Uniform 10-polytope

{{Short description|Type of geometrical object}}

align=right class=wikitable width=300 style="margin-left:1em;"

|+ Graphs of three regular and related uniform polytopes.

align=center valign=top

|colspan=4|100px
10-simplex

|colspan=4|100px
Truncated 10-simplex

|colspan=4|100px
Rectified 10-simplex

align=center valign=top

|colspan=6|150px
Cantellated 10-simplex

|colspan=6|150px
Runcinated 10-simplex

align=center valign=top

|colspan=4|100px
Stericated 10-simplex

|colspan=4|100px
Pentellated 10-simplex

|colspan=4|100px
Hexicated 10-simplex

align=center valign=top

|colspan=4|100px
Heptellated 10-simplex

|colspan=4|100px
Octellated 10-simplex

|colspan=4|100px
Ennecated 10-simplex

align=center valign=top

|colspan=4|100px
10-orthoplex

|colspan=4|100px
Truncated 10-orthoplex

|colspan=4|100px
Rectified 10-orthoplex

align=center valign=top

|colspan=4|100px
10-cube

|colspan=4|100px
Truncated 10-cube

|colspan=4|100px
Rectified 10-cube

align=center valign=top

|colspan=6|150px
10-demicube

|colspan=6|150px
Truncated 10-demicube

In ten-dimensional geometry, a 10-polytope is a 10-dimensional polytope whose boundary consists of 9-polytope facets, exactly two such facets meeting at each 8-polytope ridge.

A uniform 10-polytope is one which is vertex-transitive, and constructed from uniform facets.

Regular 10-polytopes

Regular 10-polytopes can be represented by the Schläfli symbol {p,q,r,s,t,u,v,w,x}, with x {p,q,r,s,t,u,v,w} 9-polytope facets around each peak.

There are exactly three such convex regular 10-polytopes:

  1. {3,3,3,3,3,3,3,3,3} - 10-simplex
  2. {4,3,3,3,3,3,3,3,3} - 10-cube
  3. {3,3,3,3,3,3,3,3,4} - 10-orthoplex

There are no nonconvex regular 10-polytopes.

Euler characteristic

The topology of any given 10-polytope is defined by its Betti numbers and torsion coefficients.Richeson, D.; Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy, Princeton, 2008.

The value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 10-polytopes, whatever their underlying topology. This inadequacy of the Euler characteristic to reliably distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers.

Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, and this led to the use of torsion coefficients.

Uniform 10-polytopes by fundamental Coxeter groups

Uniform 10-polytopes with reflective symmetry can be generated by these three Coxeter groups, represented by permutations of rings of the Coxeter-Dynkin diagrams:

class=wikitable

!#

!colspan=2|Coxeter group

!Coxeter-Dynkin diagram

1A10[39]{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
2B10[4,38]{{CDD|node|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
3D10[37,1,1]{{CDD|nodes|split2|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}

Selected regular and uniform 10-polytopes from each family include:

  1. Simplex family: A10 [39] - {{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
  2. * 527 uniform 10-polytopes as permutations of rings in the group diagram, including one regular:
  3. *# {39} - 10-simplex - {{CDD|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
  4. Hypercube/orthoplex family: B10 [4,38] - {{CDD|node|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
  5. * 1023 uniform 10-polytopes as permutations of rings in the group diagram, including two regular ones:
  6. *# {4,38} - 10-cube or dekeract - {{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
  7. *# {38,4} - 10-orthoplex or decacross - {{CDD|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|4|node}}
  8. *# h{4,38} - 10-demicube {{CDD|node_h|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}.
  9. Demihypercube D10 family: [37,1,1] - {{CDD|nodes|split2|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
  10. * 767 uniform 10-polytopes as permutations of rings in the group diagram, including:
  11. *# 17,1 - 10-demicube or demidekeract - {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
  12. *# 71,1 - 10-orthoplex - {{CDD|nodes|split2|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1}}

The A<sub>10</sub> family

The A10 family has symmetry of order 39,916,800 (11 factorial).

There are 512+16-1=527 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. 31 are shown below: all one and two ringed forms, and the final omnitruncated form. Bowers-style acronym names are given in parentheses for cross-referencing.

class="wikitable"

!rowspan=2|#

!rowspan=2|Graph

!rowspan=2|Coxeter-Dynkin diagram
Schläfli symbol
Name

!colspan=10|Element counts

| 9-faces8-faces7-faces6-faces5-faces4-facesCellsFacesEdgesVertices
align=center

!1

|60px

|

{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1}}
t0{3,3,3,3,3,3,3,3,3}
10-simplex (ux)

|11

551653304624623301655511
align=center

!2

|60px

|

{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node}}
t1{3,3,3,3,3,3,3,3,3}
Rectified 10-simplex (ru)

49555
align=center

!3

|60px

|

{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node}}
t2{3,3,3,3,3,3,3,3,3}
Birectified 10-simplex (bru)

1980165
align=center

!4

|60px

|

{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node}}
t3{3,3,3,3,3,3,3,3,3}
Trirectified 10-simplex (tru)

4620330
align=center

!5

|60px

|

{{CDD|node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node}}
t4{3,3,3,3,3,3,3,3,3}
Quadrirectified 10-simplex (teru)

6930462
align=center

!6

|60px

|

{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node_1}}
t0,1{3,3,3,3,3,3,3,3,3}
Truncated 10-simplex (tu)

550110
align=center

!7

|60px

|

{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node_1}}
t0,2{3,3,3,3,3,3,3,3,3}
Cantellated 10-simplex

4455495
align=center

!8

|60px

|

{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node_1|3|node}}
t1,2{3,3,3,3,3,3,3,3,3}
Bitruncated 10-simplex

2475495
align=center

!9

|60px

|

{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node_1}}
t0,3{3,3,3,3,3,3,3,3,3}
Runcinated 10-simplex

158401320
align=center

!10

|60px

|

{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node_1|3|node}}
t1,3{3,3,3,3,3,3,3,3,3}
Bicantellated 10-simplex

178201980
align=center

!11

|60px

|

{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node_1|3|node|3|node}}
t2,3{3,3,3,3,3,3,3,3,3}
Tritruncated 10-simplex

66001320
align=center

!12

|60px

|

{{CDD|node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node_1}}
t0,4{3,3,3,3,3,3,3,3,3}
Stericated 10-simplex

323402310
align=center

!13

|60px

|

{{CDD|node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node_1|3|node}}
t1,4{3,3,3,3,3,3,3,3,3}
Biruncinated 10-simplex

554404620
align=center

!14

|60px

|

{{CDD|node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node_1|3|node|3|node}}
t2,4{3,3,3,3,3,3,3,3,3}
Tricantellated 10-simplex

415804620
align=center

!15

|

|

{{CDD|node|3|node|3|node|3|node|3|node|3|node_1|3|node_1|3|node|3|node|3|node}}
t3,4{3,3,3,3,3,3,3,3,3}
Quadritruncated 10-simplex

115502310
align=center

!16

|60px

|

{{CDD|node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node_1}}
t0,5{3,3,3,3,3,3,3,3,3}
Pentellated 10-simplex

415802772
align=center

!17

|

|

{{CDD|node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node_1|3|node}}
t1,5{3,3,3,3,3,3,3,3,3}
Bistericated 10-simplex

970206930
align=center

!18

|

|

{{CDD|node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node_1|3|node|3|node}}
t2,5{3,3,3,3,3,3,3,3,3}
Triruncinated 10-simplex

1108809240
align=center

!19

|60px

|

{{CDD|node|3|node|3|node|3|node|3|node_1|3|node|3|node_1|3|node|3|node|3|node}}
t3,5{3,3,3,3,3,3,3,3,3}
Quadricantellated 10-simplex

623706930
align=center BGCOLOR="#e0f0e0"

!20

|

|

{{CDD|node|3|node|3|node|3|node|3|node_1|3|node_1|3|node|3|node|3|node|3|node}}
t4,5{3,3,3,3,3,3,3,3,3}
Quintitruncated 10-simplex

138602772
align=center

!21

|60px

|

{{CDD|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node_1}}
t0,6{3,3,3,3,3,3,3,3,3}
Hexicated 10-simplex

346502310
align=center

!22

|

|

{{CDD|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node_1|3|node}}
t1,6{3,3,3,3,3,3,3,3,3}
Bipentellated 10-simplex

1039506930
align=center

!23

|

|

{{CDD|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node_1|3|node|3|node}}
t2,6{3,3,3,3,3,3,3,3,3}
Tristericated 10-simplex

16170011550
align=center BGCOLOR="#e0f0e0"

!24

|

|

{{CDD|node|3|node|3|node|3|node_1|3|node|3|node|3|node_1|3|node|3|node|3|node}}
t3,6{3,3,3,3,3,3,3,3,3}
Quadriruncinated 10-simplex

13860011550
align=center

!25

|60px

|

{{CDD|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1}}
t0,7{3,3,3,3,3,3,3,3,3}
Heptellated 10-simplex

184801320
align=center

!26

|

|

{{CDD|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node}}
t1,7{3,3,3,3,3,3,3,3,3}
Bihexicated 10-simplex

693004620
align=center BGCOLOR="#e0f0e0"

!27

|

|

{{CDD|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node}}
t2,7{3,3,3,3,3,3,3,3,3}
Tripentellated 10-simplex

1386009240
align=center

!28

|60px

|

{{CDD|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1}}
t0,8{3,3,3,3,3,3,3,3,3}
Octellated 10-simplex

5940495
align=center BGCOLOR="#e0f0e0"

!29

|

|

{{CDD|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node}}
t1,8{3,3,3,3,3,3,3,3,3}
Biheptellated 10-simplex

277201980
align=center BGCOLOR="#e0f0e0"

!30

|60px

|

{{CDD|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1}}
t0,9{3,3,3,3,3,3,3,3,3}
Ennecated 10-simplex

990110
align=center

!31

|

| {{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}
t0,1,2,3,4,5,6,7,8,9{3,3,3,3,3,3,3,3,3}
Omnitruncated 10-simplex

19958400039916800

The B<sub>10</sub> family

There are 1023 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings.

Twelve cases are shown below: ten single-ring (rectified) forms, and two truncations. Bowers-style acronym names are given in parentheses for cross-referencing.

class="wikitable"

!rowspan=2|#

!rowspan=2|Graph

!rowspan=2|Coxeter-Dynkin diagram
Schläfli symbol
Name

!colspan=10|Element counts

9-faces

! 8-faces

! 7-faces

! 6-faces

! 5-faces

! 4-faces

! Cells

! Faces

! Edges

! Vertices

align=center

!1

|60px

| {{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
t0{4,3,3,3,3,3,3,3,3}
10-cube (deker)

|20

1809603360806413440153601152051201024
align=center

!2

|60px

| {{CDD|node_1|4|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
t0,1{4,3,3,3,3,3,3,3,3}
Truncated 10-cube (tade)

|

|

|

|

|

|

|

|

|51200

|10240

align=center

!3

|60px

| {{CDD|node|4|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
t1{4,3,3,3,3,3,3,3,3}
Rectified 10-cube (rade)

|

|

|

|

|

|

|

|

|46080

|5120

align=center

!4

|60px

| {{CDD|node|4|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
t2{4,3,3,3,3,3,3,3,3}
Birectified 10-cube (brade)

|

|

|

|

|

|

|

|

|184320

|11520

align=center

!5

|60px

| {{CDD|node|4|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node}}
t3{4,3,3,3,3,3,3,3,3}
Trirectified 10-cube (trade)

|

|

|

|

|

|

|

|

|322560

|15360

align=center

!6

|60px

| {{CDD|node|4|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node}}
t4{4,3,3,3,3,3,3,3,3}
Quadrirectified 10-cube (terade)

|

|

|

|

|

|

|

|

|322560

|13440

align=center

!7

|60px

| {{CDD|node|4|node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node}}
t4{3,3,3,3,3,3,3,3,4}
Quadrirectified 10-orthoplex (terake)

|

|

|

|

|

|

|

|

|201600

|8064

align=center

!8

|60px

| {{CDD|node|4|node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node}}
t3{3,3,3,3,3,3,3,4}
Trirectified 10-orthoplex (trake)

|

|

|

|

|

|

|

|

|80640

|3360

align=center

!9

|60px

| {{CDD|node|4|node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node}}
t2{3,3,3,3,3,3,3,3,4}
Birectified 10-orthoplex (brake)

|

|

|

|

|

|

|

|

|20160

|960

align=center

!10

|60px

| {{CDD|node|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node}}
t1{3,3,3,3,3,3,3,3,4}
Rectified 10-orthoplex (rake)

|

|

|

|

|

|

|

|

|2880

|180

align=center

!11

|60px

| {{CDD|node|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node_1}}
t0,1{3,3,3,3,3,3,3,3,4}
Truncated 10-orthoplex (take)

|

|

|

|

|

|

|

|

|3060

|360

align=center

!12

|60px

| {{CDD|node|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1}}
t0{3,3,3,3,3,3,3,3,4}
10-orthoplex (ka)

|1024

51201152015360134408064336096018020

The D<sub>10</sub> family

The D10 family has symmetry of order 1,857,945,600 (10 factorial × 29).

This family has 3×256−1=767 Wythoffian uniform polytopes, generated by marking one or more nodes of the D10 Coxeter-Dynkin diagram. Of these, 511 (2×256−1) are repeated from the B10 family and 256 are unique to this family, with 2 listed below. Bowers-style acronym names are given in parentheses for cross-referencing.

class="wikitable"

!rowspan=2|#

!rowspan=2|Graph

!rowspan=2|Coxeter-Dynkin diagram
Schläfli symbol
Name

!colspan=10|Element counts

9-faces

! 8-faces

! 7-faces

! 6-faces

! 5-faces

! 4-faces

! Cells

! Faces

! Edges

! Vertices

align=center

|1

60px{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
10-demicube (hede)

|532

530024000648001155841424641228806144011520512
align=center

|2

60px{{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
Truncated 10-demicube (thede)

|

19584023040

Regular and uniform honeycombs

There are four fundamental affine Coxeter groups that generate regular and uniform tessellations in 9-space:

class=wikitable

!#

!colspan=2|Coxeter group

!Coxeter-Dynkin diagram

1{\tilde{A}}_9[3[10]]{{CDD|node|split1|nodes|3ab|nodes|3ab|nodes|3ab|nodes|split2|node}}
2{\tilde{B}}_9[4,37,4]{{CDD|node|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|4|node}}
3{\tilde{C}}_9h[4,37,4]
[4,36,31,1]
{{CDD|nodes|split2|node|3|node|3|node|3|node|3|node|3|node|3|node|4|node}}
4{\tilde{D}}_9q[4,37,4]
[31,1,35,31,1]
{{CDD|nodes|split2|node|3|node|3|node|3|node|3|node|3|node|split1|nodes}}

Regular and uniform tessellations include:

= Regular and uniform hyperbolic honeycombs =

There are no compact hyperbolic Coxeter groups of rank 10, groups that can generate honeycombs with all finite facets, and a finite vertex figure. However, there are 3 paracompact hyperbolic Coxeter groups of rank 9, each generating uniform honeycombs in 9-space as permutations of rings of the Coxeter diagrams.

class=wikitable

|align=right|{\bar{Q}}_9 = [31,1,34,32,1]:
{{CDD|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea}}

|align=right|{\bar{S}}_9 = [4,35,32,1]:
{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|4a|nodea}}

|align=right|E_{10} or {\bar{T}}_9 = [36,2,1]:
{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}

Three honeycombs from the E_{10} family, generated by end-ringed Coxeter diagrams are:

  • 621 honeycomb: {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea_1}}
  • 261 honeycomb: {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
  • 162 honeycomb: {{CDD|nodea|3a|nodea|3a|branch_01lr|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}

References

{{reflist}}

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • A. Boole Stott: Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
  • H.S.M. Coxeter:
  • H.S.M. Coxeter, M.S. Longuet-Higgins und J.C.P. Miller: Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Londne, 1954
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • {{KlitzingPolytopes|polyxenna.htm|10D|uniform polytopes (polyxenna)}}