Timeline of computational physics

{{short description|None}}

{{Use dmy dates|date=March 2023}}

{{Multiple issues|

{{Cleanup|reason=Needs more information to constitute a comprehensive timeline|date=May 2017}}

{{Cleanup reorganize|date=May 2017}}

}}

The following timeline starts with the invention of the modern computer in the late interwar period.

1930s

1940s

  • Nuclear bomb and ballistics simulations at Los Alamos National Laboratory and Ballistic Research Laboratory (BRL), respectively.Ballistic Research Laboratory, Aberdeen Proving Grounds, Maryland.
  • Monte Carlo simulation (voted one of the top 10 algorithms of the 20th century by Jack Dongarra and Francis Sullivan in the 2000 issue of Computing in Science and Engineering){{cite web|url=http://www.math.cornell.edu/~web6140/|title=MATH 6140 - Top ten algorithms from the 20th Century|website=www.math.cornell.edu}} is invented at Los Alamos National Laboratory by John von Neumann, Stanislaw Ulam and Nicholas Metropolis.{{cite journal|last=Metropolis|first=N.|title=The Beginning of the Monte Carlo method|journal=Los Alamos Science|year=1987|volume=15 |page=125|url=http://library.lanl.gov/cgi-bin/getfile?15-12.pdf}}. Accessed 5 May 2012.S. Ulam, R. D. Richtmyer, and J. von Neumann(1947). [http://library.lanl.gov/cgi-bin/getfile?00329286.pdf Statistical methods in neutron diffusion]. Los Alamos Scientific Laboratory report LAMS–551.N. Metropolis and S. Ulam (1949). The Monte Carlo method. Journal of the American Statistical Association 44:335–341.
  • First hydrodynamic simulations performed at Los Alamos National Laboratory.Richtmyer, R. D. (1948). Proposed Numerical Method for Calculation of Shocks. Los Alamos, NM: Los Alamos Scientific Laboratory LA-671.A Method for the Numerical Calculation of Hydrodynamic Shocks.

Von Neumann, J.; Richtmyer, R. D. Journal of Applied Physics, Vol. 21, pp. 232–237

  • Ulam and von Neumann introduce the notion of cellular automata.Von Neumann, J., Theory of Self-Reproducing Automata, Univ. of Illinois Press, Urbana, 1966.{{Cite web|url=http://mathworld.wolfram.com/CellularAutomaton.html|title=Cellular Automaton}}

1950s

|first1=N. |last1=Metropolis |authorlink1=Nicholas Metropolis

|first2=A.W. |last2=Rosenbluth

|first3=M.N. |last3=Rosenbluth |authorlink3=Marshall N. Rosenbluth

|first4=A.H. |last4=Teller

|first5=E. |last5=Teller |authorlink5=Edward Teller

|title=Equations of State Calculations by Fast Computing Machines

|journal=Journal of Chemical Physics

|volume=21 |issue=6 |pages=1087–1092 |year=1953

|doi=10.1063/1.1699114

|bibcode = 1953JChPh..21.1087M |title-link=Equations of State Calculations by Fast Computing Machines |osti=4390578 |s2cid=1046577 }} Also, important earlier independent work by Berni Alder and Stan Frankel.Unfortunately, Alder's thesis advisor was unimpressed, so Alder and Frankel delayed publication of their results until much later. [http://scitation.aip.org/content/aip/journal/jcp/23/3/10.1063/1.1742004 Alder, B. J., Frankel, S. P., and Lewinson, B. A., J. Chem. Phys., 23, 3 (1955)].{{cite web|url=http://www.hp9825.com/html/stan_frankel.html|title=Stan Frankel|first=Mark M.|last=Reed|website=Hp9825.com|accessdate=1 December 2017}}

  • Enrico Fermi, Ulam and John Pasta with help from Mary Tsingou, discover the Fermi–Pasta–Ulam-Tsingou problem.Fermi, E. (posthumously); Pasta, J.; Ulam, S. (1955) : [http://www.osti.gov/accomplishments/documents/fullText/ACC0041.pdf Studies of Nonlinear Problems (accessed 25 Sep 2012)]. Los Alamos Laboratory Document LA-1940. [http://www.cs.princeton.edu/courses/archive/fall09/cos323/papers/fpu55.pdf Also appeared] in 'Collected Works of Enrico Fermi', E. Segre ed., University of Chicago Press, Vol.II,978–988,1965. Recovered 21 December 2012
  • Research initiated into percolation theory.Broadbent, S. R.; Hammersley, J. M. (2008). "Percolation processes". Math. Proc. of the Camb. Philo. Soc.; 53 (3): 629.
  • Molecular dynamics is formulated by Alder and Tom E. Wainwright.

{{cite journal

|first1 = B. J. |last1=Alder

|first2 = T. E. |last2 = Wainwright

|year = 1959

|title = Studies in Molecular Dynamics. I. General Method

|journal = Journal of Chemical Physics

| volume = 31 | issue = 2 | pages = 459

| bibcode = 1959JChPh..31..459A

| doi=10.1063/1.1730376}}

1960s

  • Using computational investigations of the 3-body problem, Michael Minovitch formulates the gravity assist method.Minovitch, Michael: "A method for determining interplanetary free-fall reconnaissance trajectories," Jet Propulsion Laboratory Technical Memo TM-312-130, pages 38-44 (23 August 1961).Christopher Riley and Dallas Campbell, 22 October 2012. [http://www.bbc.co.uk%2Fnews%2Fscience-environment-20033940&ei=j-29UZ6sNIexPInBgfAG&usg=AFQjCNEj30660hWJWTpfDJohrZek5KxAFA "The maths that made Voyager possible"] {{Webarchive|url=https://web.archive.org/web/20130730023109/http://www.beyondintractability.org/bi-essay/culture-conflict |date=30 July 2013 }}. BBC News Science and Environment. Recovered 16 June 2013.
  • Glauber dynamics is invented for the Ising model by Roy J. Glauber.R. J. Glauber. "Time-dependent statistics of the Ising model, J. Math. Phys. 4 (1963), 294–307.
  • Edward Lorenz discovers the butterfly effect on a computer, attracting interest in chaos theory.{{cite journal|last=Lorenz|first=Edward N.|title=Deterministic Nonperiodic Flow|journal=Journal of the Atmospheric Sciences |pages=130–141|year=1963|url=http://www.nd.edu/~powers/ame.60611/lorenz.article.pdf|doi=10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2|volume=20|issue=2|bibcode = 1963JAtS...20..130L }}
  • Molecular dynamics is independently invented by Aneesur Rahman.{{cite journal|last=Rahman|first=A|title=Correlations in the Motion of Atoms in Liquid Argon|journal=Phys Rev|year=1964|volume=136|issue=2A|pages=A405–A41|doi=10.1103/PhysRev.136.A405|bibcode = 1964PhRv..136..405R }}
  • Walter Kohn instigates the development of density functional theory (with L.J. Sham and Pierre Hohenberg),

{{cite journal

| last1 = Kohn | first1 = Walter

| last2 = Hohenberg | first2 = Pierre

| year = 1964| title = Inhomogeneous Electron Gas| journal = Physical Review| volume = 136 | pages = B864–B871| issue = 3B | doi = 10.1103/PhysRev.136.B864|bibcode = 1964PhRv..136..864H | doi-access = free}}

{{cite journal

| last1 = Kohn | first1 = Walter

| last2 = Sham | first2 = Lu Jeu

| year = 1965

| title = Self-Consistent Equations Including Exchange and Correlation Effects

| journal = Physical Review

| volume = 140 | pages = A1133–A1138 | issue = 4A

| doi = 10.1103/PHYSREV.140.A1133

|bibcode = 1965PhRv..140.1133K | doi-access = free}} for which he shared the Nobel Chemistry Prize (1998).{{cite web | title = The Nobel Prize in Chemistry 1998 | publisher = Nobelprize.org | url = http://nobelprize.org/nobel_prizes/chemistry/laureates/1998/index.html|accessdate=6 October 2008}}

  • Martin Kruskal and Norman Zabusky follow up the Fermi–Pasta–Ulam problem with further numerical experiments, and coin the term "soliton".Zabusky, N. J.; Kruskal, M. D. (1965). "Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states". Phys. Rev. Lett. 15 (6): 240–243. Bibcode 1965PhRvL..15..240Z. {{doi|10.1103/PhysRevLett.15.240}}.{{cite web|url=http://www.merriam-webster.com/dictionary/soliton|title=Definition of SOLITON|website=Merriam-webster.com|accessdate=1 December 2017}}
  • Kawasaki dynamics is invented for the Ising model.K. Kawasaki, "Diffusion Constants near the Critical Point for Time-Dependent Ising Models. I. Phys. Rev. 145, 224 (1966)
  • Loup Verlet (re)discovers a numerical integration algorithm,{{cite journal

| first=Loup | last=Verlet| authorlink=Loup Verlet

| title=Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard−Jones Molecules

| journal = Physical Review

| year = 1967

| volume = 159

| issue=1| pages = 98–103

| doi=10.1103/PhysRev.159.98

|bibcode = 1967PhRv..159...98V | doi-access=free

}} (first used in 1791 by Jean Baptiste Delambre, by P. H. Cowell and A. C. C. Crommelin in 1909, and by Carl Fredrik Störmer in 1907,{{Cite book | last1=Press | first1=WH | last2=Teukolsky | first2=SA | last3=Vetterling | first3=WT | last4=Flannery | first4=BP | year=2007 | title=Numerical Recipes: The Art of Scientific Computing | edition=3rd | publisher=Cambridge University Press | location=New York | isbn=978-0-521-88068-8 | chapter=Section 17.4. Second-Order Conservative Equations | chapter-url=http://apps.nrbook.com/empanel/index.html#pg=928}}

hence the alternative names Störmer's method or the Verlet-Störmer method) for dynamics, and the Verlet list.

1970s

  • Computer algebra replicates the work of Boris Delaunay in Lunar theory.{{Cite book|url=https://books.google.com/books?id=d7SZ8ppIUb0C&q=delaunay+computational+algebra&pg=PA3|title=Computer Algebra with LISP and REDUCE: An Introduction to Computer-aided Pure Mathematics|last1=Brackx|first1=F.|last2=Constales|first2=D.|date=30 November 1991|publisher=Springer Science & Business Media|isbn=9780792314417|language=en}}{{Cite book|url=https://books.google.com/books?id=7YkDhZCCLR4C&q=delaunay+computational+algebra+lunar&pg=PA1|title=Order and Chaos in Dynamical Astronomy|last=Contopoulos|first=George|date=16 June 2004|publisher=Springer Science & Business Media|isbn=9783540433606|language=en}}{{cite web|url=http://www.repositorio.ufop.br/bitstream/123456789/4361/1/ARTIGO_ImplementingComputerAlgebra.pdf|title=Implementing a computer algebra system in Haskell|author1=Jose Romildo Malaquias|author2=Carlos Roberto Lopes|website=Repositorio.ufop.br|accessdate=1 December 2017}}{{cite web|url=http://www.mosaicsciencemagazine.org/pdf/m24_04_91_03.pdf|title=Computer Algebra|website=Mosaicsciencemagazine.org|accessdate=1 December 2017}}[https://books.google.com/books?id=aLXaBwAAQBAJ&dq=delaunay+computational+algebra+lunar&pg=PA6] {{dead link|date=December 2017}}
  • Martinus Veltman's calculations at CERN lead him and Gerard 't Hooft to valuable insights into renormalizability of electroweak theory.Frank Close. The Infinity Puzzle, pg 207. OUP, 2011. The computation has been cited as a key reason for the award of the Nobel Physics Prize that has been given to both.Stefan Weinzierl:- [http://cdsweb.cern.ch/record/582375/files/0209234.ps.gz "Computer Algebra in Particle Physics."] pgs 5–7. arXiv:[https://arxiv.org/abs/hep-ph/0209234v1 hep-ph/0209234]. All links accessed 1 January 2012. "Seminario Nazionale di Fisica Teorica", Parma, September 2002.
  • Jean Hardy, Yves Pomeau and Olivier de Pazzis introduce the first lattice gas model, abbreviated as the HPP model after its authors.J. Hardy, Y. Pomeau, and O. de Pazzis (1973). "Time evolution of two-dimensional model system I: invariant states and time correlation functions". Journal of Mathematical Physics, 14:1746–1759.J. Hardy, O. de Pazzis, and Y. Pomeau (1976). "Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions". Physical Review A, 13:1949–1961. These later evolved into lattice Boltzmann models.
  • Kenneth G. Wilson shows that continuum quantum chromodynamics (QCD) is recovered for an infinitely large lattice with its sites infinitesimally close to one another, thereby beginning lattice QCD.{{cite journal | authorlink=Kenneth G. Wilson | first=K. | last= Wilson | journal=Physical Review D| volume=10 | issue=8 | page=2445 | title=Confinement of quarks | year= 1974 | doi=10.1103/PhysRevD.10.2445|bibcode = 1974PhRvD..10.2445W }}

1980s

  • Italian physicists Roberto Car and Michele Parrinello invent the Car–Parrinello method.{{Cite journal|doi=10.1103/PhysRevLett.55.2471|title=Unified Approach for Molecular Dynamics and Density-Functional Theory|year=1985|last1=Car|first1=R.|journal=Physical Review Letters|volume=55|issue=22|pages=2471–2474|pmid=10032153|last2=Parrinello|first2=M|bibcode = 1985PhRvL..55.2471C |doi-access=free}}
  • Swendsen–Wang algorithm is invented in the field of Monte Carlo simulations.Swendsen, R. H., and Wang, J.-S. (1987), Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett., 58(2):86–88.
  • Fast multipole method is invented by Vladimir Rokhlin and Leslie Greengard (voted one of the top 10 algorithms of the 20th century).L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187–207.L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., 73 (1987), no. 2, pp. 325–348.
  • Ullli Wolff invents the Wolff algorithm for statistical physics and Monte Carlo simulation.Wolff, Ulli (1989), "Collective Monte Carlo Updating for Spin Systems", Physical Review Letters, 62 (4): 361

See also

References

{{Reflist}}