Truncated 7-cubes#Truncated 7-cube
{{Short description|Uniform 7- polytope}}
class=wikitable align=right width=400 |
align=center valign=top
|100px |100px |100px |100px |
align=center valign=top
|100px |100px |100px |100px |
colspan=4|Orthogonal projections in B7 Coxeter plane |
---|
In seven-dimensional geometry, a truncated 7-cube is a convex uniform 7-polytope, being a truncation of the regular 7-cube.
There are 6 truncations for the 7-cube. Vertices of the truncated 7-cube are located as pairs on the edge of the 7-cube. Vertices of the bitruncated 7-cube are located on the square faces of the 7-cube. Vertices of the tritruncated 7-cube are located inside the cubic cells of the 7-cube. The final three truncations are best expressed relative to the 7-orthoplex.
{{TOC left}}
{{-}}
Truncated 7-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Truncated 7-cube | |
bgcolor=#e7dcc3|Type | uniform 7-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t{4,35} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|4|node_1|3|node|3|node|3|node|3|node|3|node}} |
bgcolor=#e7dcc3|6-faces | |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 3136 |
bgcolor=#e7dcc3|Vertices | 896 |
bgcolor=#e7dcc3|Vertex figure | Elongated 5-simplex pyramid |
bgcolor=#e7dcc3|Coxeter groups | B7, [35,4] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names=
- Truncated hepteract (Jonathan Bowers)Klitizing (x3x3o3o3o3o4o - taz)
= Coordinates =
Cartesian coordinates for the vertices of a truncated 7-cube, centered at the origin, are all sign and coordinate permutations of
: (1,1+√2,1+√2,1+√2,1+√2,1+√2,1+√2)
= Images =
{{7-cube Coxeter plane graphs|t01|150}}
= Related polytopes =
Bitruncated 7-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Bitruncated 7-cube | |
bgcolor=#e7dcc3|Type | uniform 7-polytope |
bgcolor=#e7dcc3|Schläfli symbol | 2t{4,35} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|4|node_1|3|node_1|3|node|3|node|3|node|3|node}} {{CDD|nodes_11|split2|node_1|3|node|3|node|3|node|3|node}} |
bgcolor=#e7dcc3|6-faces | |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 9408 |
bgcolor=#e7dcc3|Vertices | 2688 |
bgcolor=#e7dcc3|Vertex figure | { }v{3,3,3} |
bgcolor=#e7dcc3|Coxeter groups | B7, [35,4] D7, [34,1,1] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names=
- Bitruncated hepteract (Jonathan Bowers)Klitizing (o3x3x3o3o3o4o - botaz)
= Coordinates =
Cartesian coordinates for the vertices of a bitruncated 7-cube, centered at the origin, are all sign and coordinate permutations of
: (±2,±2,±2,±2,±2,±1,0)
= Images =
{{7-cube Coxeter plane graphs|t12|150}}
= Related polytopes =
The bitruncated 7-cube is fifth in a sequence of bitruncated hypercubes:
{{Bitruncated hypercube polytopes}}
Tritruncated 7-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Tritruncated 7-cube | |
bgcolor=#e7dcc3|Type | uniform 7-polytope |
bgcolor=#e7dcc3|Schläfli symbol | 3t{4,35} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|4|node|3|node_1|3|node_1|3|node|3|node|3|node}} {{CDD|nodes|split2|node_1|3|node_1|3|node|3|node|3|node}} |
bgcolor=#e7dcc3|6-faces | |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 13440 |
bgcolor=#e7dcc3|Vertices | 3360 |
bgcolor=#e7dcc3|Vertex figure | {4}v{3,3} |
bgcolor=#e7dcc3|Coxeter groups | B7, [35,4] D7, [34,1,1] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names=
- Tritruncated hepteract (Jonathan Bowers)Klitizing (o3o3x3x3o3o4o - totaz)
= Coordinates =
Cartesian coordinates for the vertices of a tritruncated 7-cube, centered at the origin, are all sign and coordinate permutations of
: (±2,±2,±2,±2,±1,0,0)
= Images =
{{7-cube Coxeter plane graphs|t23|150}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polyexa.htm|7D|uniform polytopes (polyexa)}} o3o3o3o3o3x4x - taz, o3o3o3o3x3x4o - botaz, o3o3o3x3x3o4o - totaz
External links
- [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{polytopes}}
{{DEFAULTSORT:Truncated 7-Cube}}