Stericated 6-orthoplexes#Stericated 6-orthoplex
class=wikitable style="float:right; margin-left:1em; width:480px" |
align=center valign=top
|160px |160px |160px |
align=center valign=top
|160px |160px |160px |
align=center valign=top
|160px |160px |160px |
colspan=3|Orthogonal projections in B6 Coxeter plane |
---|
In six-dimensional geometry, a stericated 6-orthoplex is a convex uniform 6-polytope, constructed as a sterication (4th order truncation) of the regular 6-orthoplex.
There are 16 unique sterications for the 6-orthoplex with permutations of truncations, cantellations, and runcinations. Eight are better represented from the stericated 6-cubes.
Stericated 6-orthoplex
class="wikitable" style="float:left; margin-right:8px; width:250px"
!bgcolor=#e7dcc3 colspan=2|Stericated 6-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | 2r2r{3,3,3,3,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node|3|node|3|node_1|4|node}} {{CDD|node|split1|nodes|3ab|nodes_11|4a|nodea}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 5760 |
bgcolor=#e7dcc3|Vertices | 960 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
{{-}}
= Alternate names =
- Small cellated hexacontatetrapeton (Acronym: scag) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/scag.htm (x3o3o3o3x4o - scag)]}}
= Images =
{{6-cube Coxeter plane graphs|t15|150}}
Steritruncated 6-orthoplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
!bgcolor=#e7dcc3 colspan=2|Steritruncated 6-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,4{3,3,3,3,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node|3|node|3|node_1|4|node}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 19200 |
bgcolor=#e7dcc3|Vertices | 3840 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Cellitruncated hexacontatetrapeton (Acronym: catog) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/catog.htm (x3x3o3o3x4o - catog)]}}
= Images =
{{6-cube Coxeter plane graphs|t145|150}}
Stericantellated 6-orthoplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
!bgcolor=#e7dcc3 colspan=2|Stericantellated 6-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbols | t0,2,4{34,4} rr2r{3,3,3,3,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node_1|3|node|3|node_1|4|node}}{{CDD|node_1|split1|nodes|3ab|nodes_11|4a|nodea}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 28800 |
bgcolor=#e7dcc3|Vertices | 5760 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Cellirhombated hexacontatetrapeton (Acronym: crag) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/scrag.htm (x3o3x3o3x4o - crag)]}}
= Images =
{{6-cube Coxeter plane graphs|t135|150}}
Stericantitruncated 6-orthoplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
!bgcolor=#e7dcc3 colspan=2|Stericantitruncated 6-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,2,4{3,3,3,3,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 46080 |
bgcolor=#e7dcc3|Vertices | 11520 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Celligreatorhombated hexacontatetrapeton (Acronym: cagorg) (Jonathan Bowers) {{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/cagorg.htm (x3x3x3o3x4o - cagorg)]}}
= Images =
{{6-cube Coxeter plane graphs|t1345|150}}
Steriruncinated 6-orthoplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
!bgcolor=#e7dcc3 colspan=2|Steriruncinated 6-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,3,4{3,3,3,3,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node|3|node_1|3|node_1|4|node}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 15360 |
bgcolor=#e7dcc3|Vertices | 3840 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Celliprismated hexacontatetrapeton (Acronym: copog) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/copog.htm (x3o3o3x3x4o - copog)]}}
= Images =
{{6-cube Coxeter plane graphs|t125|150}}
Steriruncitruncated 6-orthoplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
!bgcolor=#e7dcc3 colspan=2|Steriruncitruncated 6-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | 2t2r{3,3,3,3,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node|3|node_1|3|node_1|4|node}} {{CDD|node|split1|nodes_11|3ab|nodes_11|4a|nodea}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 40320 |
bgcolor=#e7dcc3|Vertices | 11520 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Celliprismatotruncated hexacontatetrapeton (Acronym: captog) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/captog.htm (x3x3o3x3x4o - captog)]}}
= Images =
{{6-cube Coxeter plane graphs|t1245|150}}
Steriruncicantellated 6-orthoplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
!bgcolor=#e7dcc3 colspan=2|Steriruncicantellated 6-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,2,3,4{3,3,3,3,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node_1|3|node_1|3|node_1|4|node}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 40320 |
bgcolor=#e7dcc3|Vertices | 11520 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Celliprismatorhombated hexacontatetrapeton (Acronym: coprag) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/coprag.htm (x3o3x3x3x4o - coprag)]}}
= Images =
{{6-cube Coxeter plane graphs|t1235|150}}
Steriruncicantitruncated 6-orthoplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
!bgcolor=#e7dcc3 colspan=2|Steriuncicantitruncated 6-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbols | t0,1,2,3,4{34,4} tr2r{3,3,3,3,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1|4|node}}{{CDD|node_1|split1|nodes_11|3ab|nodes_11|4a|nodea}} |
bgcolor=#e7dcc3|5-faces | 536: 12 t0,1,2,3{3,3,3,4}40px 60 {}×t0,1,2{3,3,4} 40px×40px 160 {6}×t0,1,2{3,3} 40px×40px 240 {4}×t0,1,2{3,3} 40px×40px 64 t0,1,2,3,4{34}40px |
bgcolor=#e7dcc3|4-faces | 8216 |
bgcolor=#e7dcc3|Cells | 38400 |
bgcolor=#e7dcc3|Faces | 76800 |
bgcolor=#e7dcc3|Edges | 69120 |
bgcolor=#e7dcc3|Vertices | 23040 |
bgcolor=#e7dcc3|Vertex figure | irregular 5-simplex |
bgcolor=#e7dcc3|Coxeter groups | B6, [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Great cellated hexacontatetrapeton (Acronym: gocog) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/gocog.htm (x3x3x3x3x4o - gocog)]}}
= Images =
{{6-cube Coxeter plane graphs|t12345|150}}
= Snub 6-demicube =
The snub 6-demicube defined as an alternation of the omnitruncated 6-demicube is not uniform, but it can be given Coxeter diagram {{CDD|nodes_hh|split2|node_h|3|node_h|3|node_h|3|node_h}} or {{CDD|node|4|node_h|3|node_h|3|node_h|3|node_h|3|node_h}} and symmetry [32,1,1,1]+ or [4,(3,3,3,3)+], and constructed from 12 snub 5-demicubes, 64 snub 5-simplexes, 60 snub 24-cell antiprisms, 160 3-s{3,4} duoantiprisms, 240 2-sr{3,3} duoantiprisms, and 11520 irregular 5-simplexes filling the gaps at the deleted vertices.
Related polytopes
These polytopes are from a set of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-orthoplex or 6-orthoplex.
{{Hexeract family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polypeta.htm|6D uniform polytopes (polypeta) with acronyms}}{{sfn whitelist|CITEREFKlitzing}}
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}