Universality class#Ising model

{{Short description|Collection of models with the same renormalization group flow limit}}

{{More references|date=December 2017}}

In statistical mechanics, a universality class is a collection of mathematical models which share a single scale-invariant limit under the process of renormalization group flow. While the models within a class may differ dramatically at finite scales, their behavior will become increasingly similar as the limit scale is approached. In particular, asymptotic phenomena such as critical exponents will be the same for all models in the class.

Some well-studied universality classes are the ones containing the Ising model or the percolation theory at their respective phase transition points; these are both families of classes, one for each lattice dimension. Typically, a family of universality classes will have a lower and upper critical dimension: below the lower critical dimension, the universality class becomes degenerate (this dimension is 2d for the Ising model, or for directed percolation, but 1d for undirected percolation), and above the upper critical dimension the critical exponents stabilize and can be calculated by an analog of mean-field theory (this dimension is 4d for Ising or for directed percolation, and 6d for undirected percolation).

List of critical exponents

Critical exponents are defined in terms of the variation of certain physical properties of the system near its phase transition point. These physical properties will include its reduced temperature \tau, its order parameter measuring how much of the system is in the "ordered" phase, the specific heat, and so on.

  • The exponent \alpha is the exponent relating the specific heat C to the reduced temperature: we have C = \tau^{-\alpha}. The specific heat will usually be singular at the critical point, but the minus sign in the definition of \alpha allows it to remain positive.
  • The exponent \beta relates the order parameter \Psi to the temperature. Unlike most critical exponents it is assumed positive, since the order parameter will usually be zero at the critical point. So we have \Psi = |\tau|^{\beta}.
  • The exponent \gamma relates the temperature with the system's response to an external driving force, or source field. We have d\Psi/dJ = \tau^{-\gamma}, with J the driving force.
  • The exponent \delta relates the order parameter to the source field at the critical temperature, where this relationship becomes nonlinear. We have J = \Psi^\delta (hence \Psi = J^{1/\delta}), with the same meanings as before.
  • The exponent \nu relates the size of correlations (i.e. patches of the ordered phase) to the temperature; away from the critical point these are characterized by a correlation length \xi. We have \xi = \tau^{-\nu}.
  • The exponent \eta measures the size of correlations at the critical temperature. It is defined so that the correlation function scales as r^{-d+2-\eta}.
  • The exponent \sigma, used in percolation theory, measures the size of the largest clusters (roughly, the largest ordered blocks) at 'temperatures' (connection probabilities) below the critical point. So s_{\max} \sim (p_c - p)^{-1/\sigma}.
  • The exponent \tau, also from percolation theory, measures the number of size s clusters far from s_{\max} (or the number of clusters at criticality): n_s \sim s^{-\tau} f(s/s_{\max}), with the f factor removed at critical probability.

For symmetries, the group listed gives the symmetry of the order parameter. The group \mathrm{Dih}_n is the dihedral group, the symmetry group of the n-gon, S_n is the n-element symmetric group, \mathrm{Oct} is the octahedral group, and O(n) is the orthogonal group in n dimensions. 1 is the trivial group.

class="wikitable"
class

! dimension

Symmetry\alpha\beta\gamma\delta\nu\eta
align="center"

|3-state Potts

| 2

S_3{{sfrac|1|3}}{{sfrac|1|9}}{{sfrac|13|9}}14{{sfrac|5|6}}{{sfrac|4|15}}
align="center"

|Ashkin–Teller (4-state Potts)

| 2

S

_4

{{sfrac|2|3}}{{sfrac|1|12}}{{sfrac|7|6}}15{{sfrac|2|3}}{{sfrac|1|4}}
align="center"

| rowspan="6" |Ordinary percolation

| 1

1101\infty11
align="center"

| 2

1−{{sfrac|2|3}}{{sfrac|5|36}}{{sfrac|43|18}}{{sfrac|91|5}}{{sfrac|4|3}}{{sfrac|5|24}}
align="center"

| 3

1−0.625(3)0.4181(8)1.793(3)5.29(6)0.87619(12)0.46(8) or 0.59(9)
align="center"

| 4

1−0.756(40)0.657(9)1.422(16)3.9 or 3.198(6)0.689(10)−0.0944(28)
align="center"

| 5

1≈ −0.850.830(10)1.185(5)3.00.569(5)−0.075(20) or −0.0565
align="center"

| 6{{sup|+}}

1−1112{{sfrac|1|2}}0
align="center"

| rowspan="4" |Directed percolation

| 1

10.159464(6)0.276486(8)2.277730(5)0.159464(6)1.096854(4)0.313686(8)
align="center"

| 2

10.4510.536(3)1.600.4510.733(8)0.230
align="center"

| 3

10.730.813(9)1.250.730.584(5)0.12
align="center"

| 4{{sup|+}}

1−1112{{sfrac|1|2}}0
align="center"

| rowspan="4" | Conserved directed percolation (Manna, or "local linear interface")

| 1

10.28(1)0.14(1)1.11(2){{cite book |last1=Fajardo |first1=Juan A. B. |title=Universality in Self-Organized Criticality |date=2008 |location=Granada |url=http://hera.ugr.es/tesisugr/17706312.pdf}}0.34(2)
align="center"

| 2

10.64(1)1.59(3)0.50(5)1.29(8)0.29(5)
align="center"

| 3

10.84(2)1.23(4)0.90(3)1.12(8)0.16(5)
align="center"

| 4{{sup|+}}

111110
align="center"

| rowspan="2" |Protected percolation

| 2

15/41{{Cite journal|last1=Fayfar|first1=Sean|last2=Bretaña|first2=Alex|last3=Montfrooij|first3=Wouter|date=2021-01-15|title=Protected percolation: a new universality class pertaining to heavily-doped quantum critical systems|journal=Journal of Physics Communications|volume=5|issue=1|pages=015008|doi=10.1088/2399-6528/abd8e9|arxiv=2008.08258 |bibcode=2021JPhCo...5a5008F |issn=2399-6528|doi-access=free}}86/41
align="center"

| 3

10.28871(15)1.3066(19)
align="center"

| rowspan="2" |Ising

| 2

\mathbb{Z}_20{{sfrac|1|8}}{{sfrac|7|4}}151{{sfrac|1|4}}
align="center"

| 3

\mathbb{Z}_20.11008(1)0.326419(3)1.237075(10)4.78984(1)0.629971(4)0.036298(2)
align="center"

|XY

| 3

O(2)|
0.01526(30)0.34869(7)1.3179(2)4.77937(25)0.67175(10)0.038176(44)
align="center"

|Heisenberg

| 3

O(3)−0.12(1)0.366(2)1.395(5)0.707(3)0.035(2)
align="center"

|Mean field

| all

any0{{sfrac|1|2}}13{{sfrac|1|2}}0
align="center"

|Molecular beam epitaxy{{cite journal |last1=Luis |first1=Edwin |last2=de Assis |first2=Thiago |last3=Ferreira |first3=Silvio |last4=Andrade |first4=Roberto |title=Local roughness exponent in the nonlinear molecular-beam-epitaxy universality class in one-dimension |journal=Physical Review E |year=2019 |volume=99 |issue=2 |page=022801 |doi=10.1103/PhysRevE.99.022801 |pmid=30934348 |arxiv=1812.03114 |bibcode=2019PhRvE..99b2801L |s2cid=91187266 }}

|

align="center"

|Gaussian free field

|

Ising model

This section lists the critical exponents of the ferromagnetic transition in the Ising model. In statistical physics, the Ising model is the simplest system exhibiting a continuous phase transition with a scalar order parameter and \mathbb{Z}_2 symmetry. The critical exponents of the transition are universal values and characterize the singular properties of physical quantities. The ferromagnetic transition of the Ising model establishes an important universality class, which contains a variety of phase transitions as different as ferromagnetism close to the Curie point and critical opalescence of liquid near its critical point.

class="wikitable"
! {{math|1=d=2}}

! {{math|1=d=3}}

! {{math|1=d=4}}

!general expression

{{math|α}}

| 0

| 0.11008708(35)

| 0

|2-d/(d-\Delta_\epsilon)

{{math|β}}

| 1/8

| 0.32641871(75)

| 1/2

| \Delta_\sigma/(d-\Delta_\epsilon)

{{math|γ}}

| 7/4

| 1.23707551(26)

| 1

|(d-2\Delta_\sigma)/(d-\Delta_\epsilon)

{{math|δ}}

| 15

| 4.78984254(27)

| 3

| (d-\Delta_\sigma)/\Delta_\sigma

{{math|η}}

| 1/4

| 0.036297612(48)

|0

|2\Delta_\sigma - d+2

{{math|ν}}

| 1

| 0.62997097(12)

| 1/2

|1/(d-\Delta_\epsilon)

{{math|ω}}

| 2

| 0.82966(9)

| 0

|\Delta_{\epsilon'}-d

From the quantum field theory point of view, the critical exponents can be expressed in terms of scaling dimensions of the local operators \sigma,\epsilon,\epsilon' of the conformal field theory describing the phase transition{{cite book|first=John |last=Cardy |author-link=John Cardy |title=Scaling and Renormalization in Statistical Physics|url=https://books.google.com/books?id=Wt804S9FjyAC|date=1996|publisher=Cambridge University Press|isbn=978-0-521-49959-0}} (In the Ginzburg–Landau description, these are the operators normally called \phi,\phi^2,\phi^4.) These expressions are given in the last column of the above table, and were used to calculate the values of the critical exponents using the operator dimensions values from the following table:

class="wikitable"

!

!d=2

!d=3

!d=4

\Delta_\sigma

|1/8

|0.518148806(24) {{cite journal|title=Bootstrapping the 3d Ising stress tensor|first1=Cyuan-Han|last1=Chang|first2=Vasiliy|last2=Dommes|first3=Rajeev|last3=Erramilli|first4=Alexandre|last4=Homrich|first5=Petr|last5=Kravchuk|first6=Aike|last6=Liu|first7=Matthew|last7=Mitchell|first8=David|last8=Poland|first9=David|last9=Simmons-Duffin|journal=Journal of High Energy Physics |date=2025|issue=3 |page=136 |doi=10.1007/JHEP03(2025)136 |arxiv=2411.15300 |bibcode=2025JHEP...03..136C }}

|1

\Delta_\epsilon

|1

|1.41262528(29)

|2

\Delta_{\epsilon'}

|4

|3.82966(9) {{Cite journal|last1=Komargodski|first1=Zohar|last2=Simmons-Duffin|first2=David|date=14 March 2016|title=The Random-Bond Ising Model in 2.01 and 3 Dimensions|arxiv=1603.04444|doi=10.1088/1751-8121/aa6087|volume=50|issue=15|journal=Journal of Physics A: Mathematical and Theoretical|page=154001|bibcode=2017JPhA...50o4001K|s2cid=34925106 }}{{Cite journal |last=Reehorst |first=Marten |date=2022-09-21 |title=Rigorous bounds on irrelevant operators in the 3d Ising model CFT |journal=Journal of High Energy Physics |volume=2022 |issue=9 |pages=177 |doi=10.1007/JHEP09(2022)177 |arxiv=2111.12093 |bibcode=2022JHEP...09..177R |s2cid=244527272 |issn=1029-8479}}

|4

In d=2, the two-dimensional critical Ising model's critical exponents can be computed exactly using the minimal model M_{3,4}. In d=4, it is the free massless scalar theory (also referred to as mean field theory). These two theories are exactly solved, and the exact solutions give values reported in the table.

The d=3 theory is not yet exactly solved. The most accurate results come from the conformal bootstrap.{{Cite journal |last1=Kos |first1=Filip |last2=Poland |first2=David |last3=Simmons-Duffin |first3=David |last4=Vichi |first4=Alessandro |date=14 March 2016 |title=Precision Islands in the Ising and O(N) Models |journal=Journal of High Energy Physics |volume=2016 |issue=8 |pages=36 |arxiv=1603.04436 |bibcode=2016JHEP...08..036K |doi=10.1007/JHEP08(2016)036 |s2cid=119230765}}{{Cite journal|last2=Paulos|first2=Miguel F.|last3=Poland|first3=David|last4=Rychkov|first4=Slava|last5=Simmons-Duffin|first5=David|last6=Vichi|first6=Alessandro|date=2014|title=Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents|journal=Journal of Statistical Physics|volume=157|issue=4–5|pages=869–914|doi=10.1007/s10955-014-1042-7|last1=El-Showk|first1=Sheer|arxiv = 1403.4545 |bibcode = 2014JSP...157..869E |s2cid=39692193 }}{{Cite journal|last=Simmons-Duffin|first=David|date=2015|title=A semidefinite program solver for the conformal bootstrap|journal=Journal of High Energy Physics|volume=2015|issue=6|page=174 |doi=10.1007/JHEP06(2015)174|issn=1029-8479|arxiv = 1502.02033 |bibcode = 2015JHEP...06..174S |s2cid=35625559 }}{{cite web

| last = Kadanoff

| first = Leo P.

| author-link = Leo Kadanoff

| title = Deep Understanding Achieved on the 3d Ising Model

| website = Journal Club for Condensed Matter Physics

| date = April 30, 2014

| url = http://www.condmatjournalclub.org/?p=2384

| access-date = July 18, 2015

| archive-url = https://web.archive.org/web/20150722062827/http://www.condmatjournalclub.org/?p=2384

| archive-date = July 22, 2015

| url-status = usurped

}} These are the values reported in the tables. Renormalization group methods,{{cite journal |last=Pelissetto |first=Andrea |author2=Vicari, Ettore |year=2002 |title=Critical phenomena and renormalization-group theory |journal=Physics Reports |volume=368 |pages=549–727 |arxiv=cond-mat/0012164 |bibcode=2002PhR...368..549P |doi=10.1016/S0370-1573(02)00219-3 |s2cid=119081563 |number=6}}Kleinert, H., [http://www.physik.fu-berlin.de/~kleinert/279/279.pdf "Critical exponents from seven-loop strong-coupling φ4 theory in three dimensions".] Physical Review D 60, 085001 (1999){{cite journal |last=Balog |first=Ivan |author2=Chate, Hugues |author3=Delamotte, Bertrand |author4=Marohnic, Maroje |author5=Wschebor, Nicolas |year=2019 |title=Convergence of Non-Perturbative Approximations to the Renormalization Group |journal=Phys. Rev. Lett. |volume=123 |issue=24 |pages=240604 |doi=10.1103/PhysRevLett.123.240604 |pmid=31922817 |arxiv=1907.01829 |bibcode= 2019PhRvL.123x0604B|s2cid=}}{{cite journal |last=De Polsi |first=Gonzalo |author2=Balog, Ivan |author3=Tissier, Matthieu |author4=Wschebor, Nicolas |year=2020 |title=Precision calculation of critical exponents in the O(N) universality classes with the nonperturbative renormalization group |journal=Phys. Rev. E |volume=101 |issue=24 |pages=042113 |doi=10.1103/PhysRevLett.123.240604 |pmid=31922817 |arxiv=1907.01829 |bibcode= 2019PhRvL.123x0604B|s2cid=}} Monte-Carlo simulations,{{Cite journal |last=Hasenbusch |first=Martin |date=2010 |title=Finite size scaling study of lattice models in the three-dimensional Ising universality class |url=https://journals.aps.org/prb/abstract/10.1103/PhysRevB.82.174433 |journal=Physical Review B |volume=82 |issue=17 |page=174433 |doi=10.1103/PhysRevB.82.174433|arxiv=1004.4486 |bibcode=2010PhRvB..82q4433H }} and the fuzzy sphere regulator{{Cite journal |last=Zhu |first=Wei |date=2023 |title=Uncovering Conformal Symmetry in the 3D Ising Transition: State-Operator Correspondence from a Quantum Fuzzy Sphere Regularization |url=https://journals.aps.org/prx/abstract/10.1103/PhysRevX.13.021009 |journal=Physical Review X |volume=13 |issue=2 |page=021009 |doi=10.1103/PhysRevX.13.021009|arxiv=2210.13482 |bibcode=2023PhRvX..13b1009Z }} give results in agreement with the conformal bootstrap, but are several orders of magnitude less accurate.

References

{{Reflist}}

Further reading

  • [http://www.sklogwiki.org/SklogWiki/index.php/Universality_classes Universality classes] from Sklogwiki
  • {{cite journal|arxiv=cond-mat/9701018|doi=10.1088/0305-4470/30/24/036|title=Critical Exponents of the Four-State Potts Model|year=1997|last1=Creswick|first1=Richard J.|last2=Kim|first2=Seung-Yeon|journal=Journal of Physics A: Mathematical and General|volume=30|issue=24|pages=8785–8786|s2cid=16687747}}
  • {{cite book|first1=M. |last1=Henkel |first2=H. |last2=Hinrichsen |first3=S. |last3=Lübeck |title=Non-Equilibrium Phase Transitions, Volume 1: Absorbing Phase Transitions |publisher=Springer |year=2008 |isbn=978-1-4020-8765-3}}
  • {{Cite journal|arxiv=cond-mat/0205644|doi=10.1103/RevModPhys.76.663|title=Universality classes in nonequilibrium lattice systems|year=2004|last1=Ódor|first1=Géza|journal=Reviews of Modern Physics|volume=76|issue=3|pages=663–724|bibcode=2004RvMP...76..663O}}
  • {{cite book|last=Zinn-Justin |first=Jean |author-link=Jean Zinn-Justin |year=2002 |title=Quantum field theory and critical phenomena |location=Oxford |publisher=Clarendon Press |isbn=0-19-850923-5}}

Category:Critical phenomena

Category:Renormalization group

Category:Scale-invariant systems