathWorld|EquiangularPolygon|Equiangular Polygon}}
{{polygons}}