Truncated 7-orthoplexes#Bitruncated 7-orthoplex
{{Short description|7-polytope}}
class=wikitable style="float:right; margin-left:8px; width:480px" |
align=center valign=top
|120px |120px |120px |120px |
align=center valign=top
|120px |120px |120px |120px |
colspan=4|Orthogonal projections in B7 Coxeter plane |
---|
In seven-dimensional geometry, a truncated 7-orthoplex is a convex uniform 7-polytope, being a truncation of the regular 7-orthoplex.
There are 6 truncations of the 7-orthoplex. Vertices of the truncation 7-orthoplex are located as pairs on the edge of the 7-orthoplex. Vertices of the bitruncated 7-orthoplex are located on the triangular faces of the 7-orthoplex. Vertices of the tritruncated 7-orthoplex are located inside the tetrahedral cells of the 7-orthoplex. The final three truncations are best expressed relative to the 7-cube.
{{TOC left}}
{{-}}
Truncated 7-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Truncated 7-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 7-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t{35,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node|3|node|3|node|3|node|4|node}} {{CDD|node_1|3|node_1|3|node|3|node|3|node|split1|nodes}} |
bgcolor=#e7dcc3|6-faces | |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | 3920 |
bgcolor=#e7dcc3|Faces | 2520 |
bgcolor=#e7dcc3|Edges | 924 |
bgcolor=#e7dcc3|Vertices | 168 |
bgcolor=#e7dcc3|Vertex figure | ( )v{3,3,4} |
bgcolor=#e7dcc3|Coxeter groups | B7, [35,4] D7, [34,1,1] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names=
- Truncated heptacross
- Truncated hecatonicosoctaexon (Jonathan Bowers)Klitzing, (x3x3o3o3o3o4o - tez)
= Coordinates =
Cartesian coordinates for the vertices of a truncated 7-orthoplex, centered at the origin, are all 168 vertices are sign (4) and coordinate (42) permutations of
: (±2,±1,0,0,0,0,0)
= Images =
{{7-cube Coxeter plane graphs|t56|150}}
= Construction =
There are two Coxeter groups associated with the truncated 7-orthoplex, one with the C7 or [4,35] Coxeter group, and a lower symmetry with the D7 or [34,1,1] Coxeter group.
Bitruncated 7-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Bitruncated 7-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 7-polytope |
bgcolor=#e7dcc3|Schläfli symbol | 2t{35,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|3|node_1|3|node_1|3|node|3|node|3|node|4|node}} {{CDD|node|3|node_1|3|node_1|3|node|3|node|split1|nodes}} |
bgcolor=#e7dcc3|6-faces | |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 4200 |
bgcolor=#e7dcc3|Vertices | 840 |
bgcolor=#e7dcc3|Vertex figure | { }v{3,3,4} |
bgcolor=#e7dcc3|Coxeter groups | B7, [35,4] D7, [34,1,1] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names=
- Bitruncated heptacross
- Bitruncated hecatonicosoctaexon (Jonathan Bowers)Klitzing, (o3x3x3o3o3o4o - botaz)
= Coordinates =
Cartesian coordinates for the vertices of a bitruncated 7-orthoplex, centered at the origin, are all sign and coordinate permutations of
: (±2,±2,±1,0,0,0,0)
=Images=
{{7-cube Coxeter plane graphs|t45|150}}
Tritruncated 7-orthoplex
The tritruncated 7-orthoplex can tessellation space in the quadritruncated 7-cubic honeycomb.
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Tritruncated 7-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 7-polytope |
bgcolor=#e7dcc3|Schläfli symbol | 3t{35,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|3|node|3|node_1|3|node_1|3|node|3|node|4|node}} {{CDD|node|3|node|3|node_1|3|node_1|3|node|split1|nodes}} |
bgcolor=#e7dcc3|6-faces | |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 10080 |
bgcolor=#e7dcc3|Vertices | 2240 |
bgcolor=#e7dcc3|Vertex figure | {3}v{3,4} |
bgcolor=#e7dcc3|Coxeter groups | B7, [35,4] D7, [34,1,1] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names=
- Tritruncated heptacross
- Tritruncated hecatonicosoctaexon (Jonathan Bowers)Klitzing, (o3o3x3x3o3o4o - totaz)
= Coordinates =
Cartesian coordinates for the vertices of a tritruncated 7-orthoplex, centered at the origin, are all sign and coordinate permutations of
: (±2,±2,±2,±1,0,0,0)
=Images=
{{7-cube Coxeter plane graphs|t34|150}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polyexa.htm|7D|uniform polytopes (polyexa)}} x3x3o3o3o3o4o - tez, o3x3x3o3o3o4o - botaz, o3o3x3x3o3o4o - totaz
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{polytopes}}