List of unsolved problems in mathematics

{{pp|small=yes}}

{{Short description|none}}

{{CS1 config|mode=cs1}}

{{Dynamic list}}

Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations. Some problems belong to more than one discipline and are studied using techniques from different areas. Prizes are often awarded for the solution to a long-standing problem, and some lists of unsolved problems, such as the Millennium Prize Problems, receive considerable attention.

This list is a composite of notable unsolved problems mentioned in previously published lists, including but not limited to lists considered authoritative, and the problems listed here vary widely in both difficulty and importance.

Lists of unsolved problems in mathematics

Various mathematicians and organizations have published and promoted lists of unsolved mathematical problems. In some cases, the lists have been associated with prizes for the discoverers of solutions.

class="wikitable sortable"
ListNumber of
problems
Number unsolved
or incompletely solved
Proposed byProposed
in
Hilbert's problems{{citation|last=Thiele|first=Rüdiger|chapter=On Hilbert and his twenty-four problems|title=Mathematics and the historian's craft. The Kenneth O. May Lectures|pages=243–295|isbn=978-0-387-25284-1|editor-last=Van Brummelen|editor-first=Glen|year=2005|series=CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC |volume=21|title-link=Kenneth May}}2315David Hilbert1900
Landau's problems{{citation|title=Unsolved Problems in Number Theory|first=Richard|last=Guy|author-link=Richard K. Guy|edition=2nd|publisher=Springer|year=1994|page=vii|url=https://books.google.com/books?id=EbLzBwAAQBAJ&pg=PR7|isbn=978-1-4899-3585-4|access-date=2016-09-22|archive-url=https://web.archive.org/web/20190323220345/https://books.google.com/books?id=EbLzBwAAQBAJ&pg=PR7|archive-date=2019-03-23|url-status=live}}.44Edmund Landau1912
Taniyama's problems{{cite journal | last = Shimura | first = G. | author-link = Goro Shimura | title = Yutaka Taniyama and his time | journal = Bulletin of the London Mathematical Society | volume = 21 | issue = 2 | pages = 186–196 | year = 1989 | doi = 10.1112/blms/21.2.186 }}36Yutaka Taniyama1955
Thurston's 24 questions{{cite journal

| last = Friedl | first = Stefan

| doi = 10.1365/s13291-014-0102-x

| issue = 4

| journal = Jahresbericht der Deutschen Mathematiker-Vereinigung

| mr = 3280572

| pages = 223–241

| title = Thurston's vision and the virtual fibering theorem for 3-manifolds

| volume = 116

| year = 2014| s2cid = 56322745

}}{{cite journal

| last = Thurston | first = William P.

| doi = 10.1090/S0273-0979-1982-15003-0

| issue = 3

| journal = Bulletin of the American Mathematical Society

| mr = 648524

| pages = 357–381

| series = New Series

| title = Three-dimensional manifolds, Kleinian groups and hyperbolic geometry

| volume = 6

| year = 1982}}

242William Thurston1982
Smale's problems1814Stephen Smale1998
Millennium Prize Problems76{{cite web |title=Millennium Problems |url=http://claymath.org/millennium-problems |archive-url=https://web.archive.org/web/20170606121331/http://claymath.org/millennium-problems |archive-date=2017-06-06 |access-date=2015-01-20 |website=claymath.org}}Clay Mathematics Institute2000
Simon problems15< 12{{cite web |url=http://www2.cnrs.fr/en/2435.htm?debut=8&theme1=12 |title=Fields Medal awarded to Artur Avila |website=Centre national de la recherche scientifique |date=2014-08-13 |access-date=2018-07-07 |archive-url=https://web.archive.org/web/20180710010437/http://www2.cnrs.fr/en/2435.htm?debut=8&theme1=12 |archive-date=2018-07-10 }}{{cite web |url=https://www.theguardian.com/science/alexs-adventures-in-numberland/2014/aug/13/fields-medals-2014-maths-avila-bhargava-hairer-mirzakhani |title=Fields Medals 2014: the maths of Avila, Bhargava, Hairer and Mirzakhani explained |website=The Guardian |last=Bellos |first=Alex |date=2014-08-13 |access-date=2018-07-07 |archive-url=https://web.archive.org/web/20161021115900/https://www.theguardian.com/science/alexs-adventures-in-numberland/2014/aug/13/fields-medals-2014-maths-avila-bhargava-hairer-mirzakhani |archive-date=2016-10-21 |url-status=live }}Barry Simon2000
Unsolved Problems on Mathematics for the 21st Century{{cite book | last1 = Abe | first1 = Jair Minoro | last2 = Tanaka | first2 = Shotaro | title = Unsolved Problems on Mathematics for the 21st Century | publisher = IOS Press | year = 2001 | url = https://books.google.com/books?id=yHzfbqtVGLIC&q=unsolved+problems+in+mathematics | isbn = 978-90-5199-490-2}}22Jair Minoro Abe, Shotaro Tanaka2001
DARPA's math challenges{{cite web | title = DARPA invests in math | publisher = CNN | date = 2008-10-14 | url = http://edition.cnn.com/2008/TECH/science/10/09/darpa.challenges/index.html | access-date = 2013-01-14 | archive-url = https://web.archive.org/web/20090304121240/http://edition.cnn.com/2008/TECH/science/10/09/darpa.challenges/index.html | archive-date = 2009-03-04}}{{cite web | title = Broad Agency Announcement (BAA 07-68) for Defense Sciences Office (DSO) | publisher = DARPA | date = 2007-09-10 | url = http://www.math.utk.edu/~vasili/refs/darpa07.MathChallenges.html | access-date = 2013-06-25 | archive-url = https://web.archive.org/web/20121001111057/http://www.math.utk.edu/~vasili/refs/darpa07.MathChallenges.html

| archive-date = 2012-10-01}}

23DARPA2007
Erdős's problems{{cite web|url=https://www.erdosproblems.com/|title=Erdős Problems|first=Thomas|last=Bloom|author-link=Thomas Bloom|access-date=2024-08-25}}> 934617Paul ErdősOver six decades of Erdős' career, from the 1930s to 1990s

File:Riemann-Zeta-Func.png, subject of the Riemann hypothesis{{Cite web |title=Math Problems Guide: From Simple to Hardest Math Problems Tips & Examples. |url=https://blendedlearningmath.com/math-word-problems-to-challenge-university-students/ |access-date=2024-11-28 |website=blendedlearningmath |language=en-US}}]]

= Millennium Prize Problems =

Of the original seven Millennium Prize Problems listed by the Clay Mathematics Institute in 2000, six remain unsolved to date:

The seventh problem, the Poincaré conjecture, was solved by Grigori Perelman in 2003.{{cite web |title=Poincaré Conjecture |url=http://www.claymath.org/millenium-problems/poincar%C3%A9-conjecture |archive-url=https://web.archive.org/web/20131215120130/http://www.claymath.org/millenium-problems/poincar%C3%A9-conjecture |archive-date=2013-12-15 |website=Clay Mathematics Institute}} However, a generalization called the smooth four-dimensional Poincaré conjecture—that is, whether a four-dimensional topological sphere can have two or more inequivalent smooth structures—is unsolved.{{cite web |last=rybu |date=November 7, 2009 |title=Smooth 4-dimensional Poincare conjecture |url=http://www.openproblemgarden.org/?q=op/smooth_4_dimensional_poincare_conjecture |url-status=live |archive-url=https://web.archive.org/web/20180125203721/http://www.openproblemgarden.org/?q=op%2Fsmooth_4_dimensional_poincare_conjecture |archive-date=2018-01-25 |access-date=2019-08-06 |website=Open Problem Garden}}

= Notebooks =

  • The Kourovka Notebook ({{Langx|ru|Коуровская тетрадь}}) is a collection of unsolved problems in group theory, first published in 1965 and updated many times since.{{citation |last1=Khukhro |first1=Evgeny I. |title=Unsolved Problems in Group Theory. The Kourovka Notebook |year=2019 |arxiv=1401.0300v16 |last2=Mazurov |first2=Victor D. |author-link2=Victor Mazurov}}
  • The Sverdlovsk Notebook ({{Langx|ru|Свердловская тетрадь}}) is a collection of unsolved problems in semigroup theory, first published in 1965 and updated every 2 to 4 years since.{{Cite book |last1=RSFSR |first1=MV i SSO |url=https://books.google.com/books?id=nKwgzgEACAAJ |title=Свердловская тетрадь: нерешенные задачи теории подгрупп |last2=Russie) |first2=Uralʹskij gosudarstvennyj universitet im A. M. Gorʹkogo (Ekaterinbourg |date=1969 |publisher=S. l. |language=ru}}{{cite book| title = Свердловская тетрадь: Сб. нерешённых задач по теории полугрупп |location= Свердловск |date = 1979 |publisher= Уральский государственный университет }}{{cite book| title = Свердловская тетрадь: Сб. нерешённых задач по теории полугрупп |location= Свердловск |date = 1989 |publisher= Уральский государственный университет }}
  • The Dniester Notebook ({{Langx|ru|Днестровская тетрадь}}) lists several hundred unsolved problems in algebra, particularly ring theory and modulus theory.{{citation |title=ДНЕСТРОВСКАЯ ТЕТРАДЬ |url=http://math.nsc.ru/LBRT/a1/files/dnestr93.pdf |year=1993 |trans-title=DNIESTER NOTEBOOK |publisher=The Russian Academy of Sciences |language=ru}}{{citation |title=DNIESTER NOTEBOOK: Unsolved Problems in the Theory of Rings and Modules |url=https://math.usask.ca/~bremner/research/publications/dniester.pdf |website=University of Saskatchewan |access-date=2019-08-15}}
  • The Erlagol Notebook ({{Langx|ru|Эрлагольская тетрадь}}) lists unsolved problems in algebra and model theory.{{citation |title=Эрлагольская тетрадь |url=http://uamt.conf.nstu.ru/erl_note.pdf |year=2018 |trans-title=Erlagol notebook |publisher=The Novosibirsk State University |language=ru}}

Unsolved problems

= Algebra =

{{Main|Algebra}}

File:Regular tetrahedron inscribed in a sphere.svg representation of a qubit, a SIC-POVM forms a regular tetrahedron. Zauner conjectured that analogous structures exist in complex Hilbert spaces of all finite dimensions.]]

== Group theory ==

{{Main|Group theory }}

File:FreeBurnsideGroupExp3Gens2.png B(2,3) is finite; in its Cayley graph, shown here, each of its 27 elements is represented by a vertex. The question of which other groups B(m,n) are finite remains open.]]

== Representation theory ==

= Analysis =

{{Main|Mathematical analysis}}

  • The Brennan conjecture: estimating the integral of powers of the moduli of the derivative of conformal maps into the open unit disk, on certain subsets of \mathbb{C}
  • Fuglede's conjecture on whether nonconvex sets in \mathbb{R} and \mathbb{R}^{2} are spectral if and only if they tile by translation.
  • Goodman's conjecture on the coefficients of multivalued functions
  • Invariant subspace problem – does every bounded operator on a complex Banach space send some non-trivial closed subspace to itself?
  • Kung–Traub conjecture on the optimal order of a multipoint iteration without memory{{citation |last1=Kung |first1=H. T. |last2=Traub |first2=Joseph Frederick |author-link1=H. T. Kung |author-link2=Joseph F. Traub |title=Optimal order of one-point and multipoint iteration |journal=Journal of the ACM |year=1974 |volume=21 |number=4 |pages=643–651|doi=10.1145/321850.321860 |s2cid=74921 }}
  • Lehmer's conjecture on the Mahler measure of non-cyclotomic polynomials{{citation | first=Chris | last=Smyth | chapter=The Mahler measure of algebraic numbers: a survey | pages=322–349 | editor1-first=James | editor1-last=McKee | editor2-last=Smyth | editor2-first=Chris | title=Number Theory and Polynomials | series=London Mathematical Society Lecture Note Series | volume=352 | publisher=Cambridge University Press | year=2008 | isbn=978-0-521-71467-9 }}
  • The mean value problem: given a complex polynomial f of degree d \ge 2 and a complex number z, is there a critical point c of f such that |f(z)-f(c)| \le |f'(z)||z-c|?
  • The Pompeiu problem on the topology of domains for which some nonzero function has integrals that vanish over every congruent copy{{SpringerEOM|title=Pompeiu problem|id=Pompeiu_problem&oldid=14506|author-last1=Berenstein|author-first1=Carlos A.}}
  • Sendov's conjecture: if a complex polynomial with degree at least 2 has all roots in the closed unit disk, then each root is within distance 1 from some critical point.
  • Vitushkin's conjecture on compact subsets of \mathbb{C} with analytic capacity 0
  • What is the exact value of Landau's constants, including Bloch's constant?

= Combinatorics =

{{Main|Combinatorics}}

| last1 = Brightwell | first1 = Graham R.

| last2 = Felsner | first2 = Stefan

| last3 = Trotter | first3 = William T.

| doi = 10.1007/BF01110378

| mr = 1368815

| issue = 4

| journal = Order

| pages = 327–349

| title = Balancing pairs and the cross product conjecture

| volume = 12

| year = 1995| citeseerx = 10.1.1.38.7841

| s2cid = 14793475

}}.

  • The Dittert conjecture concerning the maximum achieved by a particular function of matrices with real, nonnegative entries satisfying a summation condition
  • Problems in Latin squares – open questions concerning Latin squares
  • The lonely runner conjecture – if k runners with pairwise distinct speeds run round a track of unit length, will every runner be "lonely" (that is, be at least a distance 1/k from each other runner) at some time?{{cite journal

| last=Tao | first=Terence | author-link=Terence Tao

| title=Some remarks on the lonely runner conjecture

| journal=Contributions to Discrete Mathematics

| volume=13

| issue=2

| pages=1–31

| date=2018

| arxiv=1701.02048

| doi=10.11575/cdm.v13i2.62728 | doi-access=free}}

  • Map folding – various problems in map folding and stamp folding.
  • No-three-in-line problem – how many points can be placed in the n \times n grid so that no three of them lie on a line?
  • Rudin's conjecture on the number of squares in finite arithmetic progressions{{cite journal|journal=LMS Journal of Computation and Mathematics|volume=17|issue=1|year=2014|pages=58–76|title=On a conjecture of Rudin on squares in arithmetic progressions|author=González-Jiménez, Enrique|author2=Xarles, Xavier|doi=10.1112/S1461157013000259|arxiv=1301.5122|s2cid=11615385 }}
  • The sunflower conjecture – can the number of k size sets required for the existence of a sunflower of r sets be bounded by an exponential function in k for every fixed r>2?
  • Frankl's union-closed sets conjecture – for any family of sets closed under sums there exists an element (of the underlying space) belonging to half or more of the sets{{citation

| last1 = Bruhn

| first1 = Henning

| last2 = Schaudt

| first2 = Oliver

| doi = 10.1007/s00373-014-1515-0

| issue = 6

| journal = Graphs and Combinatorics

| mr = 3417215

| pages = 2043–2074

| title = The journey of the union-closed sets conjecture

| url = http://www.zaik.uni-koeln.de/~schaudt/UCSurvey.pdf

| volume = 31

| year = 2015

| arxiv = 1309.3297

| s2cid = 17531822

| access-date = 2017-07-18

| archive-url = https://web.archive.org/web/20170808104232/http://www.zaik.uni-koeln.de/~schaudt/UCSurvey.pdf

| archive-date = 2017-08-08

| url-status = live

}}

| last = Murnaghan | first = F. D.

| doi = 10.2307/2371542

| issue = 1

| journal = American Journal of Mathematics

| mr = 1507301

| pages = 44–65

| title = The Analysis of the Direct Product of Irreducible Representations of the Symmetric Groups

| volume = 60

| year = 1938| pmc = 1076971

| pmid=16577800

| jstor = 2371542

}}

  • The values of the Dedekind numbers M(n) for n \ge 10{{Cite web |url=http://www.sfu.ca/~tyusun/ThesisDedekind.pdf |title=Dedekind Numbers and Related Sequences |access-date=2020-04-30 |archive-date=2015-03-15 |archive-url=https://web.archive.org/web/20150315021125/http://www.sfu.ca/~tyusun/ThesisDedekind.pdf }}
  • The values of the Ramsey numbers, particularly R(5, 5)
  • The values of the Van der Waerden numbers
  • Finding a function to model n-step self-avoiding walks{{Cite journal|last1=Liśkiewicz|first1=Maciej|last2=Ogihara|first2=Mitsunori|last3=Toda|first3=Seinosuke|date=2003-07-28|title=The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes|journal=Theoretical Computer Science|volume=304|issue=1|pages=129–156|doi=10.1016/S0304-3975(03)00080-X|s2cid=33806100 }}

= Dynamical systems =

{{Main|Dynamical system}}

File:Mandel zoom 07 satellite.jpg. It is not known whether the Mandelbrot set is locally connected or not.]]

  • Does every positive integer generate a juggler sequence terminating at 1?
  • Lyapunov function: Lyapunov's second method for stability – For what classes of ODEs, describing dynamical systems, does Lyapunov's second method, formulated in the classical and canonically generalized forms, define the necessary and sufficient conditions for the (asymptotical) stability of motion?
  • Is every reversible cellular automaton in three or more dimensions locally reversible?{{cite conference |last=Kari |first=Jarkko |author-link=Jarkko Kari |year=2009 |title=Structure of Reversible Cellular Automata |conference=International Conference on Unconventional Computation |series=Lecture Notes in Computer Science |publisher=Springer |volume=5715 |page=6 |bibcode=2009LNCS.5715....6K |doi=10.1007/978-3-642-03745-0_5 |isbn=978-3-642-03744-3 |doi-access=free |contribution=Structure of reversible cellular automata}}

= Games and puzzles =

{{Main|Game theory}}

==Combinatorial games==

{{Main|Combinatorial game theory}}

  • Sudoku:
  • How many puzzles have exactly one solution?
  • How many puzzles with exactly one solution are minimal?
  • What is the maximum number of givens for a minimal puzzle?{{Cite web |title=Open Q – Solving and rating of hard Sudoku |url=http://english.log-it-ex.com/2.html |archive-url=https://web.archive.org/web/20171110030932/http://english.log-it-ex.com/2.html |archive-date=10 November 2017 |website=english.log-it-ex.com}}
  • Tic-tac-toe variants:
  • Given the width of a tic-tac-toe board, what is the smallest dimension such that X is guaranteed to have a winning strategy? (See also Hales–Jewett theorem and nd game){{cite web |url=https://www.youtube.com/watch?v=FwJZa-helig |title=Higher-Dimensional Tic-Tac-Toe |website=PBS Infinite Series |publisher=YouTube |date=2017-09-21 |access-date=2018-07-29 |archive-url=https://web.archive.org/web/20171011000653/https://www.youtube.com/watch?v=FwJZa-helig |archive-date=2017-10-11 |url-status=live }}
  • Chess:
  • What is the outcome of a perfectly played game of chess? (See also first-move advantage in chess)
  • Go:
  • What is the perfect value of Komi?
  • Are the nim-sequences of all finite octal games eventually periodic?
  • Is the nim-sequence of Grundy's game eventually periodic?

==Games with imperfect information==

= Geometry =

{{Main|Geometry}}

== Algebraic geometry ==

{{Main|Algebraic geometry}}

|last = Dupont

|first = Johan L.

|doi = 10.1142/9789812810335

|isbn = 978-981-02-4507-8

|mr = 1832859

|page = 6

|publisher = World Scientific Publishing Co., Inc., River Edge, NJ

|series = Nankai Tracts in Mathematics

|title = Scissors congruences, group homology and characteristic classes

|url = http://home.math.au.dk/dupont/scissors.ps

|volume = 1

|year = 2001

|url-status = dead

|archive-url = https://web.archive.org/web/20160429152252/http://home.math.au.dk/dupont/scissors.ps

|archive-date = 2016-04-29

}}.

|last1=Maulik |first1=Davesh

|last2=Nekrasov |first2=Nikita |author-link2=Nikita Nekrasov

|last3=Okounov |first3=Andrei |author-link3=Andrei Okounov

|last4=Pandharipande |first4=Rahul |author-link4=Rahul Pandharipande

|title=Gromov–Witten theory and Donaldson–Thomas theory, I

|arxiv=math/0312059

|date=2004-06-05|bibcode=2003math.....12059M

}}

==Covering and packing==

  • Borsuk's problem on upper and lower bounds for the number of smaller-diameter subsets needed to cover a bounded n-dimensional set.
  • The covering problem of Rado: if the union of finitely many axis-parallel squares has unit area, how small can the largest area covered by a disjoint subset of squares be?{{citation|last1=Bereg|first1=Sergey|last2=Dumitrescu|first2=Adrian|last3=Jiang|first3=Minghui|doi=10.1007/s00453-009-9298-z|issue=3|journal=Algorithmica|mr=2609053|pages=538–561|title=On covering problems of Rado|volume=57|year=2010|s2cid=6511998}}
  • The Erdős–Oler conjecture: when n is a triangular number, packing n-1 circles in an equilateral triangle requires a triangle of the same size as packing n circles.{{citation|last=Melissen|first=Hans|doi=10.2307/2324212|issue=10|journal=American Mathematical Monthly|mr=1252928|pages=916–925|title=Densest packings of congruent circles in an equilateral triangle|volume=100|year=1993|jstor=2324212}}
  • The disk covering problem abount finding the smallest real number r(n) such that n disks of radius r(n) can be arranged in such a way as to cover the unit disk.
  • The kissing number problem for dimensions other than 1, 2, 3, 4, 8 and 24{{citation |first=John H. |last=Conway |author-link=John Horton Conway |author2=Neil J.A. Sloane |author-link2=Neil Sloane |year=1999 |title=Sphere Packings, Lattices and Groups |edition=3rd |publisher=Springer-Verlag |location=New York |isbn=978-0-387-98585-5|pages=[https://books.google.com/books?id=upYwZ6cQumoC&pg=PA21 21–22]}}
  • Reinhardt's conjecture: the smoothed octagon has the lowest maximum packing density of all centrally-symmetric convex plane sets{{citation

| last = Hales | first = Thomas | author-link = Thomas Callister Hales

| arxiv = 1703.01352

| title = The Reinhardt conjecture as an optimal control problem

| year = 2017}}

  • Sphere packing problems, including the density of the densest packing in dimensions other than 1, 2, 3, 8 and 24, and its asymptotic behavior for high dimensions.
  • Square packing in a square: what is the asymptotic growth rate of wasted space?{{citation|last1=Brass|first1=Peter|last2=Moser|first2=William|last3=Pach|first3=János|author3-link=János Pach|isbn=978-0387-23815-9|mr=2163782|page=45|publisher=Springer|location=New York|title=Research Problems in Discrete Geometry|url=https://books.google.com/books?id=WehCspo0Qa0C&pg=PA45|year=2005}}
  • Ulam's packing conjecture about the identity of the worst-packing convex solid{{citation |last=Gardner |first=Martin |date=1995 |title=New Mathematical Diversions (Revised Edition) |location=Washington |publisher=Mathematical Association of America |page=251 }}
  • The Tammes problem for numbers of nodes greater than 14 (except 24).{{cite journal |last1=Musin |first1=Oleg R. |last2=Tarasov |first2=Alexey S. |title=The Tammes Problem for N = 14 |journal=Experimental Mathematics |date=2015 |volume=24 |issue=4 |pages=460–468 |doi=10.1080/10586458.2015.1022842|s2cid=39429109 }}

== Differential geometry ==

{{Main|Differential geometry}}

| last = Barros | first = Manuel

| jstor = 2162098

| journal = Proceedings of the American Mathematical Society

| pages = 1503–1509

| title = General Helices and a Theorem of Lancret

| volume = 125

| issue = 5

| year = 1997| doi = 10.1090/S0002-9939-97-03692-7

| doi-access = free

}}

  • The filling area conjecture, that a hemisphere has the minimum area among shortcut-free surfaces in Euclidean space whose boundary forms a closed curve of given length{{citation

| last = Katz | first = Mikhail G.

| doi = 10.1090/surv/137

| isbn = 978-0-8218-4177-8

| mr = 2292367

| page = 57

| publisher = American Mathematical Society, Providence, RI

| series = Mathematical Surveys and Monographs

| title = Systolic geometry and topology

| url = https://books.google.com/books?id=R5_zBwAAQBAJ&pg=PA57

| volume = 137

| year = 2007}}

  • The Hopf conjectures relating the curvature and Euler characteristic of higher-dimensional Riemannian manifolds{{citation

| last = Rosenberg | first = Steven

| doi = 10.1017/CBO9780511623783

| isbn = 978-0-521-46300-3

| location = Cambridge

| mr = 1462892

| pages = 62–63

| publisher = Cambridge University Press

| series = London Mathematical Society Student Texts

| title = The Laplacian on a Riemannian Manifold: An introduction to analysis on manifolds

| url = https://books.google.com/books?id=gzJ6Vn0y7XQC&pg=PA62

| volume = 31

| year = 1997}}

== Discrete geometry ==

{{Main|Discrete geometry }}

File:Kissing-3d.png is 12, because 12 non-overlapping unit spheres can be put into contact with a central unit sphere. (Here, the centers of outer spheres form the vertices of a regular icosahedron.) Kissing numbers are only known exactly in dimensions 1, 2, 3, 4, 8 and 24.]]

  • The big-line-big-clique conjecture on the existence of either many collinear points or many mutually visible points in large planar point sets{{citation

| last1 = Ghosh | first1 = Subir Kumar

| last2 = Goswami | first2 = Partha P.

| arxiv = 1012.5187

| doi = 10.1145/2543581.2543589

| issue = 2

| journal = ACM Computing Surveys

| pages = 22:1–22:29

| title = Unsolved problems in visibility graphs of points, segments, and polygons

| volume = 46

| year = 2013| s2cid = 8747335

}}

  • The Hadwiger conjecture on covering n-dimensional convex bodies with at most 2n smaller copies{{citation|title=Results and Problems in Combinatorial Geometry|first1=V.|last1=Boltjansky|first2=I.|last2=Gohberg|publisher=Cambridge University Press|year=1985|contribution=11. Hadwiger's Conjecture|pages=44–46}}.
  • Solving the happy ending problem for arbitrary n{{citation

| last1 = Morris | first1 = Walter D.

| last2 = Soltan | first2 = Valeriu

| doi = 10.1090/S0273-0979-00-00877-6

| issue = 4

| journal = Bull. Amer. Math. Soc.

| mr = 1779413

| pages = 437–458

| title = The Erdős-Szekeres problem on points in convex position—a survey

| volume = 37

| year = 2000| doi-access = free

}}; {{citation

| last = Suk | first = Andrew

| arxiv = 1604.08657

| doi = 10.1090/jams/869

| journal = J. Amer. Math. Soc.

| title = On the Erdős–Szekeres convex polygon problem

| year = 2016

| volume=30

| issue = 4

| pages=1047–1053| s2cid = 15732134

}}

| last = Kalai | first = Gil | author-link = Gil Kalai

| doi = 10.1007/BF01788696

| issue = 1

| journal = Graphs and Combinatorics

| mr = 1554357

| pages = 389–391

| title = The number of faces of centrally-symmetric polytopes

| volume = 5

| year = 1989| s2cid = 8917264 }}.

| last1 = Moreno | first1 = José Pedro

| last2 = Prieto-Martínez | first2 = Luis Felipe

| hdl = 10486/705416

| issue = 1

| journal = La Gaceta de la Real Sociedad Matemática Española

| language = es

| mr = 4225268

| pages = 111–130

| title = El problema de los triángulos de Kobon

| trans-title = The Kobon triangles problem

| volume = 24

| year = 2021}}

  • The Kusner conjecture: at most 2d points can be equidistant in L^1 spaces{{citation

| last = Guy | first = Richard K. | author-link = Richard K. Guy

| issue = 3

| journal = American Mathematical Monthly

| mr = 1540158

| pages = 196–200

| title = An olla-podrida of open problems, often oddly posed

| jstor = 2975549

| volume = 90

| year = 1983

| doi = 10.2307/2975549 }}

| last = Matoušek | first = Jiří | author-link = Jiří Matoušek (mathematician)

| doi = 10.1007/978-1-4613-0039-7

| isbn = 978-0-387-95373-1

| mr = 1899299

| page = 206

| publisher = Springer-Verlag, New York

| series = Graduate Texts in Mathematics

| title = Lectures on discrete geometry

| volume = 212

| year = 2002}}

| last1 = Brass | first1 = Peter

| last2 = Moser | first2 = William

| last3 = Pach | first3 = János

| contribution = 5.1 The Maximum Number of Unit Distances in the Plane

| isbn = 978-0-387-23815-9

| mr = 2163782

| pages = 183–190

| publisher = Springer, New York

| title = Research problems in discrete geometry

| year = 2005}}

  • Finding matching upper and lower bounds for k-sets and halving lines{{citation

| last = Dey | first = Tamal K. | author-link = Tamal Dey

| doi = 10.1007/PL00009354

| journal = Discrete & Computational Geometry

| mr = 1608878

| pages = 373–382

| title = Improved bounds for planar k-sets and related problems

| volume = 19

| issue = 3

| year = 1998| doi-access = free

}}; {{citation

| last = Tóth | first = Gábor

| doi = 10.1007/s004540010022

| issue = 2

| journal = Discrete & Computational Geometry

| mr = 1843435

| pages = 187–194

| title = Point sets with many k-sets

| volume = 26

| year = 2001| doi-access = free

}}.

  • Tripod packing:{{citation|last1=Aronov|first1=Boris|author1-link=Boris Aronov|last2=Dujmović|first2=Vida|author2-link=Vida Dujmović|last3=Morin|first3=Pat|author3-link= Pat Morin |last4=Ooms|first4=Aurélien|last5=Schultz Xavier da Silveira |first5=Luís Fernando|issue=1|journal=Electronic Journal of Combinatorics|page=P1.8|title=More Turán-type theorems for triangles in convex point sets |url=https://www.combinatorics.org/ojs/index.php/eljc/article/view/v26i1p8 |volume=26 |year=2019 |bibcode=2017arXiv170610193A |arxiv=1706.10193 |access-date=2019-02-18 |archive-url=https://web.archive.org/web/20190218082023/https://www.combinatorics.org/ojs/index.php/eljc/article/view/v26i1p8|archive-date=2019-02-18|url-status=live|doi-access=free|doi=10.37236/7224}} how many tripods can have their apexes packed into a given cube?

==Euclidean geometry==

{{Main|Euclidean geometry}}

  • The Atiyah conjecture on configurations on the invertibility of a certain n-by-n matrix depending on n points in \mathbb{R}^{3}{{Citation | last1=Atiyah | first1=Michael | author1-link=Michael Atiyah | title=Configurations of points | doi=10.1098/rsta.2001.0840 | mr=1853626 | year=2001 | journal= Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences| issn=1364-503X | volume=359 | issue=1784 | pages=1375–1387| bibcode=2001RSPTA.359.1375A | s2cid=55833332 }}
  • Bellman's lost-in-a-forest problem – find the shortest route that is guaranteed to reach the boundary of a given shape, starting at an unknown point of the shape with unknown orientation{{citation |last1=Finch |first1=S. R. |last2=Wetzel |first2=J. E. |title=Lost in a forest |volume=11 |issue=8 |year=2004 |journal=American Mathematical Monthly |pages=645–654 |mr=2091541 |doi=10.2307/4145038 |jstor=4145038}}
  • Borromean rings — are there three unknotted space curves, not all three circles, which cannot be arranged to form this link?{{citation

| last = Howards | first = Hugh Nelson

| arxiv = 1406.3370

| doi = 10.1142/S0218216513500831

| issue = 14

| journal = Journal of Knot Theory and Its Ramifications

| mr = 3190121

| pages = 1350083, 15

| title = Forming the Borromean rings out of arbitrary polygonal unknots

| volume = 22

| year = 2013| s2cid = 119674622

}}

| last1 = Miller | first1 = Ezra

| last2 = Pak | first2 = Igor | author2-link = Igor Pak

| doi = 10.1007/s00454-008-9052-3

| issue = 1–3

| journal = Discrete & Computational Geometry

| mr = 2383765

| pages = 339–388

| title = Metric combinatorics of convex polyhedra: Cut loci and nonoverlapping unfoldings

| volume = 39

| year = 2008| doi-access = free

}}. Announced in 2003.

  • Danzer's problem and Conway's dead fly problem – do Danzer sets of bounded density or bounded separation exist?{{citation |last1=Solomon |first1=Yaar |last2=Weiss |first2=Barak |arxiv=1406.3807 |doi=10.24033/asens.2303 |issue=5 |journal=Annales Scientifiques de l'École Normale Supérieure |mr=3581810 |pages=1053–1074 |title=Dense forests and Danzer sets |volume=49 |year=2016 |s2cid=672315}}; {{citation |last=Conway |first=John H. |author-link=John Horton Conway |publisher=On-Line Encyclopedia of Integer Sequences |title=Five $1,000 Problems (Update 2017) |url=https://oeis.org/A248380/a248380.pdf |archive-url=https://web.archive.org/web/20190213123825/https://oeis.org/A248380/a248380.pdf |archive-date=2019-02-13 |access-date=2019-02-12 |url-status=live}}
  • Dissection into orthoschemes – is it possible for simplices of every dimension?{{citation |last1=Brandts |first1=Jan |last2=Korotov |first2=Sergey |last3=Křížek |first3=Michal |last4=Šolc |first4=Jakub |doi=10.1137/060669073 |issue=2 |journal=SIAM Review |mr=2505583 |pages=317–335 |title=On nonobtuse simplicial partitions |volume=51 |year=2009 |url=https://pure.uva.nl/ws/files/836396/73198_315330.pdf |bibcode=2009SIAMR..51..317B |s2cid=216078793 |access-date=2018-11-22 |archive-date=2018-11-04 |archive-url=https://web.archive.org/web/20181104211116/https://pure.uva.nl/ws/files/836396/73198_315330.pdf |url-status=live}}. See in particular Conjecture 23, p. 327.
  • Ehrhart's volume conjecture: a convex body K in n dimensions containing a single lattice point in its interior as its center of mass cannot have volume greater than (n+1)^{n}/n!
  • Falconer's conjecture: sets of Hausdorff dimension greater than d/2 in \mathbb{R}^d must have a distance set of nonzero Lebesgue measure{{citation |last1=Arutyunyants |first1=G. |last2=Iosevich |first2=A. |editor-last=Pach |editor-first=János |editor-link=János Pach |contribution=Falconer conjecture, spherical averages and discrete analogs |doi=10.1090/conm/342/06127 |mr=2065249 |pages=15–24 |publisher=Amer. Math. Soc., Providence, RI|series=Contemp. Math. |title=Towards a Theory of Geometric Graphs |volume=342 |year=2004 |isbn=978-0-8218-3484-8 |doi-access=free}}
  • The values of the Hermite constants for dimensions other than 1–8 and 24
  • What is the lowest number of faces possible for a holyhedron?
  • Inscribed square problem, also known as Toeplitz' conjecture and the square peg problem – does every Jordan curve have an inscribed square?{{citation|last=Matschke|first=Benjamin|date=2014|title=A survey on the square peg problem|journal=Notices of the American Mathematical Society|volume=61|issue=4|pages=346–352|doi=10.1090/noti1100|doi-access=free}}
  • The Kakeya conjecture – do n-dimensional sets that contain a unit line segment in every direction necessarily have Hausdorff dimension and Minkowski dimension equal to n?{{citation |last1=Katz |first1=Nets |author1-link=Nets Katz|last2=Tao|first2=Terence|author2-link=Terence Tao|title=Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000) |doi=10.5565/PUBLMAT_Esco02_07|series=Publicacions Matemàtiques|mr=1964819 |pages=161–179 |contribution=Recent progress on the Kakeya conjecture |year=2002 |citeseerx=10.1.1.241.5335 |s2cid=77088}}
  • The Kelvin problem on minimum-surface-area partitions of space into equal-volume cells, and the optimality of the Weaire–Phelan structure as a solution to the Kelvin problem{{citation |title=The Kelvin Problem |editor-first=Denis |editor-last=Weaire |editor-link=Denis Weaire |publisher=CRC Press |year=1997 |isbn=978-0-7484-0632-6 |page=1 |url=https://books.google.com/books?id=otokU4KQnXIC&pg=PA1}}
  • Lebesgue's universal covering problem on the minimum-area convex shape in the plane that can cover any shape of diameter one{{citation |last1=Brass |first1=Peter |last2=Moser |first2=William |last3=Pach |first3=János |location=New York |mr=2163782 |page=457 |publisher=Springer |title=Research problems in discrete geometry|url=https://books.google.com/books?id=cT7TB20y3A8C&pg=PA457 |year=2005 |isbn=978-0-387-29929-7}}
  • Mahler's conjecture on the product of the volumes of a centrally symmetric convex body and its polar.{{Cite journal|last1=Mahler|first1=Kurt|title=Ein Minimalproblem für konvexe Polygone |journal=Mathematica (Zutphen) B|pages=118–127|year=1939}}
  • Moser's worm problem – what is the smallest area of a shape that can cover every unit-length curve in the plane?{{citation |last1=Norwood |first1=Rick |last2=Poole |first2=George |last3=Laidacker |first3=Michael |doi=10.1007/BF02187832 |issue=2 |journal=Discrete & Computational Geometry |mr=1139077 |pages=153–162 |title=The worm problem of Leo Moser |volume=7 |year=1992 |doi-access=free}}
  • The moving sofa problem – what is the largest area of a shape that can be maneuvered through a unit-width L-shaped corridor?{{citation |last=Wagner |first=Neal R. |date=1976 |title=The Sofa Problem |journal=The American Mathematical Monthly |doi=10.2307/2977022 |jstor=2977022 |volume=83 |issue=3 |pages=188–189 |url=http://www.cs.utsa.edu/~wagner/pubs/corner/corner_final.pdf |access-date=2014-05-14 |archive-url=https://web.archive.org/web/20150420160001/http://www.cs.utsa.edu/~wagner/pubs/corner/corner_final.pdf |archive-date=2015-04-20 |url-status=live}}
  • In parallelohedron:
  • Can every spherical non-convex polyhedron that tiles space by translation have its faces grouped into patches with the same combinatorial structure as a parallelohedron?{{cite journal|last1=Senechal|first1=Marjorie|author1-link=Marjorie Senechal|last2=Galiulin|first2=R. V.|hdl=2099/1195|issue=10|journal=Structural Topology|language=en,fr|mr=768703|pages=5–22|title=An introduction to the theory of figures: the geometry of E. S. Fedorov|year=1984}}
  • Does every higher-dimensional tiling by translations of convex polytope tiles have an affine transformation taking it to a Voronoi diagram?{{cite journal|last1=Grünbaum|first1=Branko|author1-link=Branko Grünbaum|last2=Shephard|first2=G. C.|author2-link=Geoffrey Colin Shephard|doi=10.1090/S0273-0979-1980-14827-2|issue=3|journal=Bulletin of the American Mathematical Society|mr=585178|pages=951–973|series=New Series|title=Tilings with congruent tiles|volume=3|year=1980|doi-access=free}}
  • Does every convex polyhedron have Rupert's property?{{citation |first1=Ying |last1=Chai |first2=Liping |last2=Yuan |first3=Tudor |last3=Zamfirescu |title=Rupert Property of Archimedean Solids |journal=The American Mathematical Monthly |volume=125 |issue=6 |pages=497–504 |date=June–July 2018 |doi=10.1080/00029890.2018.1449505| s2cid=125508192}}{{citation|title=An algorithmic approach to Rupert's problem |first1=Jakob |last1=Steininger |first2=Sergey |last2=Yurkevich| date=December 27, 2021 |arxiv=2112.13754}}
  • Shephard's problem (a.k.a. Dürer's conjecture) – does every convex polyhedron have a net, or simple edge-unfolding?{{citation |last1=Demaine |first1=Erik D. |author1-link=Erik Demaine |last2=O'Rourke |first2=Joseph |author2-link=Joseph O'Rourke (professor) |date=2007 |title=Geometric Folding Algorithms: Linkages, Origami, Polyhedra |title-link=Geometric Folding Algorithms |publisher=Cambridge University Press |contribution=Chapter 22. Edge Unfolding of Polyhedra |pages=306–338}}{{Cite journal |last=Ghomi |first=Mohammad |date=2018-01-01 |title=Dürer's Unfolding Problem for Convex Polyhedra |journal=Notices of the American Mathematical Society |volume=65 |issue=1 |pages=25–27 |doi=10.1090/noti1609 |issn=0002-9920 |doi-access=free}}
  • Is there a non-convex polyhedron without self-intersections with more than seven faces, all of which share an edge with each other?
  • The Thomson problem – what is the minimum energy configuration of n mutually-repelling particles on a unit sphere?{{citation|last=Whyte|first=L. L.|doi=10.2307/2306764|journal=The American Mathematical Monthly|mr=0050303|pages=606–611|title=Unique arrangements of points on a sphere|volume=59|issue=9|year=1952|jstor=2306764}}
  • Convex uniform 5-polytopes – find and classify the complete set of these shapes{{citation |author=ACW |date=May 24, 2012 |title=Convex uniform 5-polytopes |url=http://www.openproblemgarden.org/op/convex_uniform_5_polytopes |work=Open Problem Garden |access-date=2016-10-04 |archive-url=https://web.archive.org/web/20161005164840/http://www.openproblemgarden.org/op/convex_uniform_5_polytopes |archive-date=October 5, 2016 |url-status=live}}.

= Graph theory =

{{Main|Graph theory}}

== Algebraic graph theory ==

== Games on graphs ==

|last1=Klostermeyer |first1=W.

|last2=Mynhardt |first2=C.

|year=2015

|title=Protecting a graph with mobile guards

|journal=Applicable Analysis and Discrete Mathematics

|volume=10 |pages=21

|arxiv=1407.5228

|doi=10.2298/aadm151109021k

}}.

| last = Pleanmani | first = Nopparat

| doi = 10.1142/s179383091950068x

| issue = 6

| journal = Discrete Mathematics, Algorithms and Applications

| mr = 4044549

| pages = 1950068, 7

| title = Graham's pebbling conjecture holds for the product of a graph and a sufficiently large complete bipartite graph

| volume = 11

| year = 2019| s2cid = 204207428

}}

  • Meyniel's conjecture that cop number is O(\sqrt n){{cite journal

| last1 = Baird | first1 = William

| last2 = Bonato | first2 = Anthony

| arxiv = 1308.3385

| doi = 10.4310/JOC.2012.v3.n2.a6

| issue = 2

| journal = Journal of Combinatorics

| mr = 2980752

| pages = 225–238

| title = Meyniel's conjecture on the cop number: a survey

| volume = 3

| year = 2012| s2cid = 18942362

}}

  • Suppose Alice has a winning strategy for the vertex coloring game on a graph G with k colors. Does she have one for k+1 colors?{{cite journal

| last = Zhu

| first = Xuding

| date = 1999

| title = The Game Coloring Number of Planar Graphs

| journal = Journal of Combinatorial Theory, Series B

| volume = 75

| issue = 2

| pages =245–258

| doi=10.1006/jctb.1998.1878

| doi-access= free

}}

== Graph coloring and labeling ==

File:Erdős–Faber–Lovász conjecture.svg

| last1 = Bousquet | first1 = Nicolas

| last2 = Bartier | first2 = Valentin

| editor1-last = Bender | editor1-first = Michael A.

| editor2-last = Svensson | editor2-first = Ola

| editor3-last = Herman | editor3-first = Grzegorz

| contribution = Linear Transformations Between Colorings in Chordal Graphs

| doi = 10.4230/LIPIcs.ESA.2019.24

| pages = 24:1–24:15

| publisher = Schloss Dagstuhl – Leibniz-Zentrum für Informatik

| series = LIPIcs

| title = 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany

| volume = 144

| year = 2019| doi-access = free

| isbn = 978-3-95977-124-5

| s2cid = 195791634

}}

| last = Gethner | first = Ellen | author-link = Ellen Gethner

| editor1-last = Gera | editor1-first = Ralucca | editor1-link = Ralucca Gera

| editor2-last = Haynes | editor2-first = Teresa W. | editor2-link = Teresa W. Haynes

| editor3-last = Hedetniemi | editor3-first = Stephen T.

| contribution = To the Moon and beyond

| doi = 10.1007/978-3-319-97686-0_11

| mr = 3930641

| pages = 115–133

| publisher = Springer International Publishing

| series = Problem Books in Mathematics

| title = Graph Theory: Favorite Conjectures and Open Problems, II

| year = 2018| isbn = 978-3-319-97684-6 }}

| last1 = Chung | first1 = Fan | author-link1 = Fan Chung

| last2 = Graham | first2 = Ron | author-link2 = Ronald Graham

| title = Erdős on Graphs: His Legacy of Unsolved Problems

| year = 1998

| publisher = A K Peters

| pages = 97–99}}.

| last1 = Chudnovsky | first1 = Maria | author1-link = Maria Chudnovsky

| last2 = Seymour | first2 = Paul | author2-link = Paul Seymour (mathematician)

| doi = 10.1016/j.jctb.2013.11.002

| journal = Journal of Combinatorial Theory

| mr = 3171779

| pages = 11–16

| series = Series B

| title = Extending the Gyárfás-Sumner conjecture

| volume = 105

| year = 2014| doi-access = free

}}

| last = Toft | first = Bjarne

| journal = Congressus Numerantium

| mr = 1411244

| pages = 249–283

| title = A survey of Hadwiger's conjecture

| volume = 115

| year = 1996}}.

| last1 = Croft | first1 = Hallard T.

| last2 = Falconer | first2 = Kenneth J.

| last3 = Guy | first3 = Richard K. | author-link3 = Richard K. Guy

| title = Unsolved Problems in Geometry

| publisher = Springer-Verlag

| year = 1991}}, Problem G10.

| last1 = Hägglund

| first1 = Jonas

| last2 = Steffen

| first2 = Eckhard

| issue = 1

| journal = Ars Mathematica Contemporanea

| mr = 3047618

| pages = 161–173

| title = Petersen-colorings and some families of snarks

| url = http://amc-journal.eu/index.php/amc/article/viewFile/288/247

| volume = 7

| year = 2014

| doi = 10.26493/1855-3974.288.11a

| access-date = 2016-09-30

| archive-url = https://web.archive.org/web/20161003070647/http://amc-journal.eu/index.php/amc/article/viewFile/288/247

| archive-date = 2016-10-03

| url-status = live

| doi-access = free

}}.

  • The list coloring conjecture: for every graph, the list chromatic index equals the chromatic index{{citation |last1=Jensen |first1=Tommy R. |last2=Toft |first2=Bjarne |year=1995 |title=Graph Coloring Problems |location=New York |publisher=Wiley-Interscience |isbn=978-0-471-02865-9 |chapter=12.20 List-Edge-Chromatic Numbers |pages=201–202}}.
  • The overfull conjecture that a graph with maximum degree \Delta(G) \geq n/3 is class 2 if and only if it has an overfull subgraph S satisfying \Delta(S) = \Delta(G).
  • The total coloring conjecture of Behzad and Vizing that the total chromatic number is at most two plus the maximum degree{{citation

| last1 = Molloy | first1 = Michael

| last2 = Reed | first2 = Bruce | author1-link = Bruce Reed (mathematician)

| doi = 10.1007/PL00009820

| issue = 2

| journal = Combinatorica

| mr = 1656544

| pages = 241–280

| title = A bound on the total chromatic number

| volume = 18

| year = 1998| citeseerx = 10.1.1.24.6514

| s2cid = 9600550

}}.

== Graph drawing and embedding ==

  • The Albertson conjecture: the crossing number can be lower-bounded by the crossing number of a complete graph with the same chromatic number{{citation|first1=János|last1=Barát|first2=Géza|last2=Tóth|year=2010|title=Towards the Albertson Conjecture|arxiv=0909.0413|journal=Electronic Journal of Combinatorics|volume=17|issue=1|page=R73|bibcode=2009arXiv0909.0413B|doi-access=free|doi=10.37236/345}}.
  • Conway's thrackle conjecture{{citation |last1=Fulek |first1=Radoslav |last2=Pach |first2=János |author-link2=János Pach |title=A computational approach to Conway's thrackle conjecture|journal=Computational Geometry |volume=44 |year=2011|issue=6–7 |pages=345–355 |mr=2785903 |doi=10.1016/j.comgeo.2011.02.001|doi-access=free|arxiv=1002.3904 }}. that thrackles cannot have more edges than vertices
  • The GNRS conjecture on whether minor-closed graph families have \ell_1 embeddings with bounded distortion{{citation

| last1 = Gupta | first1 = Anupam

| last2 = Newman | first2 = Ilan

| last3 = Rabinovich | first3 = Yuri

| last4 = Sinclair | first4 = Alistair | author4-link = Alistair Sinclair

| doi = 10.1007/s00493-004-0015-x

| issue = 2

| journal = Combinatorica

| mr = 2071334

| pages = 233–269

| title = Cuts, trees and \ell_1-embeddings of graphs

| volume = 24

| year = 2004| citeseerx = 10.1.1.698.8978

| s2cid = 46133408

}}

  • Harborth's conjecture: every planar graph can be drawn with integer edge lengths{{citation|title=Pearls in Graph Theory: A Comprehensive Introduction|title-link= Pearls in Graph Theory |series=Dover Books on Mathematics|last1=Hartsfield|first1=Nora|last2=Ringel|first2=Gerhard|author2-link=Gerhard Ringel|publisher=Courier Dover Publications|year=2013|isbn=978-0-486-31552-2|at=[https://books.google.com/books?id=VMjDAgAAQBAJ&pg=PA247 p. 247]|mr=2047103}}.
  • Negami's conjecture on projective-plane embeddings of graphs with planar covers{{citation | last = Hliněný | first = Petr | doi = 10.1007/s00373-010-0934-9 | issue = 4 | journal = Graphs and Combinatorics | mr = 2669457 | pages = 525–536 | title = 20 years of Negami's planar cover conjecture | url = http://www.fi.muni.cz/~hlineny/papers/plcover20-gc.pdf | volume = 26 | year = 2010 | citeseerx = 10.1.1.605.4932 | s2cid = 121645 | access-date = 2016-10-04 | archive-url = https://web.archive.org/web/20160304030722/http://www.fi.muni.cz/~hlineny/papers/plcover20-gc.pdf | archive-date = 2016-03-04 | url-status = live }}.
  • The strong Papadimitriou–Ratajczak conjecture: every polyhedral graph has a convex greedy embedding{{citation | last1 = Nöllenburg | first1 = Martin | last2 = Prutkin | first2 = Roman | last3 = Rutter | first3 = Ignaz | doi = 10.20382/jocg.v7i1a3 | issue = 1 | journal = Journal of Computational Geometry | mr = 3463906 | pages = 47–69 | title = On self-approaching and increasing-chord drawings of 3-connected planar graphs | volume = 7 | year = 2016| arxiv = 1409.0315 | s2cid = 1500695 }}
  • Turán's brick factory problem – Is there a drawing of any complete bipartite graph with fewer crossings than the number given by Zarankiewicz?{{citation | last1 = Pach | first1 = János | author1-link = János Pach | last2 = Sharir | first2 = Micha | author2-link = Micha Sharir | contribution = 5.1 Crossings—the Brick Factory Problem | pages = 126–127 | publisher = American Mathematical Society | series = Mathematical Surveys and Monographs | title = Combinatorial Geometry and Its Algorithmic Applications: The Alcalá Lectures | volume = 152 | year = 2009}}.
  • Universal point sets of subquadratic size for planar graphs{{citation | last1 = Demaine | first1 = E. | author1-link = Erik Demaine | last2 = O'Rourke | first2 = J. | author2-link = Joseph O'Rourke (professor) | contribution = Problem 45: Smallest Universal Set of Points for Planar Graphs | title = The Open Problems Project | url = http://cs.smith.edu/~orourke/TOPP/P45.html | year = 2002–2012 | access-date = 2013-03-19 | archive-url = https://web.archive.org/web/20120814154255/http://cs.smith.edu/~orourke/TOPP/P45.html | archive-date = 2012-08-14 | url-status = live }}.

== Restriction of graph parameters ==

| last = Conway

| first = John H.

| author-link = John Horton Conway

| access-date = 2019-02-12

| publisher = Online Encyclopedia of Integer Sequences

| title = Five $1,000 Problems (Update 2017)

| url = https://oeis.org/A248380/a248380.pdf

| archive-url = https://web.archive.org/web/20190213123825/https://oeis.org/A248380/a248380.pdf

| archive-date = 2019-02-13

| url-status = live

}}

  • Degree diameter problem: given two positive integers d, k, what is the largest graph of diameter k such that all vertices have degrees at most d?
  • Jørgensen's conjecture that every 6-vertex-connected K6-minor-free graph is an apex graph{{citation |last1=mdevos |title=Jorgensen's Conjecture |date=December 7, 2019 |url=http://www.openproblemgarden.org/op/jorgensens_conjecture |work=Open Problem Garden |archive-url=https://web.archive.org/web/20161114232136/http://www.openproblemgarden.org/op/jorgensens_conjecture |access-date=2016-11-13 |archive-date=2016-11-14 |last2=Wood |first2=David |url-status=live}}.
  • Does a Moore graph with girth 5 and degree 57 exist?{{citation

| last=Ducey

| first=Joshua E.

| doi=10.1016/j.disc.2016.10.001

| issue=5

| journal=Discrete Mathematics

| mr=3612450

| pages=1104–1109

| title=On the critical group of the missing Moore graph

| volume=340

| year=2017

| arxiv=1509.00327

| s2cid=28297244}}

| last1 = Blokhuis | first1 = A.

| last2 = Brouwer | first2 = A. E. | author-link = Andries Brouwer

| doi = 10.1007/BF00191941

| issue = 1–3

| journal = Geometriae Dedicata

| mr = 925851

| pages = 527–533

| title = Geodetic graphs of diameter two

| volume = 25

| year = 1988| s2cid = 189890651

}}

== Subgraphs ==

  • Barnette's conjecture: every cubic bipartite three-connected planar graph has a Hamiltonian cycle{{citation

| last = Florek | first = Jan

| doi = 10.1016/j.disc.2010.01.018

| issue = 10–11

| journal = Discrete Mathematics

| mr = 2601261

| pages = 1531–1535

| title = On Barnette's conjecture

| volume = 310

| year = 2010}}.

| last1 = Broersma | first1 = Hajo

| last2 = Patel | first2 = Viresh

| last3 = Pyatkin | first3 = Artem

| doi = 10.1002/jgt.21734

| issue = 3

| journal = Journal of Graph Theory

| mr = 3153119

| pages = 244–255

| title = On toughness and Hamiltonicity of $2K_2$-free graphs

| volume = 75

| year = 2014| s2cid = 1377980

| url = https://ris.utwente.nl/ws/files/6416631/jgt21734.pdf

}}

| last = Jaeger | first = F.

| contribution = A survey of the cycle double cover conjecture

| doi = 10.1016/S0304-0208(08)72993-1

| pages = 1–12

| series = North-Holland Mathematics Studies

| title = Annals of Discrete Mathematics 27 – Cycles in Graphs

| volume = 27

| year = 1985| isbn = 978-0-444-87803-8

}}.

  • The Erdős–Gyárfás conjecture on cycles with power-of-two lengths in cubic graphs{{citation|title=Erdös-Gyárfás conjecture for cubic planar graphs |first1=Christopher Carl |last1=Heckman |first2=Roi |last2=Krakovski |volume=20 |issue=2 |year=2013 |at=P7 |journal=Electronic Journal of Combinatorics |doi-access=free |doi=10.37236/3252}}.
  • The Erdős–Hajnal conjecture on large cliques or independent sets in graphs with a forbidden induced subgraph{{citation

| last = Chudnovsky

| first = Maria

| author-link = Maria Chudnovsky

| arxiv = 1606.08827

| doi = 10.1002/jgt.21730

| issue = 2

| journal = Journal of Graph Theory

| mr = 3150572

| zbl = 1280.05086

| pages = 178–190

| title = The Erdös–Hajnal conjecture—a survey

| url = http://www.columbia.edu/~mc2775/EHsurvey.pdf

| volume = 75

| year = 2014

| s2cid = 985458

| access-date = 2016-09-22

| archive-url = https://web.archive.org/web/20160304102611/http://www.columbia.edu/~mc2775/EHsurvey.pdf

| archive-date = 2016-03-04

| url-status = live

}}.

  • The linear arboricity conjecture on decomposing graphs into disjoint unions of paths according to their maximum degree{{citation

| last1 = Akiyama | first1 = Jin | author1-link = Jin Akiyama

| last2 = Exoo | first2 = Geoffrey

| last3 = Harary | first3 = Frank

| doi = 10.1002/net.3230110108

| issue = 1

| journal = Networks

| mr = 608921

| pages = 69–72

| title = Covering and packing in graphs. IV. Linear arboricity

| volume = 11

| year = 1981}}.

  • The Lovász conjecture on Hamiltonian paths in symmetric graphs{{Cite book |last=Babai |first=László |url=http://newtraell.cs.uchicago.edu/files/tr_authentic/TR-94-10.ps |title=Handbook of Combinatorics |date=June 9, 1994 |chapter=Automorphism groups, isomorphism, reconstruction |format=PostScript |author-link=László Babai |archive-url=https://web.archive.org/web/20070613201449/http://www.cs.uchicago.edu/research/publications/techreports/TR-94-10 |archive-date=13 June 2007}}
  • The Oberwolfach problem on which 2-regular graphs have the property that a complete graph on the same number of vertices can be decomposed into edge-disjoint copies of the given graph.{{citation

| last1 = Lenz | first1 = Hanfried

| last2 = Ringel | first2 = Gerhard

| doi = 10.1016/0012-365X(91)90416-Y

| issue = 1–3

| journal = Discrete Mathematics

| mr = 1140782

| pages = 3–16

| title = A brief review on Egmont Köhler's mathematical work

| volume = 97

| year = 1991}}

| last1 = Fomin | first1 = Fedor V.

| last2 = Høie | first2 = Kjartan

| doi = 10.1016/j.ipl.2005.10.012

| issue = 5

| journal = Information Processing Letters

| mr = 2195217

| pages = 191–196

| title = Pathwidth of cubic graphs and exact algorithms

| volume = 97

| year = 2006}}

  • The reconstruction conjecture and new digraph reconstruction conjecture on whether a graph is uniquely determined by its vertex-deleted subgraphs.{{cite conference |last=Schwenk |first=Allen |year=2012 |title=Some History on the Reconstruction Conjecture |url=http://faculty.nps.edu/rgera/conjectures/jmm2012/Schwenk,%20%20Some%20History%20on%20the%20RC.pdf |conference=Joint Mathematics Meetings |archive-url=https://web.archive.org/web/20150409233306/http://faculty.nps.edu/rgera/Conjectures/jmm2012/Schwenk,%20%20Some%20History%20on%20the%20RC.pdf |archive-date=2015-04-09 |access-date=2018-11-26}}{{citation

| last = Ramachandran | first = S.

| doi = 10.1016/S0095-8956(81)80019-6

| issue = 2

| journal = Journal of Combinatorial Theory

| mr = 630977

| pages = 143–149

| series = Series B

| title = On a new digraph reconstruction conjecture

| volume = 31

| year = 1981| doi-access = free

}}

| last1 = Kühn | first1 = Daniela | author1-link = Daniela Kühn

| last2 = Mycroft | first2 = Richard

| last3 = Osthus | first3 = Deryk

| arxiv = 1010.4430

| doi = 10.1112/plms/pdq035

| issue = 4

| journal = Proceedings of the London Mathematical Society | series = Third Series

| mr = 2793448 | zbl=1218.05034

| pages = 731–766

| title = A proof of Sumner's universal tournament conjecture for large tournaments

| volume = 102

| year = 2011| s2cid = 119169562 }}.

| last = Tuza | first = Zsolt

| doi = 10.1007/BF01787705

| issue = 4

| journal = Graphs and Combinatorics

| mr = 1092587

| pages = 373–380

| title = A conjecture on triangles of graphs

| volume = 6

| year = 1990| s2cid = 38821128

}}

| last1 = Brešar | first1 = Boštjan

| last2 = Dorbec | first2 = Paul

| last3 = Goddard | first3 = Wayne

| last4 = Hartnell | first4 = Bert L.

| last5 = Henning | first5 = Michael A.

| last6 = Klavžar | first6 = Sandi

| last7 = Rall | first7 = Douglas F.

| doi = 10.1002/jgt.20565

| issue = 1

| journal = Journal of Graph Theory

| mr = 2864622

| pages = 46–76

| title = Vizing's conjecture: a survey and recent results

| volume = 69

| year = 2012| citeseerx = 10.1.1.159.7029

| s2cid = 9120720

}}.

== Word-representation of graphs ==

  • Are there any graphs on n vertices whose representation requires more than floor(n/2) copies of each letter?{{Cite book |last1=Kitaev |first1=Sergey | author1-link = Sergey Kitaev|url=https://link.springer.com/book/10.1007/978-3-319-25859-1 |title=Words and Graphs |last2=Lozin |first2=Vadim |year=2015 |isbn=978-3-319-25857-7 |series=Monographs in Theoretical Computer Science. An EATCS Series |doi=10.1007/978-3-319-25859-1 |via=link.springer.com |s2cid=7727433}}{{Cite conference |last=Kitaev |first=Sergey |date=2017-05-16 |title=A Comprehensive Introduction to the Theory of Word-Representable Graphs |conference=International Conference on Developments in Language Theory |language=en |doi=10.1007/978-3-319-62809-7_2|arxiv=1705.05924v1 }}{{Cite journal|title=Word-Representable Graphs: a Survey|first1=S. V.|last1=Kitaev|first2=A. V.|last2=Pyatkin|date=April 1, 2018|journal=Journal of Applied and Industrial Mathematics|volume=12|issue=2|pages=278–296|via=Springer Link|doi=10.1134/S1990478918020084|s2cid=125814097 }}{{Cite journal |last1=Kitaev |first1=Sergey V. |last2=Pyatkin |first2=Artem V. |date=2018 |title=Графы, представимые в виде слов. Обзор результатов |trans-title=Word-representable graphs: A survey |url=http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=da&paperid=894&option_lang=rus |journal=Дискретн. анализ и исслед. опер. |language=ru |volume=25 |issue=2 |pages=19–53 |doi=10.17377/daio.2018.25.588}}
  • Characterise (non-)word-representable planar graphs
  • Characterise word-representable graphs in terms of (induced) forbidden subgraphs.
  • Characterise word-representable near-triangulations containing the complete graph K4 (such a characterisation is known for K4-free planar graphs{{cite arXiv |eprint=1605.01688|author1=Marc Elliot Glen|title=Colourability and word-representability of near-triangulations|class=math.CO|year=2016}})
  • Classify graphs with representation number 3, that is, graphs that can be represented using 3 copies of each letter, but cannot be represented using 2 copies of each letter{{Cite arXiv|last=Kitaev |first=Sergey |date=2014-03-06 |title=On graphs with representation number 3 |class=math.CO |eprint=1403.1616v1 }}
  • Is it true that out of all bipartite graphs, crown graphs require longest word-representants?{{cite journal|url = https://www.sciencedirect.com/science/article/pii/S0166218X18301045 | doi=10.1016/j.dam.2018.03.013 | volume=244 | title=On the representation number of a crown graph | year=2018 | journal=Discrete Applied Mathematics | pages=89–93 | last1 = Glen | first1 = Marc | last2 = Kitaev | first2 = Sergey | last3 = Pyatkin | first3 = Artem| arxiv=1609.00674 | s2cid=46925617 }}
  • Is the line graph of a non-word-representable graph always non-word-representable?
  • Which (hard) problems on graphs can be translated to words representing them and solved on words (efficiently)?

== Miscellaneous graph theory ==

  • The implicit graph conjecture on the existence of implicit representations for slowly-growing hereditary families of graphs{{citation|first=Jeremy P.|last=Spinrad|title=Efficient Graph Representations|year=2003|isbn=978-0-8218-2815-1|chapter=2. Implicit graph representation|pages=17–30|publisher=American Mathematical Soc. |chapter-url=https://books.google.com/books?id=RrtXSKMAmWgC&pg=PA17}}.
  • Ryser's conjecture relating the maximum matching size and minimum transversal size in hypergraphs
  • The second neighborhood problem: does every oriented graph contain a vertex for which there are at least as many other vertices at distance two as at distance one?{{Cite web |title=Seymour's 2nd Neighborhood Conjecture |url=https://faculty.math.illinois.edu/~west/openp/2ndnbhd.html |url-status=live |archive-url=https://web.archive.org/web/20190111175310/https://faculty.math.illinois.edu/~west/openp/2ndnbhd.html |archive-date=11 January 2019 |access-date=17 August 2022 |website=faculty.math.illinois.edu}}
  • Sidorenko's conjecture on homomorphism densities of graphs in graphons
  • Tutte's conjectures:
  • every bridgeless graph has a nowhere-zero 5-flow{{cite web |last=mdevos |date=May 4, 2007 |title=5-flow conjecture |url=http://www.openproblemgarden.org/op/5_flow_conjecture |url-status=live |archive-url=https://web.archive.org/web/20181126134833/http://www.openproblemgarden.org/op/5_flow_conjecture |archive-date=November 26, 2018 |website=Open Problem Garden}}
  • every Petersen-minor-free bridgeless graph has a nowhere-zero 4-flow{{cite web |last=mdevos |date=March 31, 2010 |title=4-flow conjecture |url=http://www.openproblemgarden.org/op/4_flow_conjecture |url-status=live |archive-url=https://web.archive.org/web/20181126134908/http://www.openproblemgarden.org/op/4_flow_conjecture |archive-date=November 26, 2018 |website=Open Problem Garden}}
  • Woodall's conjecture that the minimum number of edges in a dicut of a directed graph is equal to the maximum number of disjoint dijoins

= Model theory and formal languages =

{{Main|Model theory|formal languages}}

  • The Cherlin–Zilber conjecture: A simple group whose first-order theory is stable in \aleph_0 is a simple algebraic group over an algebraically closed field.
  • Generalized star height problem: can all regular languages be expressed using generalized regular expressions with limited nesting depths of Kleene stars?
  • For which number fields does Hilbert's tenth problem hold?
  • Kueker's conjecture{{cite journal |last1=Hrushovski |first1=Ehud |year=1989 |title=Kueker's conjecture for stable theories |journal=Journal of Symbolic Logic |volume=54 |issue=1| pages=207–220 |doi=10.2307/2275025| jstor=2275025 |s2cid=41940041}}
  • The main gap conjecture, e.g. for uncountable first order theories, for AECs, and for \aleph_1-saturated models of a countable theory.{{cite book |vauthors=Shelah S |title=Classification Theory |publisher=North-Holland |year=1990}}
  • Shelah's categoricity conjecture for L_{\omega_1,\omega}: If a sentence is categorical above the Hanf number then it is categorical in all cardinals above the Hanf number.
  • Shelah's eventual categoricity conjecture: For every cardinal \lambda there exists a cardinal \mu(\lambda) such that if an AEC K with LS(K){} \le \lambda is categorical in a cardinal above \mu(\lambda) then it is categorical in all cardinals above \mu(\lambda).{{Cite book

| title = Classification theory for abstract elementary classes

| last = Shelah

| first = Saharon

| publisher = College Publications

| year = 2009

| isbn = 978-1-904987-71-0

}}

  • The stable field conjecture: every infinite field with a stable first-order theory is separably closed.
  • The stable forking conjecture for simple theories{{cite journal | last1 = Peretz | first1 = Assaf | year = 2006 | title = Geometry of forking in simple theories | journal = Journal of Symbolic Logic| volume = 71 | issue = 1| pages = 347–359 | doi=10.2178/jsl/1140641179| arxiv = math/0412356| s2cid = 9380215 }}
  • Tarski's exponential function problem: is the theory of the real numbers with the exponential function decidable?
  • The universality problem for C-free graphs: For which finite sets C of graphs does the class of C-free countable graphs have a universal member under strong embeddings?{{cite journal |last1=Cherlin |first1=Gregory |last2=Shelah |first2=Saharon | author-link2=Saharon Shelah|date=May 2007 |title=Universal graphs with a forbidden subtree |journal=Journal of Combinatorial Theory | series=Series B |arxiv=math/0512218 |doi=10.1016/j.jctb.2006.05.008 | doi-access=free |volume=97 |issue=3 |pages=293–333|s2cid=10425739 }}
  • The universality spectrum problem: Is there a first-order theory whose universality spectrum is minimum?Džamonja, Mirna, "Club guessing and the universal models." On PCF, ed. M. Foreman, (Banff, Alberta, 2004).
  • Vaught conjecture: the number of countable models of a first-order complete theory in a countable language is either finite, \aleph_0, or 2^{\aleph_0}.
  • Assume K is the class of models of a countable first order theory omitting countably many types. If K has a model of cardinality \aleph_{\omega_1} does it have a model of cardinality continuum?{{cite journal |last=Shelah |first=Saharon |author-link=Saharon Shelah |date=1999 |title=Borel sets with large squares |journal=Fundamenta Mathematicae |arxiv=math/9802134 |volume=159 |issue=1 |pages=1–50|bibcode=1998math......2134S |doi=10.4064/fm-159-1-1-50 |s2cid=8846429 }}
  • Do the Henson graphs have the finite model property?
  • Does a finitely presented homogeneous structure for a finite relational language have finitely many reducts?
  • Does there exist an o-minimal first order theory with a trans-exponential (rapid growth) function?
  • If the class of atomic models of a complete first order theory is categorical in the \aleph_n, is it categorical in every cardinal?{{cite book |last=Baldwin |first=John T. |date=July 24, 2009 |title=Categoricity |publisher=American Mathematical Society |isbn=978-0-8218-4893-7 |url=http://www.math.uic.edu/~jbaldwin/pub/AEClec.pdf |access-date=February 20, 2014 |archive-url=https://web.archive.org/web/20100729073738/http://www.math.uic.edu/%7Ejbaldwin/pub/AEClec.pdf |archive-date=July 29, 2010 |url-status=live }}{{cite arXiv |last=Shelah |first=Saharon |title=Introduction to classification theory for abstract elementary classes |year=2009 |class=math.LO |eprint=0903.3428 }}
  • Is every infinite, minimal field of characteristic zero algebraically closed? (Here, "minimal" means that every definable subset of the structure is finite or co-finite.)
  • Is the Borel monadic theory of the real order (BMTO) decidable? Is the monadic theory of well-ordering (MTWO) consistently decidable?Gurevich, Yuri, "Monadic Second-Order Theories," in J. Barwise, S. Feferman, eds., Model-Theoretic Logics (New York: Springer-Verlag, 1985), 479–506.
  • Is the theory of the field of Laurent series over \mathbb{Z}_p decidable? of the field of polynomials over \mathbb{C}?
  • Is there a logic L which satisfies both the Beth property and Δ-interpolation, is compact but does not satisfy the interpolation property?Makowsky J, "Compactness, embeddings and definability," in Model-Theoretic Logics, eds Barwise and Feferman, Springer 1985 pps. 645–715.
  • Determine the structure of Keisler's order.{{cite journal | last1 = Keisler | first1 = HJ | year = 1967 | title = Ultraproducts which are not saturated | journal = J. Symb. Log. | volume = 32 | issue = 1| pages = 23–46 | doi=10.2307/2271240| jstor = 2271240 | s2cid = 250345806 }}{{Cite arXiv |eprint=1208.2140 |class=math.LO |first1=Maryanthe |last1=Malliaris |first2=Saharon |last2=Shelah |author-link=Maryanthe Malliaris |author-link2=Saharon Shelah |title=A Dividing Line Within Simple Unstable Theories |date=10 August 2012}} {{Cite arXiv |title=A Dividing Line within Simple Unstable Theories |eprint=1208.2140 |last1=Malliaris |first1=M. |last2=Shelah |first2=S. |date=2012 |class=math.LO }}

= Probability theory =

= Number theory =

{{Main articles|Category:Unsolved problems in number theory}}

{{See also|Number theory }}

== General ==

File:Perfect number Cuisenaire rods 6 exact.svg because it is the sum of its proper positive divisors, 1, 2 and 3. It is not known how many perfect numbers there are, nor if any of them is odd.]]

|last=Conrey |first=Brian |author-link=Brian Conrey

|doi=10.1090/bull/1525

|title=Lectures on the Riemann zeta function (book review)

|journal=Bulletin of the American Mathematical Society

|volume=53 |number=3 |pages=507–512 |year=2016|doi-access=free}}

| last1 = Guo | first1 = Song

| last2 = Sun | first2 = Zhi-Wei

| doi = 10.1016/j.aam.2005.01.004

| issue = 2

| journal = Advances in Applied Mathematics

| mr = 2152886

| pages = 182–187

| title = On odd covering systems with distinct moduli

| volume = 35

| year = 2005| arxiv = math/0412217

| s2cid = 835158

}}

  • Is \pi a normal number (i.e., is each digit 0–9 equally frequent)?{{cite web|url=http://www2.lbl.gov/Science-Articles/Archive/pi-random.html|title=Are the Digits of Pi Random? Berkeley Lab Researcher May Hold Key|access-date=2016-03-18|archive-url=https://web.archive.org/web/20160327035021/http://www2.lbl.gov/Science-Articles/Archive/pi-random.html|archive-date=2016-03-27|url-status=live}}
  • Are all irrational algebraic numbers normal?
  • Is 10 a solitary number?
  • Can a 3×3 magic square be constructed from 9 distinct perfect square numbers?{{Cite journal |last=Robertson |first=John P. |date=1996-10-01 |title=Magic Squares of Squares |journal=Mathematics Magazine |volume=69 |issue=4 |pages=289–293 |doi=10.1080/0025570X.1996.11996457 |issn=0025-570X}}
  • Find the value of the De Bruijn–Newman constant.

== Additive number theory ==

{{Main|Additive number theory }}

{{See also|Problems involving arithmetic progressions}}

== Algebraic number theory ==

{{Main|Algebraic number theory }}

  • Characterize all algebraic number fields that have some power basis.

==Computational number theory==

{{Main|Computational number theory}}

== Diophantine approximation and transcendental number theory ==

{{Further|Diophantine approximation|Transcendental number theory}}

File:gamma-area.svg, which may or may not be a rational number.]]

  • Schanuel's conjecture on the transcendence degree of certain field extensions of the rational numbers.{{citation |last=Waldschmidt |first=Michel |title=Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables |pages=14, 16 |year=2013 |url=https://books.google.com/books?id=Wrj0CAAAQBAJ&pg=PA14 |publisher=Springer |isbn=978-3-662-11569-5}} In particular: Are \pi and e algebraically independent? Which nontrivial combinations of transcendental numbers (such as e + \pi, e\pi, \pi^e, \pi^{\pi}, e^e) are themselves transcendental?{{Cite conference |last=Waldschmidt |first=Michel |date=2008 |title=An introduction to irrationality and transcendence methods. |url=https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/AWSLecture5.pdf |conference=2008 Arizona Winter School |archive-url=https://web.archive.org/web/20141216004531/http://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/AWSLecture5.pdf |archive-date=16 December 2014 |access-date=15 December 2014}}{{Citation |last=Albert |first=John |title=Some unsolved problems in number theory |url=http://www2.math.ou.edu/~jalbert/courses/openprob2.pdf |access-date=15 December 2014 |archive-url=https://web.archive.org/web/20140117150133/http://www2.math.ou.edu/~jalbert/courses/openprob2.pdf |archive-date=17 January 2014}}
  • The four exponentials conjecture: the transcendence of at least one of four exponentials of combinations of irrationals
  • Are Euler's constant \gamma and Catalan's constant G irrational? Are they transcendental? Is Apéry's constant \zeta(3) transcendental?For some background on the numbers in this problem, see articles by Eric W. Weisstein at Wolfram MathWorld (all articles accessed 22 August 2024):
  • [https://mathworld.wolfram.com/Euler-MascheroniConstant.html Euler's Constant]
  • [https://mathworld.wolfram.com/CatalansConstant.html Catalan's Constant]
  • [https://mathworld.wolfram.com/AperysConstant.html Apéry's Constant]
  • [http://mathworld.wolfram.com/IrrationalNumber.html irrational numbers] ({{Webarchive|url=https://web.archive.org/web/20150327024040/http://mathworld.wolfram.com/IrrationalNumber.html|date=2015-03-27}})
  • [http://mathworld.wolfram.com/TranscendentalNumber.html transcendental numbers] ({{Webarchive|url=https://web.archive.org/web/20141113174913/http://mathworld.wolfram.com/TranscendentalNumber.html|date=2014-11-13}})
  • [http://mathworld.wolfram.com/IrrationalityMeasure.html irrationality measures] ({{Webarchive|url=https://web.archive.org/web/20150421203736/http://mathworld.wolfram.com/IrrationalityMeasure.html|date=2015-04-21}}){{Cite arXiv |last=Waldschmidt |first=Michel |date=2003-12-24 |title=Open Diophantine Problems |eprint=math/0312440 |language=en}}
  • Which transcendental numbers are (exponential) periods?{{Citation |last1=Kontsevich |first1=Maxim |title=Periods |date=2001 |work=Mathematics Unlimited — 2001 and Beyond |pages=771–808 |editor-last=Engquist |editor-first=Björn |url=https://link.springer.com/chapter/10.1007/978-3-642-56478-9_39 |access-date=2024-08-22 |place=Berlin, Heidelberg |publisher=Springer |language=en |doi=10.1007/978-3-642-56478-9_39 |isbn=978-3-642-56478-9 |last2=Zagier |first2=Don |editor2-last=Schmid |editor2-first=Wilfried}}
  • How well can non-quadratic irrational numbers be approximated? What is the irrationality measure of specific (suspected) transcendental numbers such as \pi and \gamma?
  • Which irrational numbers have simple continued fraction terms whose geometric mean converges to Khinchin's constant?{{Cite web |last=Weisstein |first=Eric W. |title=Khinchin's Constant |url=https://mathworld.wolfram.com/KhinchinsConstant.html |access-date=2024-09-22 |website=mathworld.wolfram.com |language=en}}

== Diophantine equations ==

{{Further|Diophantine equation}}

| last = Aigner | first = Martin

| doi = 10.1007/978-3-319-00888-2

| isbn = 978-3-319-00887-5

| location = Cham

| mr = 3098784

| publisher = Springer

| title = Markov's theorem and 100 years of the uniqueness conjecture

| year = 2013}} that every Markov number is the largest number in exactly one normalized solution to the Markov Diophantine equation.

== Prime numbers ==

{{Main|Prime numbers}}

{{Prime number conjectures}}

File:Goldbach partitions of the even integers from 4 to 50 rev4b.svg states that all even integers greater than 2 can be written as the sum of two primes. Here this is illustrated for the even integers from 4 to 28.]]

= Set theory =

{{Main|Set theory}}

Note: These conjectures are about models of Zermelo-Frankel set theory with choice, and may not be able to be expressed in models of other set theories such as the various constructive set theories or non-wellfounded set theory.

=Topology=

{{Main|Topology}}

File:Ochiai_unknot.svg asks whether there is an efficient algorithm to identify when the shape presented in a knot diagram is actually the unknot.]]

| last = Kuperberg | first = Greg | author-link = Greg Kuperberg

| arxiv = math/9712205

| doi = 10.1142/S021821659400006X

| journal = Journal of Knot Theory and Its Ramifications

| mr = 1265452

| pages = 41–50

| title = Quadrisecants of knots and links

| volume = 3

| year = 1994| s2cid = 6103528 }}

Problems solved since 1995

File:Ricci flow.png, here illustrated with a 2D manifold, was the key tool in Grigori Perelman's solution of the Poincaré conjecture.]]

=Algebra=

|first1=Vessilin

|last1=Dimitrov

|first2=Ziyang

|last2=Gao

|first3=Philipp

|last3=Habegger

|title=Uniformity in Mordell–Lang for curves

|journal = Annals of Mathematics

|volume = 194

|year=2021

|pages=237–298

|doi=10.4007/annals.2021.194.1.4

|arxiv=2001.10276

|s2cid=210932420

|url=https://hal.sorbonne-universite.fr/hal-03374335/file/Dimitrov%20et%20al.%20-%202021%20-%20Uniformity%20in%20Mordell%E2%80%93Lang%20for%20curves.pdf}}

| jstor=24523356

| last1=Guan

| first1=Qi'an

| last2=Zhou

| first2=Xiangyu

| author2-link=Xiangyu Zhou

| title=A solution of an L^2 extension problem with optimal estimate and applications

| journal=Annals of Mathematics

| year=2015

| volume=181

| issue=3

| pages=1139–1208

| doi=10.4007/annals.2015.181.3.6

| s2cid=56205818

| arxiv=1310.7169}}

| last1 = Merel

| first1 = Loïc

| year = 1996

| title = "Bornes pour la torsion des courbes elliptiques sur les corps de nombres" [Bounds for the torsion of elliptic curves over number fields]

| journal = Inventiones Mathematicae

| volume = 124

| issue = 1

| pages = 437–449

| doi = 10.1007/s002220050059

| mr = 1369424

| bibcode = 1996InMat.124..437M

| s2cid = 3590991 }}

| last1=Cohen

| first1=Stephen D.

| last2=Fried

| first2=Michael D.

| author2-link=Michael D. Fried

| doi=10.1006/ffta.1995.1027

| issue=3

| journal=Finite Fields and Their Applications

| mr=1341953

| pages=372–375

| title=Lenstra's proof of the Carlitz–Wan conjecture on exceptional polynomials: an elementary version

| volume=1

| year=1995

| doi-access=free}}

=Analysis=

  • Kadison–Singer problem (Adam Marcus, Daniel Spielman and Nikhil Srivastava, 2013){{cite book|last1=Casazza|first1=Peter G.|last2=Fickus|first2=Matthew|last3=Tremain|first3=Janet C.|last4=Weber|first4=Eric|editor1-last=Han|editor1-first=Deguang|editor2-last=Jorgensen|editor2-first=Palle E. T.|editor3-last=Larson|editor3-first=David Royal|contribution=The Kadison-Singer problem in mathematics and engineering: A detailed account|series=Contemporary Mathematics|date=2006|volume=414|pages=299–355|contribution-url=https://books.google.com/books?id=9b-4uqEGJdoC&pg=PA299|access-date=24 April 2015|title=Large Deviations for Additive Functionals of Markov Chains: The 25th Great Plains Operator Theory Symposium, June 7–12, 2005, University of Central Florida, Florida|publisher=American Mathematical Society.|isbn=978-0-8218-3923-2|doi=10.1090/conm/414/07820}}{{cite news|last1=Mackenzie|first1=Dana|title=Kadison–Singer Problem Solved|url=https://www.siam.org/pdf/news/2123.pdf|access-date=24 April 2015|work=SIAM News|issue=January/February 2014|publisher=Society for Industrial and Applied Mathematics|archive-url=https://web.archive.org/web/20141023120958/http://www.siam.org/pdf/news/2123.pdf|archive-date=23 October 2014|url-status=live}} (and the Feichtinger's conjecture, Anderson's paving conjectures, Weaver's discrepancy theoretic KS_r and KS'_r conjectures, Bourgain-Tzafriri conjecture and R_\varepsilon-conjecture)
  • Ahlfors measure conjecture (Ian Agol, 2004){{cite arXiv | eprint = math/0405568|last1 = Agol |first1 = Ian|title = Tameness of hyperbolic 3-manifolds|year = 2004}}
  • Gradient conjecture (Krzysztof Kurdyka, Tadeusz Mostowski, Adam Parusinski, 1999){{Cite journal

| arxiv=math/9906212

| last1=Kurdyka | first1=Krzysztof

| last2=Mostowski | first2=Tadeusz

| last3=Parusiński | first3=Adam

| title = Proof of the gradient conjecture of R. Thom

| journal=Annals of Mathematics

| pages=763–792

| volume=152

| date=2000

| issue=3

| doi=10.2307/2661354| jstor=2661354 | s2cid=119137528 }}

=Combinatorics=

  • Erdős sumset conjecture (Joel Moreira, Florian Richter, Donald Robertson, 2018){{Cite journal |last1=Moreira |first1=Joel |last2=Richter |first2=Florian K. |last3=Robertson |first3=Donald |title=A proof of a sumset conjecture of Erdős |journal=Annals of Mathematics |doi=10.4007/annals.2019.189.2.4 |volume=189 |number=2 |pages=605–652 |language=en-US|year=2019 |arxiv=1803.00498 |s2cid=119158401 }}
  • McMullen's g-conjecture on the possible numbers of faces of different dimensions in a simplicial sphere (also Grünbaum conjecture, several conjectures of Kühnel) (Karim Adiprasito, 2018){{citation|last=Stanley|first=Richard P. |editor1-last=Bisztriczky|editor1-first=T.|editor2-last=McMullen|editor2-first=P.|editor3-last=Schneider|editor3-first=R.|editor4-last=Weiss|editor4-first=A. Ivić|contribution=A survey of Eulerian posets|location=Dordrecht|mr=1322068|pages=301–333 |publisher=Kluwer Academic Publishers|series=NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences |title=Polytopes: abstract, convex and computational (Scarborough, ON, 1993)|volume=440|year=1994}}. See in particular [https://books.google.com/books?id=gHjrCAAAQBAJ&pg=PA316 p. 316].{{cite web |last1=Kalai |first1=Gil |title=Amazing: Karim Adiprasito proved the g-conjecture for spheres! |url=https://gilkalai.wordpress.com/2018/12/25/amazing-karim-adiprasito-proved-the-g-conjecture-for-spheres/ |access-date=2019-02-15 |archive-url=https://web.archive.org/web/20190216031650/https://gilkalai.wordpress.com/2018/12/25/amazing-karim-adiprasito-proved-the-g-conjecture-for-spheres/ |archive-date=2019-02-16 |url-status=live |date=2018-12-25 }}
  • Hirsch conjecture (Francisco Santos Leal, 2010){{cite journal |last=Santos |first=Franciscos |date=2012 |title=A counterexample to the Hirsch conjecture |journal=Annals of Mathematics |volume=176 |issue=1 |pages=383–412 |doi=10.4007/annals.2012.176.1.7 |arxiv=1006.2814 |s2cid=15325169 }}{{cite journal |last=Ziegler |first=Günter M. |date=2012 |title=Who solved the Hirsch conjecture? |journal=Documenta Mathematica |series=Documenta Mathematica Series |volume=6 |issue=Extra Volume "Optimization Stories" |pages=75–85 |doi=10.4171/dms/6/13 |doi-access=free |isbn=978-3-936609-58-5 | url=https://www.math.uni-bielefeld.de/documenta/vol-ismp/22_ziegler-guenter.html}}
  • Gessel's lattice path conjecture (Manuel Kauers, Christoph Koutschan, and Doron Zeilberger, 2009){{cite journal | last1=Kauers | first1=Manuel | author1-link=Manuel Kauers | last2=Koutschan | first2=Christoph | author2-link=Christoph Koutschan | last3=Zeilberger | first3=Doron | author3-link=Doron Zeilberger | title=Proof of Ira Gessel's lattice path conjecture | journal=Proceedings of the National Academy of Sciences | volume=106 | issue=28 | date=2009-07-14 | issn=0027-8424 | doi=10.1073/pnas.0901678106 | pages=11502–11505 | pmc=2710637 | arxiv=0806.4300 | bibcode=2009PNAS..10611502K | doi-access=free }}
  • Stanley–Wilf conjecture (Gábor Tardos and Adam Marcus, 2004){{cite journal |last1=Chung |first1=Fan |last2=Greene |first2=Curtis |last3=Hutchinson |first3=Joan |date=April 2015 |title=Herbert S. Wilf (1931–2012) |journal=Notices of the AMS |volume=62 |issue=4 |page=358 |issn=1088-9477 |oclc=34550461 |quote=The conjecture was finally given an exceptionally elegant proof by A. Marcus and G. Tardos in 2004. |doi=10.1090/noti1247 |doi-access=free }} (and also the Alon–Friedgut conjecture)
  • Kemnitz's conjecture (Christian Reiher, 2003, Carlos di Fiore, 2003){{cite journal|title=Kemnitz' conjecture revisited | doi=10.1016/j.disc.2005.02.018 |doi-access=free| volume=297|issue=1–3 |journal=Discrete Mathematics|pages=196–201|year=2005 | last1 = Savchev | first1 = Svetoslav}}
  • Cameron–Erdős conjecture (Ben J. Green, 2003, Alexander Sapozhenko, 2003){{cite journal | last = Green | first = Ben | author-link = Ben J. Green | arxiv = math.NT/0304058 | doi = 10.1112/S0024609304003650 | issue = 6 | journal = The Bulletin of the London Mathematical Society | mr = 2083752 | pages = 769–778 | title = The Cameron–Erdős conjecture | volume = 36 | year = 2004| s2cid = 119615076 }}{{cite web |url=https://www.ams.org/news?news_id=155 |title=News from 2007 |author= |date=31 December 2007 |website=American Mathematical Society |publisher=AMS |access-date=2015-11-13 |quote=The 2007 prize also recognizes Green for "his many outstanding results including his resolution of the Cameron-Erdős conjecture..." |archive-url=https://web.archive.org/web/20151117030726/http://www.ams.org/news?news_id=155 |archive-date=17 November 2015 |url-status=live }}

=Dynamical systems=

  • Zimmer's conjecture (Aaron Brown, David Fisher, and Sebastián Hurtado-Salazar, 2017){{cite arXiv

| last1=Brown

| first1=Aaron

| last2=Fisher

| first2=David

| last3=Hurtado

| first3=Sebastian

| date=2017-10-07

| title=Zimmer's conjecture for actions of {{not a typo|SL(𝑚,ℤ)}}

| eprint=1710.02735

| class=math.DS}}

  • Painlevé conjecture (Jinxin Xue, 2014){{Cite arXiv|title=Noncollision Singularities in a Planar Four-body Problem|last=Xue|first=Jinxin|date=2014|class=math.DS |eprint = 1409.0048}}{{Cite journal|title=Non-collision singularities in a planar 4-body problem|last=Xue|first=Jinxin|date=2020|journal=Acta Mathematica|volume=224|issue=2|pages=253–388|doi=10.4310/ACTA.2020.v224.n2.a2|s2cid=226420221}}

=Game theory=

{{cite web | url= https://richardpmann.com/beggar-my-neighbour-records.html | title= Known Historical Beggar-My-Neighbour Records |author= Richard P Mann |access-date= 2024-02-10 }}

  • The angel problem (Various independent proofs, 2006){{Cite web |url=http://homepages.warwick.ac.uk/~masgak/papers/bhb-angel.pdf |title=The angel game in the plane |first=Brian H. |last=Bowditch|date=2006|location=School of Mathematics, University of Southampton |publisher=warwick.ac.uk Warwick University|access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160304185616/http://homepages.warwick.ac.uk/~masgak/papers/bhb-angel.pdf |archive-date=2016-03-04 |url-status=live }}{{Cite web |url=http://home.broadpark.no/~oddvark/angel/Angel.pdf |title=A Solution to the Angel Problem |first=Oddvar |last=Kloster |publisher=SINTEF ICT |location=Oslo, Norway|access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160107125925/http://home.broadpark.no/~oddvark/angel/Angel.pdf |archive-date=2016-01-07 }}{{Cite journal |url=http://homepages.warwick.ac.uk/~masibe/angel-mathe.pdf |title=The Angel of power 2 wins |first=Andras |last=Mathe |date=2007|journal=Combinatorics, Probability and Computing |volume=16 |number=3|pages= 363–374|doi=10.1017/S0963548306008303 |doi-broken-date=1 November 2024 |s2cid=16892955 |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20161013034302/http://homepages.warwick.ac.uk/~masibe/angel-mathe.pdf |archive-date=2016-10-13 |url-status=live }}{{Cite web |last=Gacs |first=Peter |date=June 19, 2007 |title=THE ANGEL WINS |url=http://www.cs.bu.edu/~gacs/papers/angel.pdf |archive-url=https://web.archive.org/web/20160304030433/http://www.cs.bu.edu/~gacs/papers/angel.pdf |archive-date=2016-03-04 |access-date=2016-03-18}}

=Geometry=

==21st century==

  • Einstein problem (David Smith, Joseph Samuel Myers, Craig S. Kaplan, Chaim Goodman-Strauss, 2024){{Cite journal |last1=Smith |first1=David |last2=Myers |first2=Joseph Samuel |last3=Kaplan |first3=Craig S. |last4=Goodman-Strauss |first4=Chaim |date=2024 |title=An aperiodic monotile |url=https://escholarship.org/uc/item/3317z9z9 |journal=Combinatorial Theory |language=en |volume=4 |issue=1 |doi=10.5070/C64163843 |issn=2766-1334}}
  • Maximal rank conjecture (Eric Larson, 2018){{Cite arXiv| eprint=1711.04906 | last1=Larson | first1=Eric | title=The Maximal Rank Conjecture | year=2017 | class=math.AG }}
  • Weibel's conjecture (Moritz Kerz, Florian Strunk, and Georg Tamme, 2018){{citation

| first1=Moritz

| last1=Kerz

| first2=Florian

| last2=Strunk

| first3=Georg

| last3=Tamme

| title=Algebraic K-theory and descent for blow-ups

| journal=Inventiones Mathematicae

| volume=211

| year=2018

| issue=2

| pages=523–577

| mr=3748313

| doi=10.1007/s00222-017-0752-2

| arxiv=1611.08466| bibcode=2018InMat.211..523K

| s2cid=253741858

}}

| url = https://www.ams.org/amsmtgs/2251_abstracts/1147-53-499.pdf

| title = Existence of infinitely many minimal hypersurfaces in closed manifolds.

| author = Song, Antoine

| work = www.ams.org

| quote = "..I will present a solution of the conjecture, which builds on min-max methods developed by F. C. Marques and A. Neves.."

| access-date = 19 June 2021}}

{{Cite web

| url=https://www.claymath.org/people/antoine-song

| title = Antoine Song | Clay Mathematics Institute

| quote="...Building on work of Codá Marques and Neves, in 2018 Song proved Yau's conjecture in complete generality"}}

  • Pentagonal tiling (Michaël Rao, 2017){{citation|url=https://www.quantamagazine.org/pentagon-tiling-proof-solves-century-old-math-problem-20170711/|magazine=Quanta Magazine|title=Pentagon Tiling Proof Solves Century-Old Math Problem|first=Natalie|last=Wolchover|date=July 11, 2017|access-date=July 18, 2017|archive-url=https://web.archive.org/web/20170806093353/https://www.quantamagazine.org/pentagon-tiling-proof-solves-century-old-math-problem-20170711/|archive-date=August 6, 2017}}
  • Willmore conjecture (Fernando Codá Marques and André Neves, 2012){{cite journal|last1=Marques |first1=Fernando C.|first2=André|last2=Neves|title=Min-max theory and the Willmore conjecture|journal=Annals of Mathematics |year=2013|arxiv=1202.6036|doi=10.4007/annals.2014.179.2.6|volume=179|issue=2|pages=683–782|s2cid=50742102}}
  • Erdős distinct distances problem (Larry Guth, Nets Hawk Katz, 2011){{cite journal

| arxiv=1011.4105

| last1=Guth | first1=Larry

| last2=Katz | first2=Nets Hawk

| title=On the Erdos distinct distance problem in the plane

| journal=Annals of Mathematics

| pages=155–190

| volume=181

| date=2015

| issue=1

| doi=10.4007/annals.2015.181.1.2 | doi-access=free}}

| arxiv=math/0412006

| last1=Brock | first1=Jeffrey F.

| last2=Canary | first2=Richard D.

| last3=Minsky | first3=Yair N. | author-link3=Yair Minsky

| title=The classification of Kleinian surface groups, II: The Ending Lamination Conjecture

| date=2012

| journal=Annals of Mathematics

| volume=176

| issue=1

| pages=1–149

| doi=10.4007/annals.2012.176.1.1 | doi-access=free}}

| last1 = Connelly | first1 = Robert | author1-link = Robert Connelly

| last2 = Demaine | first2 = Erik D. | author2-link = Erik Demaine

| last3 = Rote | first3 = Günter

| doi = 10.1007/s00454-003-0006-7 | doi-access = free

| issue = 2

| journal = Discrete & Computational Geometry

| mr = 1931840

| pages = 205–239

| title = Straightening polygonal arcs and convexifying polygonal cycles

| url = http://page.mi.fu-berlin.de/~rote/Papers/pdf/Straightening+polygonal+arcs+and+convexifying+polygonal+cycles-DCG.pdf

| volume = 30

| year = 2003| s2cid = 40382145 }}

| first1=C.

| last1=Faber

| first2=R.

| last2=Pandharipande

| author2-link=Rahul Pandharipande

| title=Hodge integrals, partition matrices, and the \lambda_g conjecture

| journal=Ann. of Math.

| series= 2

| volume=157

| issue=1

| pages=97–124

| year=2003

| arxiv=math.AG/9908052

| doi=10.4007/annals.2003.157.97}}

| last1 = Shestakov | first1 = Ivan P.

| last2 = Umirbaev | first2 = Ualbai U.

| doi = 10.1090/S0894-0347-03-00440-5

| issue = 1

| journal = Journal of the American Mathematical Society

| mr = 2015334

| pages = 197–227

| title = The tame and the wild automorphisms of polynomial rings in three variables

| volume = 17

| year = 2004}}

| last1 = Hutchings | first1 = Michael

| last2 = Morgan | first2 = Frank

| last3 = Ritoré | first3 = Manuel

| last4 = Ros | first4 = Antonio

| doi = 10.2307/3062123

| issue = 2

| journal = Annals of Mathematics

| mr = 1906593

| pages = 459–489

| series = Second Series

| title = Proof of the double bubble conjecture

| volume = 155

| year = 2002| jstor = 3062123

| arxiv = math/0406017

| hdl = 10481/32449

}}

==20th century==

| arxiv=math/9906042

| last1=Hales | first1=Thomas C. | author-link1=Thomas Callister Hales

| title=The Honeycomb Conjecture

| journal=Discrete & Computational Geometry

| volume=25

| pages=1–22

| date=2001

| doi=10.1007/s004540010071 | doi-access=free}}

| last1=Teixidor i Bigas

| first1=Montserrat

| author1-link=Montserrat Teixidor i Bigas

| first2=Barbara

| last2=Russo

| title=On a conjecture of Lange

| arxiv=alg-geom/9710019

| mr=1689352

| year=1999

| journal=Journal of Algebraic Geometry

| issn=1056-3911

| volume=8

| issue=3

| pages=483–496

| bibcode=1997alg.geom.10019R }}

  • Bogomolov conjecture (Emmanuel Ullmo, 1998, Shou-Wu Zhang, 1998){{cite journal | last1 = Ullmo | first1 = E | year = 1998 | title = Positivité et Discrétion des Points Algébriques des Courbes | journal = Annals of Mathematics | volume = 147 | issue = 1| pages = 167–179 | doi = 10.2307/120987 | zbl= 0934.14013| jstor = 120987 | arxiv = alg-geom/9606017 | s2cid = 119717506 }}{{cite journal | last1 = Zhang | first1 = S.-W. | year = 1998 | title = Equidistribution of small points on abelian varieties | journal = Annals of Mathematics | volume = 147 | issue = 1| pages = 159–165 | doi = 10.2307/120986 | jstor = 120986 }}
  • Kepler conjecture (Samuel Ferguson, Thomas Callister Hales, 1998){{cite journal

| arxiv=1501.02155

| last1=Hales | first1=Thomas

| last2=Adams | first2=Mark

| last3=Bauer | first3=Gertrud

| last4=Dang | first4=Dat Tat

| last5=Harrison | first5=John

| last6=Hoang | first6=Le Truong

| last7=Kaliszyk | first7=Cezary

| last8=Magron | first8=Victor

| last9=McLaughlin | first9=Sean

| last10=Nguyen | first10=Tat Thang

| last11=Nguyen | first11=Quang Truong

| last12=Nipkow | first12=Tobias

| last13=Obua | first13=Steven

| last14=Pleso | first14=Joseph

| last15=Rute | first15=Jason

| last16=Solovyev | first16=Alexey

| last17=Ta | first17=Thi Hoai An

| last18=Tran | first18=Nam Trung

| last19=Trieu | first19=Thi Diep

| last20=Urban | first20=Josef

| last21=Ky | first21=Vu

| last22=Zumkeller | first22=Roland

| title=A formal proof of the Kepler conjecture

| journal=Forum of Mathematics, Pi

| volume=5

| date=2017

| pages=e2

| doi=10.1017/fmp.2017.1 | doi-access=free}}

| arxiv=math/9811079

| last1=Hales | first1=Thomas C.

| last2=McLaughlin | first2=Sean

| title=The dodecahedral conjecture

| journal=Journal of the American Mathematical Society

| volume=23

| date=2010

| issue=2 | pages=299–344

| doi=10.1090/S0894-0347-09-00647-X | bibcode=2010JAMS...23..299H | doi-access=free}}

=Graph theory=

| last1 = Dujmović | first1 = Vida | author1-link = Vida Dujmović

| last2 = Eppstein | first2 = David | author2-link = David Eppstein

| last3 = Hickingbotham | first3 = Robert

| last4 = Morin | first4 = Pat | author4-link = Pat Morin

| last5 = Wood | first5 = David R. | author5-link = David Wood (mathematician)

| arxiv = 2011.04195

| date = August 2021

| doi = 10.1007/s00493-021-4585-7

| journal = Combinatorica

| title = Stack-number is not bounded by queue-number| volume = 42 | issue = 2 | pages = 151–164 | s2cid = 226281691 }}

  • Ringel's conjecture that the complete graph K_{2n+1} can be decomposed into 2n+1 copies of any tree with n edges (Richard Montgomery, Benny Sudakov, Alexey Pokrovskiy, 2020){{cite journal|last1=Huang |first1=C.|title=Further results on tree labellings |journal=Utilitas Mathematica |volume=21 |pages=31–48 |year=1982|mr=668845|last2=Kotzig|first2=A.|last3=Rosa|first3=A.|author2-link=Anton Kotzig}}.{{Cite web |url=https://www.quantamagazine.org/mathematicians-prove-ringels-graph-theory-conjecture-20200219/|title=Rainbow Proof Shows Graphs Have Uniform Parts|last=Hartnett |first=Kevin|website=Quanta Magazine|date=19 February 2020|language=en|access-date=2020-02-29}}
  • Disproof of Hedetniemi's conjecture on the chromatic number of tensor products of graphs (Yaroslav Shitov, 2019){{cite journal |last1=Shitov |first1=Yaroslav |date=2019-09-01 |df=dmy-all |title=Counterexamples to Hedetniemi's conjecture |journal=Annals of Mathematics |volume=190 |issue=2 |pages=663–667 |arxiv=1905.02167 |doi=10.4007/annals.2019.190.2.6 |jstor=10.4007/annals.2019.190.2.6 |mr= 3997132 |zbl=1451.05087 |s2cid=146120733 |url=https://annals.math.princeton.edu/2019/190-2/p06 |access-date=2021-07-19}}
  • Kelmans–Seymour conjecture (Dawei He, Yan Wang, and Xingxing Yu, 2020){{Cite journal

| last1=He

| first1=Dawei

| last2=Wang

| first2=Yan

| last3=Yu

| first3=Xingxing

| date=2019-12-11

| title=The Kelmans-Seymour conjecture I: Special separations

| url=http://www.sciencedirect.com/science/article/pii/S0095895619301224

| journal=Journal of Combinatorial Theory, Series B

| volume=144

| pages=197–224

| doi=10.1016/j.jctb.2019.11.008

| issn=0095-8956

| arxiv=1511.05020

| s2cid=29791394}}

{{Cite journal

| last1=He

| first1=Dawei

| last2=Wang

| first2=Yan

| last3=Yu

| first3=Xingxing

| date=2019-12-11

| title=The Kelmans-Seymour conjecture II: 2-Vertices in K4−

| url=http://www.sciencedirect.com/science/article/pii/S0095895619301212

| journal=Journal of Combinatorial Theory, Series B

| volume=144

| pages=225–264

| doi=10.1016/j.jctb.2019.11.007

| issn=0095-8956

| arxiv=1602.07557| s2cid=220369443

}}

{{Cite journal

| last1=He

| first1=Dawei

| last2=Wang

| first2=Yan

| last3=Yu

| first3=Xingxing

| date=2019-12-09

| title=The Kelmans-Seymour conjecture III: 3-vertices in K4−

| url=http://www.sciencedirect.com/science/article/pii/S0095895619301200

| journal=Journal of Combinatorial Theory, Series B

| volume=144

| pages=265–308

| doi=10.1016/j.jctb.2019.11.006

| issn=0095-8956

| arxiv=1609.05747

| s2cid=119625722}}

{{Cite journal

| last1=He

| first1=Dawei

| last2=Wang

| first2=Yan

| last3=Yu

| first3=Xingxing

| date=2019-12-19

| title=The Kelmans-Seymour conjecture IV: A proof

| url=http://www.sciencedirect.com/science/article/pii/S0095895619301248

| journal=Journal of Combinatorial Theory, Series B

| volume=144

| pages=309–358

| doi=10.1016/j.jctb.2019.12.002

| issn=0095-8956

| arxiv=1612.07189

| s2cid=119175309}}

| last1=Zang

| first1=Wenan

| last2=Jing

| first2=Guangming

| last3=Chen

| first3=Guantao

| date=2019-01-29

| title=Proof of the Goldberg–Seymour Conjecture on Edge-Colorings of Multigraphs

| class=math.CO

| language=en

| eprint=1901.10316v1}}

| last=Huh

| first=June

| author-link=June Huh

| title=Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs

| arxiv=1008.4749

| journal=Journal of the American Mathematical Society

| volume=25

| date=2012

| issue=3

| pages=907–927

| doi=10.1090/S0894-0347-2012-00731-0

| doi-access=free}}

| last1 = Chalopin | first1 = Jérémie

| last2 = Gonçalves | first2 = Daniel

| editor-last = Mitzenmacher | editor-first = Michael

| contribution = Every planar graph is the intersection graph of segments in the plane: extended abstract

| doi = 10.1145/1536414.1536500

| pages = 631–638

| publisher = ACM

| title = Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 – June 2, 2009

| year = 2009}}

| arxiv=math/0509397

| last1=Aharoni | first1=Ron | author1-link=Ron Aharoni

| last2=Berger | first2=Eli

| title = Menger's theorem for infinite graphs

| journal=Inventiones Mathematicae

| volume=176

| pages=1–62

| date=2009

| issue=1 | doi=10.1007/s00222-008-0157-3 | bibcode=2009InMat.176....1A | doi-access=free}}

|url=http://www.jpost.com/Home/Article.aspx?id=91431 |access-date=2015-11-12}}

  • Robertson–Seymour theorem (Neil Robertson, Paul Seymour, 2004){{cite book |last=Diestel |first=Reinhard |year=2005 |chapter=Minors, Trees, and WQO |edition=Electronic Edition 2005 |pages=326–367 |publisher=Springer |title=Graph Theory |chapter-url=http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/preview/Ch12.pdf}}
  • Strong perfect graph conjecture (Maria Chudnovsky, Neil Robertson, Paul Seymour and Robin Thomas, 2002){{cite journal |url=https://annals.math.princeton.edu/2006/164-1/p02 |title=The strong perfect graph theorem |last1=Chudnovsky |first1=Maria |last2=Robertson |first2=Neil |last3=Seymour |first3=Paul |last4=Thomas |first4=Robin |journal=Annals of Mathematics |year=2002 |volume=164 |pages=51–229 |arxiv=math/0212070 |doi=10.4007/annals.2006.164.51 |bibcode=2002math.....12070C |s2cid=119151552}}
  • Toida's conjecture (Mikhail Muzychuk, Mikhail Klin, and Reinhard Pöschel, 2001)Klin, M. H., M. Muzychuk and R. Poschel: The isomorphism problem for circulant graphs via Schur ring theory, Codes and Association Schemes, American Math. Society, 2001.
  • Harary's conjecture on the integral sum number of complete graphs (Zhibo Chen, 1996){{Cite journal

| url=https://www.researchgate.net/publication/220188021

| doi=10.1016/0012-365X(95)00163-Q

| doi-access=free

| title=Harary's conjectures on integral sum graphs

| journal=Discrete Mathematics

| volume=160

| issue=1–3

| pages=241–244

| year=1996

| last1=Chen

| first1=Zhibo}}

=Group theory=

  • Hanna Neumann conjecture (Joel Friedman, 2011, Igor Mineyev, 2011){{Cite journal |last=Friedman |first=Joel |date=January 2015 |title=Sheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture: with an Appendix by Warren Dicks |url=https://www.cs.ubc.ca/~jf/pubs/web_stuff/shnc_memoirs.pdf |journal=Memoirs of the American Mathematical Society |language=en |volume=233 |issue=1100 |page=0 |doi=10.1090/memo/1100 |s2cid=117941803 |issn=0065-9266}}{{cite journal

| last = Mineyev | first = Igor

| doi = 10.4007/annals.2012.175.1.11

| issue = 1

| journal = Annals of Mathematics

| mr = 2874647

| pages = 393–414

| series = Second Series

| title = Submultiplicativity and the Hanna Neumann conjecture

| volume = 175

| year = 2012}}

  • Density theorem (Hossein Namazi, Juan Souto, 2010){{Cite journal |url=https://www.researchgate.net/publication/228365532 |doi=10.1007/s11511-012-0088-0|title=Non-realizability and ending laminations: Proof of the density conjecture|journal=Acta Mathematica|volume=209|issue=2|pages=323–395|year=2012|last1=Namazi|first1=Hossein|last2=Souto|first2=Juan|doi-access=free}}
  • Full classification of finite simple groups (Koichiro Harada, Ronald Solomon, 2008)

=Number theory=

==21st century==

  • André–Oort conjecture (Jonathan Pila, Ananth Shankar, Jacob Tsimerman, 2021){{cite arXiv |last1=Pila |first1=Jonathan |last2=Shankar |first2=Ananth |last3=Tsimerman |first3=Jacob |last4=Esnault |first4=Hélène |last5=Groechenig |first5=Michael |date=2021-09-17 |title=Canonical Heights on Shimura Varieties and the André-Oort Conjecture |class=math.NT |eprint=2109.08788}}
  • Duffin–Schaeffer theorem (Dimitris Koukoulopoulos, James Maynard, 2019)
  • Main conjecture in Vinogradov's mean-value theorem (Jean Bourgain, Ciprian Demeter, Larry Guth, 2015){{cite journal|last1=Bourgain |first1=Jean|first2=Demeter|last2=Ciprian|first3=Guth|last3=Larry|title=Proof of the main conjecture in Vinogradov's Mean Value Theorem for degrees higher than three|journal=Annals of Mathematics |year=2015|doi=10.4007/annals.2016.184.2.7|volume=184|issue=2|pages=633–682|hdl=1721.1/115568|bibcode=2015arXiv151201565B|arxiv=1512.01565|s2cid=43929329}}
  • Goldbach's weak conjecture (Harald Helfgott, 2013){{cite arXiv |eprint=1305.2897 |title = Major arcs for Goldbach's theorem|last = Helfgott|first = Harald A. |class=math.NT |year=2013}}{{cite arXiv |eprint=1205.5252 |title = Minor arcs for Goldbach's problem |last = Helfgott|first = Harald A.|class=math.NT |year=2012}}{{cite arXiv |eprint=1312.7748 |title = The ternary Goldbach conjecture is true|last = Helfgott|first = Harald A. |class=math.NT |year=2013}}
  • Existence of bounded gaps between arbitrarily large primes (Yitang Zhang, Polymath8, James Maynard, 2013){{Cite journal|last=Zhang|first=Yitang|date=2014-05-01|title=Bounded gaps between primes|journal=Annals of Mathematics|volume=179|issue=3|pages=1121–1174|doi=10.4007/annals.2014.179.3.7|issn=0003-486X}}{{Cite web|title=Bounded gaps between primes – Polymath Wiki|url=https://asone.ai/polymath/index.php?title=Bounded_gaps_between_primes|access-date=2021-08-27|website=asone.ai|archive-date=2020-12-08|archive-url=https://web.archive.org/web/20201208045925/https://asone.ai/polymath/index.php?title=Bounded_gaps_between_primes}}{{Cite journal|last=Maynard|first=James|date=2015-01-01|title=Small gaps between primes|journal=Annals of Mathematics|pages=383–413|doi=10.4007/annals.2015.181.1.7|arxiv=1311.4600|s2cid=55175056|issn=0003-486X}}
  • Sidon set problem (Javier Cilleruelo, Imre Z. Ruzsa, and Carlos Vinuesa, 2010){{cite journal|title=Generalized Sidon sets|doi=10.1016/j.aim.2010.05.010 | volume=225|issue=5|journal=Advances in Mathematics|pages=2786–2807|year=2010 | last1 = Cilleruelo | first1 = Javier|hdl=10261/31032|s2cid=7385280|doi-access=free|hdl-access=free}}
  • Serre's modularity conjecture (Chandrashekhar Khare and Jean-Pierre Wintenberger, 2008){{Citation |last1=Khare |first1=Chandrashekhar |last2=Wintenberger |first2=Jean-Pierre |year=2009 |title=Serre's modularity conjecture (I) |journal=Inventiones Mathematicae |volume=178 |issue=3 |pages=485–504 |doi=10.1007/s00222-009-0205-7 |bibcode=2009InMat.178..485K |citeseerx=10.1.1.518.4611 |s2cid=14846347 }}{{Citation |last1=Khare |first1=Chandrashekhar |last2=Wintenberger |first2=Jean-Pierre |year=2009 |title=Serre's modularity conjecture (II) |journal=Inventiones Mathematicae |volume=178 |issue=3 |pages=505–586 |doi=10.1007/s00222-009-0206-6 |bibcode=2009InMat.178..505K |citeseerx=10.1.1.228.8022 |s2cid=189820189 }}{{cite journal |author= |title=2011 Cole Prize in Number Theory |url=https://www.ams.org/notices/201104/rtx110400610p.pdf |journal=Notices of the AMS |volume=58 |issue=4 |pages=610–611 |issn=1088-9477 |oclc=34550461 |access-date=2015-11-12 |archive-url=https://web.archive.org/web/20151106051835/http://www.ams.org/notices/201104/rtx110400610p.pdf |archive-date=2015-11-06 |url-status=live }}
  • Green–Tao theorem (Ben J. Green and Terence Tao, 2004){{cite journal |author= |date=May 2010 |title=Bombieri and Tao Receive King Faisal Prize |url=https://www.ams.org/notices/201005/rtx100500642p.pdf |journal=Notices of the AMS |volume=57 |issue=5 |pages=642–643 |issn=1088-9477 |oclc=34550461 |quote=Working with Ben Green, he proved there are arbitrarily long arithmetic progressions of prime numbers—a result now known as the Green–Tao theorem. |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160304063504/http://www.ams.org/notices/201005/rtx100500642p.pdf |archive-date=2016-03-04 |url-status=live }}
  • Catalan's conjecture (Preda Mihăilescu, 2002){{cite journal |last=Metsänkylä |first=Tauno |date=5 September 2003 |title=Catalan's conjecture: another old diophantine problem solved |url=https://www.ams.org/journals/bull/2004-41-01/S0273-0979-03-00993-5/S0273-0979-03-00993-5.pdf |journal=Bulletin of the American Mathematical Society |volume=41 |issue=1 |pages=43–57 |issn=0273-0979 |quote=The conjecture, which dates back to 1844, was recently proven by the Swiss mathematician Preda Mihăilescu. |doi=10.1090/s0273-0979-03-00993-5 |access-date=13 November 2015 |archive-url=https://web.archive.org/web/20160304082755/http://www.ams.org/journals/bull/2004-41-01/S0273-0979-03-00993-5/S0273-0979-03-00993-5.pdf |archive-date=4 March 2016 |url-status=live }}
  • Erdős–Graham problem (Ernest S. Croot III, 2000){{cite book | last = Croot | first = Ernest S. III | author-link = Ernest S. Croot III | publisher = University of Georgia, Athens | series = Ph.D. thesis | title = Unit Fractions | year = 2000}} {{cite journal | last = Croot | first = Ernest S. III | author-link = Ernest S. Croot III | arxiv = math.NT/0311421 | doi = 10.4007/annals.2003.157.545 | issue = 2 | journal = Annals of Mathematics | pages = 545–556 | title = On a coloring conjecture about unit fractions | volume = 157 | year = 2003| bibcode = 2003math.....11421C | s2cid = 13514070 }}

==20th century==

  • Lafforgue's theorem (Laurent Lafforgue, 1998){{Citation | last1=Lafforgue | first1=Laurent | title=Chtoucas de Drinfeld et applications | language=fr | trans-title=Drinfelʹd shtukas and applications | url=http://www.math.uni-bielefeld.de/documenta/xvol-icm/07/Lafforgue.MAN.html | mr=1648105 | year=1998 | journal=Documenta Mathematica | issn=1431-0635 | volume=II | pages=563–570 | access-date=2016-03-18 | archive-url=https://web.archive.org/web/20180427200241/https://www.math.uni-bielefeld.de/documenta/xvol-icm/07/Lafforgue.MAN.html | archive-date=2018-04-27 | url-status=live }}
  • Fermat's Last Theorem (Andrew Wiles and Richard Taylor, 1995){{cite journal|last=Wiles|first=Andrew|author-link=Andrew Wiles|year=1995|title=Modular elliptic curves and Fermat's Last Theorem|url=http://math.stanford.edu/~lekheng/flt/wiles.pdf|journal=Annals of Mathematics|volume=141|issue=3|pages=443–551|oclc=37032255|doi=10.2307/2118559|jstor=2118559|citeseerx=10.1.1.169.9076|access-date=2016-03-06|archive-url=https://web.archive.org/web/20110510062158/http://math.stanford.edu/%7Elekheng/flt/wiles.pdf|archive-date=2011-05-10|url-status=live}}{{cite journal |author=Taylor R, Wiles A |year=1995 |title=Ring theoretic properties of certain Hecke algebras |url=http://www.math.harvard.edu/~rtaylor/hecke.ps |journal=Annals of Mathematics |volume=141 |issue=3 |pages=553–572 |citeseerx=10.1.1.128.531 |doi=10.2307/2118560 |jstor=2118560 |oclc=37032255 |archive-url=https://web.archive.org/web/20000916161311/http://www.math.harvard.edu/~rtaylor/hecke.ps |archive-date=16 September 2000}}

=Ramsey theory=

  • Burr–Erdős conjecture (Choongbum Lee, 2017){{cite journal | last1 = Lee | first1 = Choongbum | year = 2017 | title = Ramsey numbers of degenerate graphs | journal = Annals of Mathematics | volume = 185 | issue = 3| pages = 791–829 | doi = 10.4007/annals.2017.185.3.2 | arxiv = 1505.04773 | s2cid = 7974973 }}
  • Boolean Pythagorean triples problem (Marijn Heule, Oliver Kullmann, Victor W. Marek, 2016){{cite journal |last=Lamb |first=Evelyn |date=26 May 2016 |title=Two-hundred-terabyte maths proof is largest ever |journal=Nature |doi=10.1038/nature.2016.19990 |volume=534 |issue=7605 |pages=17–18 |pmid=27251254 |bibcode=2016Natur.534...17L|doi-access=free }}{{cite book

| last1 = Heule | first1 = Marijn J. H. | author1-link=Marijn Heule

| last2 = Kullmann | first2 = Oliver

| last3 = Marek | first3 = Victor W. | author3-link=Victor W. Marek

| editor-last1 = Creignou | editor-first1 = N.

| editor-last2 = Le Berre | editor-first2 = D.

| arxiv = 1605.00723

| chapter = Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer

| doi = 10.1007/978-3-319-40970-2_15

| mr = 3534782

| pages = 228–245

| publisher = Springer, [Cham]

| series = Lecture Notes in Computer Science

| title = Theory and Applications of Satisfiability Testing – SAT 2016

| volume = 9710

| year = 2016| isbn = 978-3-319-40969-6

| s2cid = 7912943

}}

=Theoretical computer science=

  • Sensitivity conjecture for Boolean functions (Hao Huang, 2019){{cite web |author=Linkletter, David |date=27 December 2019 |title=The 10 Biggest Math Breakthroughs of 2019 |url=https://www.popularmechanics.com/science/math/g30346822/biggest-math-breakthroughs-2019/ |access-date=20 June 2021 |work=Popular Mechanics}}

=Topology=

  • Deciding whether the Conway knot is a slice knot (Lisa Piccirillo, 2020){{Cite journal |last=Piccirillo |first=Lisa |date=2020 |title=The Conway knot is not slice |url=https://annals.math.princeton.edu/2020/191-2/p05 |journal=Annals of Mathematics |volume=191 |issue=2 |pages=581–591 |doi=10.4007/annals.2020.191.2.5|s2cid=52398890 }}{{Cite web |last=Klarreich |first=Erica |author-link=Erica Klarreich |date=2020-05-19 |title=Graduate Student Solves Decades-Old Conway Knot Problem |url=https://www.quantamagazine.org/graduate-student-solves-decades-old-conway-knot-problem-20200519/ |access-date=2022-08-17 |website=Quanta Magazine |language=en}}
  • Virtual Haken conjecture (Ian Agol, Daniel Groves, Jason Manning, 2012){{Cite journal

| arxiv = 1204.2810v1

| last1 = Agol | first1 = Ian

| title = The virtual Haken conjecture (with an appendix by Ian Agol, Daniel Groves, and Jason Manning)

| journal=Documenta Mathematica

| volume=18

| date=2013

| pages=1045–1087

| doi = 10.4171/dm/421 | doi-access = free | s2cid = 255586740 | url=https://www.math.uni-bielefeld.de/documenta/vol-18/33.pdf}} (and by work of Daniel Wise also virtually fibered conjecture)

| arxiv=1203.6597

| last1 = Brendle | first1 = Simon | author1-link=Simon Brendle

| title = Embedded minimal tori in S^3 and the Lawson conjecture

| journal=Acta Mathematica

| volume=211

| issue=2

| pages=177–190

| date=2013

| doi=10.1007/s11511-013-0101-2 | doi-access=free}}

| arxiv=1101.1330

| last1=Kahn | first1=Jeremy | author1-link=Jeremy Kahn

| last2=Markovic | first2=Vladimir | author2-link=Vladimir Markovic

| title=The good pants homology and the Ehrenpreis conjecture

| journal=Annals of Mathematics

| pages=1–72

| volume=182

| date=2015

| issue=1

| doi=10.4007/annals.2015.182.1.1 | doi-access=free}}

  • Atiyah conjecture for groups with finite subgroups of unbounded order (Austin, 2009){{cite journal

| arxiv = 0909.2360

| last1 = Austin |first1 = Tim

| title = Rational group ring elements with kernels having irrational dimension

| journal = Proceedings of the London Mathematical Society

| volume = 107

| issue = 6

| pages = 1424–1448

| date = December 2013

| doi = 10.1112/plms/pdt029 | bibcode = 2009arXiv0909.2360A|s2cid = 115160094}}

  • Cobordism hypothesis (Jacob Lurie, 2008){{cite journal | last1 = Lurie | first1 = Jacob | year = 2009 | title = On the classification of topological field theories | journal = Current Developments in Mathematics | volume = 2008 | pages = 129–280 | doi=10.4310/cdm.2008.v2008.n1.a3| bibcode = 2009arXiv0905.0465L | arxiv = 0905.0465 | s2cid = 115162503 }}
  • Spherical space form conjecture (Grigori Perelman, 2006)
  • Poincaré conjecture (Grigori Perelman, 2002){{cite press release | publisher=Clay Mathematics Institute | date=March 18, 2010 | title=Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman | url=http://www.claymath.org/sites/default/files/millenniumprizefull.pdf | access-date=November 13, 2015 | quote=The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman. | archive-url=https://web.archive.org/web/20100322192115/http://www.claymath.org/poincare/ | archive-date=March 22, 2010 | url-status=live }}
  • Geometrization conjecture, (Grigori Perelman, series of preprints in 2002–2003){{Cite arXiv |eprint = 0809.4040|last1 = Morgan |first1 = John |title = Completion of the Proof of the Geometrization Conjecture|last2 = Tian|first2 = Gang|class = math.DG|year = 2008}}
  • Nikiel's conjecture (Mary Ellen Rudin, 1999){{cite journal

| first1=M.E. | last1=Rudin | author-link1=Mary Ellen Rudin

| title=Nikiel's Conjecture

| journal=Topology and Its Applications

| volume=116

| year=2001

| issue=3 | pages=305–331

| doi=10.1016/S0166-8641(01)00218-8 | doi-access=free}}

  • Disproof of the Ganea conjecture (Iwase, 1997){{cite web|url=https://www.researchgate.net/publication/220032558|title=Ganea's Conjecture on Lusternik-Schnirelmann Category|author=Norio Iwase|date=1 November 1998|work=ResearchGate}}

=Uncategorised=

==2010s==

  • Erdős discrepancy problem (Terence Tao, 2015){{Cite arXiv |eprint = 1509.05363v5|last1 = Tao|first1 = Terence | author-link1=Terence Tao|title = The Erdős discrepancy problem|class = math.CO|year = 2015}}
  • Umbral moonshine conjecture (John F. R. Duncan, Michael J. Griffin, Ken Ono, 2015){{cite journal|title=Proof of the umbral moonshine conjecture|first1=John F. R.|last1=Duncan|first2=Michael J.|last2=Griffin|first3=Ken|last3=Ono|date=1 December 2015|journal=Research in the Mathematical Sciences|volume=2|issue=1|page=26|doi=10.1186/s40687-015-0044-7|bibcode=2015arXiv150301472D|arxiv=1503.01472|s2cid=43589605 |doi-access=free }}
  • Anderson conjecture on the finite number of diffeomorphism classes of the collection of 4-manifolds satisfying certain properties (Jeff Cheeger, Aaron Naber, 2014){{cite journal

| arxiv=1406.6534

| last1=Cheeger | first1=Jeff

| last2=Naber | first2=Aaron

| title=Regularity of Einstein Manifolds and the Codimension 4 Conjecture

| journal=Annals of Mathematics

| pages=1093–1165

| volume=182

| issue=3

| date=2015

| doi=10.4007/annals.2015.182.3.5 | doi-access=free}}

  • Gaussian correlation inequality (Thomas Royen, 2014){{Cite magazine |last=Wolchover |first=Natalie |date=March 28, 2017 |title=A Long-Sought Proof, Found and Almost Lost |url=https://www.quantamagazine.org/20170328-statistician-proves-gaussian-correlation-inequality/ |url-status=live |magazine=Quanta Magazine |archive-url=https://web.archive.org/web/20170424133433/https://www.quantamagazine.org/20170328-statistician-proves-gaussian-correlation-inequality/ |archive-date=April 24, 2017 |access-date=May 2, 2017}}
  • Beck's conjecture on discrepancies of set systems constructed from three permutations (Alantha Newman, Aleksandar Nikolov, 2011){{Cite arXiv |eprint = 1104.2922|last1=Newman |first1=Alantha | last2=Nikolov | first2=Aleksandar |title = A counterexample to Beck's conjecture on the discrepancy of three permutations|class = cs.DM|year = 2011}}
  • Bloch–Kato conjecture (Vladimir Voevodsky, 2011){{Cite web |url=https://annals.math.princeton.edu/wp-content/uploads/annals-v174-n1-p11-p.pdf |title=On motivic cohomology with Z/l-coefficients |last=Voevodsky |first=Vladimir |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160327035457/http://annals.math.princeton.edu/wp-content/uploads/annals-v174-n1-p11-p.pdf |location=Princeton, NJ |website=annals.math.princeton.edu |publisher=Princeton University |date=1 July 2011|volume=174|issue=1|pages=401–438|archive-date=2016-03-27 |url-status=live }} (and Quillen–Lichtenbaum conjecture and by work of Thomas Geisser and Marc Levine (2001) also Beilinson–Lichtenbaum conjecture{{cite journal

| last1 = Geisser | first1 = Thomas

| last2 = Levine | first2 = Marc

| doi = 10.1515/crll.2001.006

| journal = Journal für die Reine und Angewandte Mathematik

| mr = 1807268

| pages = 55–103

| title = The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky

| volume = 2001

| year = 2001| issue = 530

}}{{cite web |last=Kahn |first=Bruno |title=Algebraic K-Theory, Algebraic Cycles and Arithmetic Geometry |url=https://webusers.imj-prg.fr/~bruno.kahn/preprints/kcag.pdf |url-status=live |archive-url=https://web.archive.org/web/20160327035553/https://webusers.imj-prg.fr/~bruno.kahn/preprints/kcag.pdf |archive-date=2016-03-27 |access-date=2016-03-18 |website=webusers.imj-prg.fr}}{{Rp|page=359}}{{cite web|url=https://mathoverflow.net/q/87162 |title=motivic cohomology – Milnor–Bloch–Kato conjecture implies the Beilinson-Lichtenbaum conjecture – MathOverflow|access-date=2016-03-18 }})

==2000s==

| arxiv = 0906.1612

| last1 = Mattman |first1 = Thomas W.

| last2 = Solis | first2 = Pablo

| title = A proof of the Kauffman-Harary Conjecture

| journal = Algebraic & Geometric Topology

| volume = 9

| issue = 4

| pages = 2027–2039

| year = 2009

| doi = 10.2140/agt.2009.9.2027 | bibcode = 2009arXiv0906.1612M | s2cid = 8447495}}

| arxiv=0910.5501

| last1 = Kahn | first1 = Jeremy

| last2 = Markovic | first2 = Vladimir

| title = Immersing almost geodesic surfaces in a closed hyperbolic three manifold

| journal = Annals of Mathematics

| pages=1127–1190

| volume=175

| issue=3

| year=2012

| doi=10.4007/annals.2012.175.3.4 | doi-access=free}}

| first=Zhiqin | last=Lu

| orig-date=2007

| title=Normal Scalar Curvature Conjecture and its applications

| arxiv=0711.3510

| journal=Journal of Functional Analysis

| volume=261

| issue=5

| date=September 2011

| pages=1284–1308

| doi=10.1016/j.jfa.2011.05.002 | doi-access=free}}

  • Nirenberg–Treves conjecture (Nils Dencker, 2005){{citation |last=Dencker |first=Nils |author-link=Nils Dencker |title=The resolution of the Nirenberg–Treves conjecture |journal=Annals of Mathematics |volume=163 |issue=2 |year=2006 |pages=405–444 |url=https://annals.math.princeton.edu/wp-content/uploads/annals-v163-n2-p02.pdf |doi=10.4007/annals.2006.163.405 |s2cid=16630732 |access-date=2019-04-07 |archive-url=https://web.archive.org/web/20180720145723/http://annals.math.princeton.edu/wp-content/uploads/annals-v163-n2-p02.pdf |archive-date=2018-07-20 |url-status=live }}{{cite web |url=https://www.claymath.org/research |title=Research Awards |website=Clay Mathematics Institute |access-date=2019-04-07 |archive-url=https://web.archive.org/web/20190407160116/https://www.claymath.org/research |archive-date=2019-04-07 |url-status=live }}
  • Lax conjecture (Adrian Lewis, Pablo Parrilo, Motakuri Ramana, 2005){{cite journal

| last1 = Lewis | first1 = A. S.

| last2 = Parrilo | first2 = P. A.

| last3 = Ramana | first3 = M. V.

| doi = 10.1090/S0002-9939-05-07752-X

| issue = 9

| journal = Proceedings of the American Mathematical Society

| mr = 2146191

| pages = 2495–2499

| title = The Lax conjecture is true

| volume = 133

| year = 2005| s2cid = 17436983

}}

  • The Langlands–Shelstad fundamental lemma (Ngô Bảo Châu and Gérard Laumon, 2004){{cite web |url=http://www.icm2010.in/prize-winners-2010/fields-medal-ngo-bao-chau |title=Fields Medal – Ngô Bảo Châu |author= |date=19 August 2010 |website=International Congress of Mathematicians 2010 |publisher=ICM |access-date=2015-11-12 |quote=Ngô Bảo Châu is being awarded the 2010 Fields Medal for his proof of the Fundamental Lemma in the theory of automorphic forms through the introduction of new algebro-geometric methods. |archive-url=https://web.archive.org/web/20150924032610/http://www.icm2010.in/prize-winners-2010/fields-medal-ngo-bao-chau |archive-date=24 September 2015 |url-status=live }}
  • Milnor conjecture (Vladimir Voevodsky, 2003){{cite journal |title=Reduced power operations in motivic cohomology |pages=1–57|journal=Publications Mathématiques de l'IHÉS |volume=98 |year=2003 |last1=Voevodsky |first1=Vladimir |doi=10.1007/s10240-003-0009-z |citeseerx=10.1.1.170.4427 |url=http://archive.numdam.org/item/PMIHES_2003__98__1_0/ |access-date=2016-03-18 |url-status=live |archive-url=https://web.archive.org/web/20170728114725/http://archive.numdam.org/item/PMIHES_2003__98__1_0 |archive-date=2017-07-28 |arxiv=math/0107109 |s2cid=8172797}}
  • Kirillov's conjecture (Ehud Baruch, 2003){{cite journal

| last = Baruch | first = Ehud Moshe

| doi = 10.4007/annals.2003.158.207

| issue = 1

| journal = Annals of Mathematics

| mr = 1999922

| pages = 207–252

| series = Second Series

| title = A proof of Kirillov's conjecture

| volume = 158

| year = 2003}}

  • Kouchnirenko's conjecture (Bertrand Haas, 2002){{Cite journal |last=Haas |first=Bertrand |date=2002 |title=A Simple Counterexample to Kouchnirenko's Conjecture |url=https://www.emis.de/journals/BAG/vol.43/no.1/b43h1haa.pdf |url-status=live |journal=Beiträge zur Algebra und Geometrie |volume=43 |issue=1 |pages=1–8 |archive-url=https://web.archive.org/web/20161007091417/http://www.emis.de/journals/BAG/vol.43/no.1/b43h1haa.pdf |archive-date=2016-10-07 |access-date=2016-03-18}}
  • n! conjecture (Mark Haiman, 2001){{cite journal

| last = Haiman | first = Mark

| doi = 10.1090/S0894-0347-01-00373-3

| issue = 4

| journal = Journal of the American Mathematical Society

| mr = 1839919

| pages = 941–1006

| title = Hilbert schemes, polygraphs and the Macdonald positivity conjecture

| volume = 14

| year = 2001| s2cid = 9253880

}} (and also Macdonald positivity conjecture)

| last1 = Auscher | first1 = Pascal

| last2 = Hofmann | first2 = Steve

| last3 = Lacey | first3 = Michael

| last4 = McIntosh | first4 = Alan

| last5 = Tchamitchian | first5 = Ph.

| doi = 10.2307/3597201

| issue = 2

| journal = Annals of Mathematics

| mr = 1933726

| pages = 633–654

| series = Second Series

| title = The solution of the Kato square root problem for second order elliptic operators on \mathbb{R}^n

| volume = 156

| year = 2002| jstor = 3597201

}}

| arxiv=math/0102150

| last1=Barbieri-Viale |first1=Luca

| last2=Rosenschon | first2=Andreas

| last3=Saito | first3=Morihiko

| title = Deligne's Conjecture on 1-Motives

| journal=Annals of Mathematics

| pages=593–633

| volume=158

| date=2003

| issue=2

| doi=10.4007/annals.2003.158.593 | doi-access=free}}

  • Modularity theorem (Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, 2001){{Citation | last1=Breuil | first1=Christophe | last2=Conrad | first2=Brian | last3=Diamond | first3=Fred | last4=Taylor | first4=Richard | title=On the modularity of elliptic curves over Q: wild 3-adic exercises | doi=10.1090/S0894-0347-01-00370-8 | mr=1839918 | year=2001 | journal=Journal of the American Mathematical Society | issn=0894-0347 | volume=14 | issue=4 | pages=843–939| doi-access=free }}
  • Erdős–Stewart conjecture (Florian Luca, 2001){{Cite journal|url=https://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01178-9/S0025-5718-00-01178-9.pdf|doi=10.1090/s0025-5718-00-01178-9|title=On a conjecture of Erdős and Stewart|journal=Mathematics of Computation|volume=70|issue=234|pages=893–897|year=2000|last1=Luca|first1=Florian|access-date=2016-03-18|archive-url=https://web.archive.org/web/20160402030443/http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01178-9/S0025-5718-00-01178-9.pdf|archive-date=2016-04-02|url-status=live|bibcode=2001MaCom..70..893L}}
  • Berry–Robbins problem (Michael Atiyah, 2000){{cite book

| last = Atiyah | first = Michael | author-link = Michael Atiyah

| editor-last = Yau | editor-first = Shing-Tung | editor-link = Shing-Tung Yau

| contribution = The geometry of classical particles

| doi = 10.4310/SDG.2002.v7.n1.a1

| mr = 1919420

| pages = 1–15

| publisher = International Press | location = Somerville, Massachusetts

| series = Surveys in Differential Geometry

| title = Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer

| volume = 7

| year = 2000}}

See also

Notes

{{notelist}}

References

{{reflist|colwidth=30em}}

Further reading

= Books discussing problems solved since 1995 =

  • {{cite book |last=Singh |first=Simon |author-link=Simon Singh |date=2002 |title=Fermat's Last Theorem |publisher=Fourth Estate |isbn=978-1-84115-791-7|title-link=Fermat's Last Theorem (book) }}
  • {{cite book |last=O'Shea |first=Donal |author-link=Donal O'Shea| date=2007 |title=The Poincaré Conjecture |publisher=Penguin |isbn=978-1-84614-012-9}}
  • {{cite book |last=Szpiro |first=George G. |author-link=George Szpiro| date=2003 |title=Kepler's Conjecture |publisher=Wiley |isbn=978-0-471-08601-7}}
  • {{cite book |last=Ronan |first=Mark |author-link=Mark Ronan| date=2006 |title=Symmetry and the Monster |publisher=Oxford |isbn=978-0-19-280722-9}}

= Books discussing unsolved problems =

  • {{cite book |first1=Fan|last1= Chung|author-link1=Fan Chung |last2=Graham |first2=Ron |author-link2=Ronald Graham| title=Erdös on Graphs: His Legacy of Unsolved Problems|title-link= Erdős on Graphs |publisher=AK Peters |year=1999 |isbn=978-1-56881-111-6}}
  • {{cite book |last1=Croft |first1=Hallard T. |last2=Falconer |first2=Kenneth J. |last3=Guy |first3=Richard K. |author-link2=Kenneth Falconer (mathematician) |author-link3=Richard K. Guy |date=1994 |title=Unsolved Problems in Geometry |publisher=Springer |isbn=978-0-387-97506-1 |url-access=registration |url=https://archive.org/details/unsolvedproblems0000crof }}
  • {{cite book |last=Guy |first=Richard K. |author-link=Richard K. Guy |date=2004 |title=Unsolved Problems in Number Theory |publisher=Springer |isbn=978-0-387-20860-2}}
  • {{cite book |last1=Klee |first1=Victor |author-link1=Victor Klee |last2=Wagon |first2=Stan |author-link2=Stan Wagon |date=1996 |title=Old and New Unsolved Problems in Plane Geometry and Number Theory |url=https://archive.org/details/oldnewunsolvedpr0000klee |url-access=registration |publisher=The Mathematical Association of America |isbn=978-0-88385-315-3}}
  • {{cite book |last=du Sautoy |first=Marcus |author-link=Marcus du Sautoy |date=2003 |title=The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics |publisher=Harper Collins |isbn=978-0-06-093558-0 |url-access=registration |url=https://archive.org/details/musicofprimes00marc }}
  • {{cite book |last=Derbyshire |first=John |author-link=John Derbyshire |date=2003 |title=Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics |publisher=Joseph Henry Press |isbn=978-0-309-08549-6 |url-access=registration |url=https://archive.org/details/primeobsessionbe00derb_0 }}
  • {{cite book |last=Devlin |first=Keith |author-link=Keith Devlin |date=2006 |title=The Millennium Problems – The Seven Greatest Unsolved* Mathematical Puzzles Of Our Time |publisher=Barnes & Noble |isbn=978-0-7607-8659-8}}
  • {{cite book |last1=Blondel |first1=Vincent D. |last2=Megrestski |first2=Alexandre |author-link1=Vincent Blondel |date=2004 |title=Unsolved problems in mathematical systems and control theory |publisher=Princeton University Press |isbn=978-0-691-11748-5}}
  • {{cite book |first1=Lizhen|last1= Ji|author-link1=Lizhen Ji |first2=Yat-Sun|last2= Poon |first3=Shing-Tung|last3= Yau|author-link3=Shing-Tung Yau |date=2013 |title=Open Problems and Surveys of Contemporary Mathematics (volume 6 in the Surveys in Modern Mathematics series) (Surveys of Modern Mathematics) |publisher=International Press of Boston |isbn=978-1-57146-278-7}}
  • {{cite journal |last=Waldschmidt |first=Michel |author-link=Michel Waldschmidt |date=2004 |title=Open Diophantine Problems |journal=Moscow Mathematical Journal |issn=1609-3321 |zbl=1066.11030 |volume=4 |number=1 |pages=245–305 |url=http://www.math.jussieu.fr/~miw/articles/pdf/odp.pdf |doi=10.17323/1609-4514-2004-4-1-245-305 |arxiv=math/0312440 |s2cid=11845578 }}
  • {{cite arXiv |last1=Mazurov |first1=V. D. |author-link1=Victor Mazurov |last2=Khukhro |first2=E. I. |eprint=1401.0300v6 |title= Unsolved Problems in Group Theory. The Kourovka Notebook. No. 18 (English version) |date= 1 Jun 2015|class=math.GR }}