Wikipedia:Requested articles/Mathematics

{{Short description|List of requested Mathematics articles for Wikipedia}}

{{requested articles subpage header|prepend-text={{shortcut|WP:RA/M}}|additional-text=By convention, Wikipedia article titles are not capitalized except for the first letter and proper names -- write your request as This and such theorem instead of This And Such Theorem. Every request for an article on a mathematical topic must include a reliable source where the the topic is defined, and must specify the place in the source where the topic is defined, particularly when the source is a book.}}

See also: User:Mathbot/Most wanted redlinks, Wikipedia:WikiProject Mathematics/List of math draft pages.

[[Abstract algebra]]

  • AC Method -{{cite web | url=https://txwes.edu/media/twu/content-assets/images/academics/academic-success-center/A-C-Method.pdf | title=A C Method - Texas Wesleyan University }}
  • Albert–Penico–Taft theorem -{{cite book | page=287 | title=Structure and Representations of Jordan Algebras | volume=39 | series=American Mathematical Society Colloquium Publications| first=Nathan | last=Jacobson | authorlink=Nathan Jacobson | publisher=American Mathematical Society | year=1968 | isbn=0-8218-7472-1 }}
  • BC-domain - {{cite book | last=Narkiewicz | first=Władysław | title=Elementary and analytic theory of algebraic numbers | edition=3rd | zbl=1159.11039 | series=Springer Monographs in Mathematics | location=Berlin | publisher=Springer-Verlag | isbn=3-540-21902-1 | year=2004 | page=254 }}
  • Capelli polynomial -{{cite book | last=Formanek | first=Edward | title=The polynomial identities and invariants of n×n matrices | zbl=0714.16001 | series=Regional Conference Series in Mathematics | volume=78 | location=Providence, RI | publisher=American Mathematical Society | year=1991 | isbn=0-8218-0730-7 | page=27 }}
  • Centroid of a ring -{{cite book | last=Kaplansky | first=Irving | authorlink=Irving Kaplansky | title = Fields and Rings | edition=2nd | zbl=1001.16500 | series=Chicago Lectures in Mathematics | publisher = University Of Chicago Press | year = 1972 | isbn = 0-226-42451-0 | page= }}
  • Conic algebra (not the algebra of conic sections){{cite journal | last1=Garibaldi | first1=Skip | last2=Petersson | first2=Holger P. | title=Wild Pfister forms over Henselian fields, K-theory, and conic division algebras | zbl=1222.17009 | journal=J. Algebra | volume=327 | pages=386–465 | year=2011 | doi=10.1016/j.jalgebra.2010.07.039 | s2cid=115177472 }}{{cite journal | last=Loos | first=Ottmar | title=Algebras with scalar involution revisited | zbl=1229.14002 | journal=J. Pure Appl. Algebra | volume=215 | pages=2805–2828 | year=2011 | issue=12 | doi=10.1016/j.jpaa.2011.04.001 }}
  • Demailly's conjecture (strengthening of Chudnovsky's conjecture + need to mention Containment Problem, Harbourne's conjecture)
  • Dimer algebra -{{cite journal | title=Dimer models and cluster categories of Grassmannians | first1=Karin | last1=Baur | first2=Alastair | last2=King | first3=Robert J. | last3=Marsh | journal=Proceedings of the London Mathematical Society | year=2016 | volume=113 | issue=2 | pages=213–260 | doi=10.1112/plms/pdw029 | arxiv=1309.6524 | s2cid=55442266 }}
  • Discriminant algebra -{{cite book | last1=Knus | first1=Max-Albert | last2=Merkurjev | first2=Alexander | author2-link=Alexander Merkurjev | last3=Rost | first3=Markus | author3-link=Markus Rost | last4=Tignol | first4=Jean-Pierre | title=The book of involutions | others=With a preface by J. Tits | zbl=0955.16001 | series=Colloquium Publications | publisher=American Mathematical Society | volume=44 | location=Providence, RI | year=1998 | isbn=0-8218-0904-0 | page=128 }}
  • Group valuation (not the same as Valuation group) -
  • Haiman's conjectures (conjectures on quotient ring by diagonal invariants + conjectures on Kazdhan-Lusztig basis elements of the Hecke algebra)
  • H-structure -{{cite journal | last=McCrimmon | first=Kevin | title=Axioms for inversion in Jordan algebras | zbl=0421.17013 | journal=J. Algebra | volume=47 | pages=201–222 | year=1977| doi=10.1016/0021-8693(77)90221-6 }}
  • Hecke algebra of Bost and Connes [http://www.neverendingbooks.org/index.php/the-bost-connes-hecke-algebra.html] -
  • Hopf algebra of Feynman diagrams
  • Isotonicity (mathematics) (Lattice theory, etc.) -
  • κ-algebra, κ-structure
  • Kronecker function ring
  • Levi's reduction process [http://www.google.com/?gws_rd=ssl#q=%22Levi%27s+reduction%22+Algebra]
  • Martindale's theorem -{{cite book | last=Racine | first=Michel L. | title=The arithmetics of quadratic Jordan algebras | series=Memoirs of the American Mathematical Society |volume=136 | isbn=978-0-8218-1836-7 | year=1973 | publisher=American Mathematical Society | zbl=0348.17009 | page=8 }}
  • Mixed discriminant
  • Module index [http://mathoverflow.net/questions/177363/multiplicativity-of-the-ideal-norm]
  • Morita context -
  • Multiplicative filter
  • Nagata–Higman theorem -{{cite book | last=Formanek | first=Edward | title=The polynomial identities and invariants of n×n matrices | zbl=0714.16001 | series=Regional Conference Series in Mathematics | volume=78 | location=Providence, RI | publisher=American Mathematical Society | year=1991 | isbn=0-8218-0730-7 | page=51 }}
  • Oort embedding theorem
  • Onsager algebra
  • Penico series -{{cite book | last=Racine | first=Michel L. | title=The arithmetics of quadratic Jordan algebras | series=Memoirs of the American Mathematical Society |volume=136 | isbn=978-0-8218-1836-7 | year=1973 | publisher=American Mathematical Society | zbl=0348.17009 | page=2 }}
  • Polynomial composition -{{cite book | last=Schinzel | first= Andrzej | authorlink=Andrzej Schinzel | title=Polynomials with special regard to reducibility | zbl=0956.12001 | series=Encyclopedia of Mathematics and Its Applications | volume=77 | location=Cambridge | publisher=Cambridge University Press | year=2000 | isbn=0-521-66225-7 }}
  • Predicative arithmetic - currently a redirect to Impredicativity
  • Principle of permanence of identities -
  • Principle of specialization of integral dependence
  • Quasiassociative algebra
  • Quaternionic roots of polynomials
  • Pseudo-orthonormal basis – needed to link to from WP, a widely used term, a generalization of but distinct from orthonormal basis in that it allows an indefinite nondegenerate bilinear form.
  • RC-algebra -{{cite book | last1=Choie | first1=Y. | last2=Diamantis | first2=N. | chapter=Rankin–Cohen brackets on higher-order modular forms | zbl=1207.11052 | editor1-last=Friedberg | editor1-first=Solomon | title=Multiple Dirichlet series, automorphic forms, and analytic number theory. Proceedings of the Bretton Woods workshop on multiple Dirichlet series, Bretton Woods, NH, USA, July 11–14, 2005 | location=Providence, RI | publisher=American Mathematical Society | isbn=0-8218-3963-2 | series=Proc. Symp. Pure Math. | volume=75 | pages=193–201 | year=2006 }}
  • Regular basis
  • Riesz interpolation property (interpolation property in an ordered abelian group, mentioned in approximately finite dimensional C*-algebra; weakly unperforated, a related property with ordered abelian semigroups, is listed below)-
  • Ring of constructible functions{{Cite arXiv| eprint=alg-geom/9606004 | last1=McCrory | first1=Clint | last2=Parusinski | first2=Adam | title=Algebraically constructible functions | year=1996 }}
  • Ring of divided congruences
  • Ringfield (math structure in which div and mul are same operation, should have nice de Moivre complex exponential change in div mul phase?!)
  • RL–condition for Hopf algebra -{{cite book | last=Montgomery | first=Susan | authorlink=Susan Montgomery | title=Hopf algebras and their actions on rings. Expanded version of ten lectures given at the CBMS Conference on Hopf algebras and their actions on rings, which took place at DePaul University in Chicago, USA, August 10-14, 1992 | zbl=0793.16029 | series=Regional Conference Series in Mathematics | volume=82 | location=Providence, RI | publisher=American Mathematical Society | year=1993 | isbn=978-0-8218-0738-5| page=164 }}
  • Samuel's conjecture
  • semi-tropical algebra{{Cite arXiv|title = Tight spans, Isbell completions and semi-tropical modules|eprint=1302.4370 |date = 2013-02-18|first = Simon|last = Willerton|class=math.CT }}
  • Sikorski extension theorem - {{cite book | last1=Jech | first1=Thomas | author1-link=Thomas Jech | title=Set Theory | edition=Third Millennium | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-540-44085-7 | year=2003 | zbl=1007.03002 | pages=88–89 }}{{cite book | last=Sikorski | first=Roman | authorlink=Roman Sikorski | title=Boolean algebras | edition=2nd | zbl=0123.01303 | mr=177920 | location=Berlin-Göttingen-Heidelberg-New York | publisher=Springer-Verlag | year=1964 }}
  • Singularity category
  • Skew-symmetric ring
  • Skolem ring {{cite journal | last=Chabert | first=Jean-Luc | title=Anneaux de Skolem | language=French | zbl=0403.13008 | journal=Arch. Math. | volume=32 | pages=555–568 | year=1979 | doi=10.1007/BF01238541 | s2cid=120142530 }}
  • Swan module {{cite book | last=Snaith | first=Victor P. | title=Galois module structure | volume=2 | series=Fields Institute monographs | publisher=American Mathematical Society | year=1994 | isbn=0-8218-7178-1 | page=41 }}
    {{cite book | last=Taylor | first=Martin | authorlink=Martin J. Taylor | title=Classgroups of group rings | series=LMS Lecture Notes | volume=91 | year=1984 | publisher=Cambridge University Press | isbn=0-521-27870-8 | page=26 }}
  • Syntactic algebra, Syntactic ideal {{cite book | last1=Berstel | first1=Jean | last2=Reutenauer | first2=Christophe | title=Noncommutative rational series with applications | series=Encyclopedia of Mathematics and Its Applications | volume=137 | location=Cambridge | publisher=Cambridge University Press | year=2011 | isbn=978-0-521-19022-0 | zbl=1250.68007 | page=53 }}
  • Taylor–Dix theorem (isosceles triangles)
  • Weak Cayley table group
  • Weakly injective module (maybe redirect?)
  • Weakly projective module
  • Weakly unperforated
  • Z.P.I. ring -{{cite book | first=Władysław | last=Narkiewicz | title=Elementary and analytic theory of numbers | edition=Second, substantially revised and extended | publisher=Springer-Verlag | isbn=3-540-51250-0 | year=1990 | zbl=0717.11045 | page=37 }}

[[Algebraic geometry]]

  • adic space {{cite book | mr=2004652| last1=Gabber|first1=Ofer| last2= Ramero|first2= Lorenzo

| title=Almost Ring Theory| series=Lecture Notes in Mathematics|volume= 1800|publisher= Springer-Verlag |place= Berlin|year= 2003|isbn= 3-540-40594-1|doi=10.1007/b10047 | s2cid=14400790}}
[http://www2.math.uni-paderborn.de/fileadmin/Mathematik/People/wedhorn/Lehre/AdicSpaces.pdf Notes by Torsten Wedhorn] - currently a redirect to Rigid_analytic_space#Other_formulations

[[Algorithms]]

  • Wolf and Pate correlation (capillary tubes)
  • L-PLS (extends Partial Least Squares regression to 3 connected data blocks)
  • OPLS-DA (Orthogonal Projections to Latent Structures - Discriminant Analysis) (Partial Least Squares with discrete variables)

[[Applied mathematics]]

  • econometry of economists [https://pantheon.world/profile/occupation/economist] [https://www.media.mit.edu/publications/pantheon-10-a-manually-verified-dataset-of-globally-famous-biographies/][https://www.nature.com/articles/s41597-022-01369-4 A cross-verified database of notable people, 3500BC-2018AD] {{ISSN|2052-4463}}
  • sociomathematics or Science of sociomathematics:
  1. Mathematics and Its Applications Nonlinear Stochastic Evolution Problems in Applied Sciences [1 ed.] {{ISBN|978-94-010-4803-3}}
  2. Researching the Socio-Political Dimensions of Mathematics Education: Issues of Power in Theory and Methodology (Mathematics Education Library) [1 ed.] {{ISBN|9781402079061}}

[[Approximation theory]]

[[Arithmetic geometry]]

[[Books]]

  • Ray's Arithmetic (Ray’s Arithmetic teaches arithmetic in an orderly fashion, starting with basic mathematical rules and principles and building upon those rules as students progress in their studies) ( [https://www.mottmedia.com/product-page/ray-s-arithmetics-8-volume-set,, Mott Media's Ray's Arithmetics - 8 Volume Set], [https://archive.org/search?query=creator%3A%22Joseph+Ray%22&and%5B%5D=mediatype%3A%22texts%22, Archive.org's Collection of Ray's Arithmetic Series], [http://sections.maa.org/ohio/ohio_masters/ray.html, Biography of Joseph Ray])

[[Calculus of variations]]

[[Category theory]]

[[Coding theory]]

  • Coding lemma
  • Disguise operation
  • Fuzzy vault - encryption scheme. A well written [https://web.archive.org/web/20180425114800/https://wiki.cse.buffalo.edu/cse545/content/fuzzy-vault wiki page] by Buffalo University already exists with references included.
  • Scroll code - {{Cite journal | doi = 10.1007/s10623-011-9561-6| title = Scroll codes over curves of higher genus: Reducible and superstable vector bundles| journal = Designs, Codes and Cryptography| volume = 63| issue = 3| pages = 365–377| year = 2011| last1 = Ballico | first1 = E.| s2cid = 27463381}}

[[Combinatorics]]

[[Complex analysis]]

[[Complexity theory]]

[[Convex analysis]] / [[Optimization (mathematics)|Optimization]]

[[Cryptography]]

  • Comp128v2
  • Hierarchical Hash-Chain Broadcast Encryption Scheme - see [http://www.iacr.org/cryptodb/archive/2005/EUROCRYPT/2411/2411.pdf paper] and [http://www.marlin-community.com/develop/downloads/glossary glossary] (further docs available in 'broadband bundle')
  • LASH (cryptography) see [http://cs.ucsb.edu/~koc/ccs130h/projects/05-shash/saarinen_etal_lash.pdf paper], [https://csrc.nist.gov/csrc/media/events/second-cryptographic-hash-workshop/documents/secondhashwshop_2006_report.pdf NIST 2006 workshop], [https://eprint.iacr.org/2007/430.pdf cryptoanalysis], [https://rump2007.cr.yp.to/12-steinfeld.pdf analysis(2)], [https://www.ma.rhul.ac.uk/static/techrep/2009/RHUL-MA-2009-22.pdf authors PhD. thesis], [https://www.cdc.informatik.tu-darmstadt.de/reports/reports/Sidi_Mohamed_El_yousfi_Alaoui.diplom.pdf (german) Diplomathesis about LASH (see 4.3.2)]
  • Multilinear modular hashing
  • Online/offline signature [http://www.mit.edu/~tauman/online_offline.pdf ]
  • Patterson's algorithm
  • Post-alien cryptography - see [https://datatracker.ietf.org/doc/html/draft-fabbrini-algorithm-post-alien-cryptography-00 IETF internet draft], [https://www.researchgate.net/publication/360813684_FC1_Algorithm_Ushers_In_The_Era_Of_Post-Alien_Cryptography paper], [https://eprint.iacr.org/2022/567 IACR paper], [https://postaliencryptography.org/ website], [https://fabbrini.org/ website].
  • Pseudo random large bit sequence using XOR feedback
  • Range proof
  • Ratcheting (cryptography) - Disambiguate from Ratcheting. Redirect from Ratcheted encryption, Key ratcheting, and Ratcheted key exchange. Wikilink from Double Ratchet algorithm. See [https://signal.org/blog/advanced-ratcheting/ Signal: Advanced cryptographic ratcheting], [https://crypto.stackexchange.com/questions/39762/what-is-a-ratchet Cryptography Stack Exchange: What is a ratchet?], and [https://eprint.iacr.org/2016/1028.pdf Ratcheted Encryption and Key Exchange: The Security of Messaging].
  • The Card-Chameleon Cipher - see [https://www.ircforumcu.net/ irc forumları][https://web.archive.org/web/20180907024806/https://aarontoponce.org/wiki/card-ciphers/card-chameleon source]
  • Post-compromise security or otherwise known as Future secrecy (similar to but more advanced than Forward secrecy), a category of encryption whereby individual messages can not be decrypted even when an attacker breaks a single key - they need to intercept all messages in order to do so. This is apparently a feature of the Signal protocol and also mentioned in Double ratchet algorithm.
  • Lightweight cryptography, or cryptography on embedded systems. NIST has [https://csrc.nist.gov/projects/lightweight-cryptography a competition] for this.
  • Ascon (cryptography) - [https://ascon.iaik.tugraz.at/ a family of lightweight algorithms] for authenticated encryption and hashing. Went well in the CAESAR competition.

[[Deformation theory]]

[[Differential equation]]s

  • Please make a page on linearization of ordinary differential equations. More precisely, consider the system x dot = f(x,u,t) wherex and u are vectors. Then it is a standard result used in the theroy of control systems (in engineering disciplines) that it can be linearized as

x dot = Ax + Bu where A = partial f / partial x and B = partial / partial u.

However, in the engineeiring books or web resources no proof is offered for it. Many textbooks cite the following book [*] as a reference for its proof, but unfortunately I do not have access to it. In the engineering field many researchers will benefit from its proof.

[*] H. Amann. Ordinary Differential Equations: An Introduction to Nonlinear Analysis,

volume 13 of De Gruyter Studies in Mathematics. De Gruyter, Berlin - New York,

1990. {{Unsigned4| 20:12, 11 October 2015‎|151.238.150.222}}

:This is a simple application of the concept of a Total derivative. Whether there is justification for having a whole article on the specific application you have in mind I am not sure. The editor who uses the pseudonym "JamesBWatson" (talk) 14:59, 13 October 2015 (UTC)

I have made a draft article on Quasilinearization in response to the request above. It is awaiting approval at Draft:Quasilinearization.

Rob.Corless (talk) 20:46, 31 March 2022 (UTC)

[[Differential geometry and topology]]

[[Dynamical systems]]

[[Elementary arithmetic]]

[[Functional analysis]]

[[Field theory (mathematics)|Field theory]]

  • Baer–Krull correspondence
  • Brauer field -{{cite book | last=Jacobson | first=Nathan | title=Finite-dimensional division algebras over fields | zbl=0874.16002 | location=Berlin | publisher=Springer-Verlag | isbn=3-540-57029-2 | year=1996 }}
  • Brauer–Witt theorem
  • Dedekind field -{{cite book | last=McCarthy | first=Paul J. | title=Algebraic extensions of fields | edition=Corrected reprint of the 2nd | zbl=0768.12001 | location=New York | publisher=Dover Publications | year=1991 | page=132 }}
  • Frobenius field -{{cite book | last1=Fried | first1=Michael D. | last2=Jarden | first2=Moshe | title=Field arithmetic | edition=3rd | series=Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge | volume=11 | publisher=Springer-Verlag | year=2008 | isbn=978-3-540-77269-9 | zbl=1145.12001 | page=562 }}
  • Kaplansky field - {{cite journal | last=Whaples | first=G. | title=Galois cohomology of additive polynomial and n-th power mappings of fields | zbl=0081.26702 | journal=Duke Math. J. | volume=24 | pages=143–150 | year=1957 | issue=2 | doi=10.1215/S0012-7094-57-02420-1 }}
  • Kronecker conjugacy, Kronecker class -{{cite book | last1=Fried | first1=Michael D. | last2=Jarden | first2=Moshe | title=Field arithmetic | edition=3rd | series=Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge | volume=11 | publisher=Springer-Verlag | year=2008 | isbn=978-3-540-77269-9 | zbl=1145.12001 | pages=463–464 }}
  • Locality (field)
  • Pasch field
  • Pólya field -{{cite journal | last=Leriche | first=Amandine | title=Pólya fields, Pólya groups and Pólya extensions: a question of capitulation | zbl=1282.13040 | journal=J. Théor. Nombres Bordx. | volume=23 | pages=235–249 | year=2011 | doi=10.5802/jtnb.758 | url=http://www.numdam.org/articles/10.5802/jtnb.758/ }}
  • Pre-Hilbert field -{{cite book | title=Introduction to Quadratic Forms over Fields | volume=67 | series=Graduate Studies in Mathematics | first=Tsit-Yuen | last=Lam | author-link=T. Y. Lam | publisher=American Mathematical Society | year=2005 | isbn=0-8218-1095-2 | zbl=1068.11023 | mr = 2104929 | page=453 }}
  • Quadratic form scheme -{{cite book | title=Introduction to Quadratic Forms over Fields | volume=67 | series=Graduate Studies in Mathematics | first=Tsit-Yuen | last=Lam | author-link=T. Y. Lam | publisher=American Mathematical Society | year=2005 | isbn=0-8218-1095-2 | zbl=1068.11023 | mr = 2104929 | page=463 }}
  • Ramification pairing
  • Saturated field

=[[Galois theory]]=

[[Game theory]]

[[Geometry]]

[[Graph theory]]

[[Group theory]]

  • Cliquet theory
  • Floretion (Numbers with digits 1,2,4,7 when written in base 8, equipped with group multiplication [https://oeis.org/search?q=A308496], could also be in Abstract Algebra or Number Theory. For floretions of order 1 (quaternions) or 2, see Mathar, R. [http://www.mpia.de/~mathar/public/mathar20100119.pdf] and [http://www.mrob.com/pub/seq/floretion.html])
  • Garside theory
  • Melnikov group -{{cite book | last1=Fried | first1=Michael D. | last2=Jarden | first2=Moshe | title=Field arithmetic | edition=3rd | series=Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge | volume=11 | publisher=Springer-Verlag | year=2008 | isbn=978-3-540-22811-0 | zbl=1055.12003 | page=613 }}
  • Recoupling theory
  • Reidemeister–Schreier rewriting process
  • Repeating group
  • Schreier basis, Schreier system -{{cite book | last1=Fried | first1=Michael D. | last2=Jarden | first2=Moshe | title=Field arithmetic | edition=3rd | series=Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge | volume=11 | publisher=Springer-Verlag | year=2008 | isbn=978-3-540-22811-0 | zbl=1055.12003 | page=352 }}
  • Singer cycle (should be in Geometry of field planes)
  • Uniform pro-p-group

[[Harmonic analysis]]

[[History of mathematics]] and other cultural aspects

[[History of mathematics]] Journals

[[Homological algebra]]

[[Integrable system]]s

[[K theory]]

[[Lie group]]s, [[Algebraic group]]s / [[Lie algebra]]s

[[Linear algebra]]

{{doi|10.1016/j.jcp.2014.06.010}}

[[Mathematical analysis]]

[[Mathematics education]]

  • Open Middle - Open Middle is an educational website for teachers founded by Robert Kaplinsky in 2013. It features "open middle" math problems, which are problems where the method to find the desired answer is up to the student. They are aligned with Common Core and Depth of Knowledge (DOK) levels 2-3. [https://openmiddle.com][https://books.google.com/books/about/Open_Middle_Math.html?id=6Dq8DwAAQBAJ&source=kp_book_description][https://www.nctm.org/Classroom-Resources/Illuminations/Lessons/Persevering-Through-Problem-Solving-with-Open-Middle_-Order-of-Operations/][https://www.edutopia.org/article/getting-heart-what-students-know-math]
  • socio-mathematics or socio mathematics{{cite journal | last=Feldman | first=Jacqueline | title=Condorcet et la mathématique sociale. Enthousiasmes et bémols | trans-title=Condorcet and social mathematics; enthusiastic and yet... | journal=Mathématiques et Sciences Humaines | publisher=OpenEdition | issue=172 | date=2005-12-01 | issn=0987-6936 | doi=10.4000/msh.2955 | language=fr | pages=7–41| doi-access=free }}
  • Theory of didactical situations - ICMI Awards - Didactic engineering - Raymond Duval
  • Quantrell Award - “The Quantrell Award is believed to be the nation’s oldest prize for undergraduate teaching. Based on letters of nomination from students, the award is among the most treasured by faculty. Nobel Laureate James Cronin, University Professor in Physics, said he was “bowled over to be receiving this Quantrell prize.” from https://www.uchicago.edu/about/accolades/35/

Mathematical logic

{{requested articles subpage|mathematical logic|/Logic}}

[[Mathematical physics]]

  • Belavin–Knizhnik theorem, Holomorphic anomaly -{{cite book | editor1-last=Deligne | editor1-first=Pierre | editor2-last=Etingof | editor2-first=Pavel | editor3-last=Freed | editor3-first=Daniel S. | editor4-last=Jeffrey | editor4-first=Lisa C. | editor5-last=Kazhdan | editor5-first=David | editor6-last=Morgan | editor6-first=John W. | editor7-last=Morrison | editor7-first=David R. | editor8-last=Witten | editor8-first=Edward | title=Quantum fields and strings: a course for mathematicians. Material from the Special Year on Quantum Field Theory held at the Institute for Advanced Study, Princeton, NJ, 1996–1997 | volume=2 | zbl=0984.00503 | location=Providence, RI | publisher=American Mathematical Society | year=1999 | isbn=0-8218-8621-5 | page=884 }}
  • Belavin S-matrix -{{cite journal | last=Belavin | first=A.A. | title=Discrete groups and integrability of quantum systems | zbl=0454.22012 | journal=Funkts. Anal. Prilozh. | volume=14 | number=4 | pages=18–26 | year=1980 }}
  • Coleman's Principle
  • Epsilon-expansion
  • Chiral integral
  • Kustaanheimo-Stiefel transform -{{cite journal | title=Interpreting the Kustaanheimo-Stiefel transform in gravitational dynamics

| first=Prasenjit | last=Saha | journal=Monthly Notices of the Royal Astronomical Society | volume=400 | issue=1 | date=November 2009 | pages=228–231 | doi=10.1111/j.1365-2966.2009.15437.x | doi-access=free | arxiv=0803.4441 | bibcode=2009MNRAS.400..228S | s2cid=15001977 }} (See: Universal variable formulation)

[[Mathematicians]]

Prior to creating an article, any biographical details can be added to:

Wikipedia:WikiProject Mathematics/missing mathematicians.

=A–G=

=H–N=

=O–Z=

[[Matrices]]

  • Centered in describing the columns or rows of a matrix {{Clarification needed|October 2018}} (Is this different from Centering matrix?)
  • Contraction equivalence -{{cite book | page=401 | title=Combinatorial Matrix Classes | first=Richard A. | last=Brualdi | volume=108 | series=Encyclopedia of Mathematics and its Applications | issn=0953-4806 | publisher=Cambridge University Press | year=2006 | isbn=0-521-86565-4 }}
  • Matrix-matrix transport -
  • Mixed discriminant -{{cite book | last=Formanek | first=Edward | title=The polynomial identities and invariants of n×n matrices | zbl=0714.16001 | series=Regional Conference Series in Mathematics | volume=78 | location=Providence, RI | publisher=American Mathematical Society | year=1991 | isbn=0-8218-0730-7 | page=45 }}
  • Term rank -{{cite book | title=Surveys in Contemporary Mathematics | volume=347 | series=London Mathematical Society Lecture Note Series | issn=0076-0552 | editor1-first=Nicholas | editor1-last=Young | editor2-first=Yemon | editor2-last=Choi | publisher=Cambridge University Press | year=2008 | isbn=978-0-521-70564-6 | chapter=Rank and determinant functions for matrices over semirings | first=Alexander E. | last=Guterman | pages=1–33 | zbl=1181.16042 }}
  • Pseudo covariance (Also called of "complementary covariance". The pseudo-covariance is defined whenever a complex random vector z and its conjugate z* are correlated, making the covariance matrix C = cov(z) = E zz^H not describe entirely the second order statistics of z.)

[[Measure Theory]]

[[Number theory]]

http://nuclearstrategy.co.uk/prime-number-distribution-series

{{cite web | url=http://www.codeproject.com/Tips/816931/Prime-Number-Distribution-Series/ | title=Prime Number Distribution Series | date=9 September 2014 }}

  • 32760_(number) -- lowest number evenly divisible by all integers from 1 to 16; factorisation 2 * 2 * 2 * 3 * 3 * 5 * 7 * 13. [Comment: 32760 is not divisible by 16 or 11. The correct lowest number divisible by 1 through 16 is 720720.]
  • 7920 (number) -- see http://www.numbergossip.com/7920 -- as far as I can see, the only unique thing about this number is that it's the order of the smallest sporadic simple group

=[[Elementary number theory]]=

  • Payam number - [http://mathworld.wolfram.com/PayamNumber.html Payam Number] MathWorld, [http://home.btclick.com/rwsmith/pp/payam3.htm A co-ordinated search for primes in the Payam number series]
  • Prime-generating polynomial — currently redirects to Formula for primes#Prime formulas and polynomial functions [https://www.yuvamfix.com/duvar-saati Duvar Saati][https://www.yuvamfix.com/kedi-tirmalamalari Kedi Tırmalaması][https://www.yuvamfix.com/bebek-odasi-takimi Bebek Uyku Seti]

=[[Algebraic number theory]]=

=[[Analytic number theory]]=

[[Numerical analysis]]

[[Order theory]]

[[List of mathematical societies|Organisations]]

[[Probability theory]]

[[Quantum stochastic calculus]]

[[Real analysis]]

[[Recreational mathematics]]

[[Representation theory]] (incl. harmonic analysis)

[[Semigroup theory]]

[[Special function]]s

  • Confluent hypergeometric limit function (i.e. 0F1; currently redirects to generalized hypergeometric function, or pFq)
  • Gram–Charlier polynomials (currently redirects to Edgeworth series, which does not tell what a Gram–Charlier polynomial is)
  • Harmonic polylogarithms (or HPL's, appear e.g. in the expansion of hypergeometric functions when computing multi-loop Feynman diagrams. See e.g. [http://arxiv.org/abs/hep-ph/9905237])
  • Hyperlogarithm -{{cite book | last=Gantmacher | first=F.R. | title=Applications of the theory of matrices | zbl=0085.01001 | publisher=Dover | year=2005 | origyear=1959 | isbn=0-486-44554-2 }}
  • Inverse tangent integral (currently redirects to polylogarithm; see also [http://www.cs.kent.ac.uk/pubs/1992/110] §18)
  • Nielsen's generalized polylogarithm (for the subject matter see e.g. [http://www.cs.kent.ac.uk/pubs/1992/110] §19)
  • Polylogarithm factorial
  • Prabhakar function (a 3-parameter Mittag-Leffler function that has many applications in fractional calculus and plays a fundamental role in the description of the anomalous dielectric properties in disordered materials and heterogeneous systems manifesting simultaneous nonlocality and nonlinearity and, more generally, in models of Havriliak–Negami type. See e.g. [https://www.researchgate.net/publication/319271790_The_Prabhakar_or_three_parameter_Mittag-Leffler_function_Theory_and_application])

[[Statistics]]

{{seealso2|*Requested articles in Econometrics}}

[[Topology]]

=[[Algebraic topology]]=

=[[General topology]]=

  • Affine fibration -
  • Centered space -{{cite book | title=General topology II: compactness, homologies of general spaces | volume=50 | series=Encyclopaedia of mathematical sciences | first=A. | last=Arhangel'Skii | publisher=Springer-Verlag | year=1996 | isbn=0-387-54695-2 | zbl=0830.00013 | page=59 }}
  • Contiguity space -
  • Dantian space -{{cite journal | mr=243485 | last=Arhangelʹskiĭ | first=A. V. | title=An approximation of the theory of dyadic bicompacta | language=Russian | journal=Dokl. Akad. Nauk SSSR | volume=184 | year=1969 | pages=767–770 }}{{cite journal | title= Strong sequences, binary families and Esenin-Volpin's theorem | journal=Commentationes Mathematicae Universitatis Carolinae | volume=33|issue=3 |year=1992|pages= 563-569|mr=1209298 | zbl=0796.54031

| url=https://eudml.org/doc/247365 |last=Turzański|first= Marian}}

=[[Geometric topology]]=

=[[Knot theory]]=

=[[Stable homotopy theory]]=

Uncategorized

Please try to classify these requests.

See also

References