ancient Egyptian units of measurement#Length

{{Short description|System of measurement used in Ancient Egypt}}The ancient Egyptian units of measurement are those used by the dynasties of ancient Egypt prior to its incorporation in the Roman Empire and general adoption of Roman, Greek, and Byzantine units of measurement. The units of length seem to have originally been anthropic, based on various parts of the human body, although these were standardized using cubit rods, strands of rope, and official measures maintained at some temples.

Following Alexander the Great's conquest of Persia and subsequent death, his bodyguard and successor Ptolemy assumed control in Egypt, partially reforming its measurements, introducing some new units and hellenized names for others.

Length

Egyptian units of length are attested from the Early Dynastic Period. Although it dates to the 5th dynasty, the Palermo stone recorded the level of the Nile River during the reign of the Early Dynastic pharaoh Djer, when the height of the Nile was recorded as 6 cubits and 1 palm{{sfn|Clagett|1999|p=3}} (about {{convert|3.217|m|ftin|abbr=on|sp=us|disp=or}}). A Third Dynasty diagram shows how to construct an elliptical vault using simple measures along an arc. The ostracon depicting this diagram was found near the Step Pyramid of Saqqara. A curve is divided into five sections and the height of the curve is given in cubits, palms, and digits in each of the sections.

{{cite book|last=Englebach|first=Clarke|title=Ancient Egyptian Construction and Architecture|year=1990|publisher=Dover|location=New York|isbn=0486264858}}

At some point, lengths were standardized by cubit rods. Examples have been found in the tombs of officials, noting lengths up to remen. Royal cubits were used for land measures such as roads and fields. Fourteen rods, including one double-cubit rod, were described and compared by Lepsius.{{sfnp|Lepsius|1865|pp=57 ff}} Two examples are known from the Saqqara tomb of Maya, the treasurer of Tutankhamun. Another was found in the tomb of Kha (TT8) in Thebes. These cubits are about {{convert|52.5|cm|sp=us|abbr=on}} long and are divided into palms and hands: each palm is divided into four fingers from left to right and the fingers are further subdivided into ro from right to left. The rulers are also divided into hands so that for example one foot is given as three hands and fifteen fingers and also as four palms and sixteen fingers.{{harvp|Clagett|1999}}.{{cite book|last=Gardiner|first=Allen|title=Egyptian Grammar 3rd Edition|year=1994|publisher=Griffith Institute|location=Oxford|isbn=0900416351}}{{cite book|last=Faulkner|first=Raymond|title=A Concise Dictionary of Middle Egyptian|publisher=Griffith Institute Asmolean Museum, Oxford|year=1991|isbn=0900416327}}{{cite book|last=Gillings|first=Richard|title=Mathematics in the Time of the Pharaohs|year=1972|publisher=MIT|isbn=0262070456|url-access=registration|url=https://archive.org/details/mathematicsintim0000gill_o9t9}}{{cite book|last=Loprieno|first=Antonio|title=Ancient Egyptian|publisher=CUP|location=New York|year=1996|isbn=0521448492}}

File:Coudée-turin.jpg

Surveying and itinerant measurement were undertaken using rods, poles, and knotted cords of rope. A scene in the tomb of Menna in Thebes shows surveyors measuring a plot of land using rope with knots tied at regular intervals. Similar scenes can be found in the tombs of Amenhotep-Sesi, Khaemhat and Djeserkareseneb. The balls of rope are also shown in New Kingdom statues of officials such as Senenmut, Amenemhet-Surer, and Penanhor.Corinna Rossi, Architecture and Mathematics in Ancient Egypt, Cambridge University Press, 2007

class="wikitable" style="margin: 1em auto 1em auto; text-align: center"

|+ Units of Length

! colspan=5 | Names

! colspan=3 | Equivalents

English

! colspan=2 | Egyptian

! colspan=2 | Coptic

!Palms

!Digits

!Metric{{refn|Gardiner, §266, pp. 199–200.}}

Digit
Finger
Fingerbreadth
Tebā{{harvp|Lepsius|1865|p=[https://archive.org/details/bub_gb_PRQGAAAAQAAJ/page/n47 43]}}.

| D50{{efn|Alternative representations for the Egyptian digit include D50-Z1 and I10-D58-D36-D50.{{citation |last=Vygus |first=Mark |date=2015 |title=Middle Egyptian Dictionary |url=http://www.pyramidtextsonline.com/documents/VygusDictionaryApril2015.pdf }}.}}

| b

{{lang|cop|ⲧⲏⲏⲃⲉ}}{{sfnp|Crum|1939|p=597}}tēēbe

| style="text-align: right" | {{1/4}}

| style="text-align: right" | 1

| style="text-align: right" | 1.875 cm

Palm
Hand
Shesep

| D48{{efn|Alternative representations for the Egyptian palm include D46, N11, O42 and O42-Q3:N11.}}

| šsp

{{lang|cop|ϣⲟⲡ}}{{sfnp|Crum|1939|p=574}}
{{lang|cop|ϣⲟⲟⲡ}}{{sfnp|Crum|1939|p=574}}
{{lang|cop|ϣⲱⲡ}}{{sfnp|Crum|1939|p=574}}
{{lang|cop|ϣⲁⲡ}}{{sfnp|Crum|1939|p=574}}
shop
shoop
shōp
shap

| style="text-align: right" | 1

| style="text-align: right" | 4

| style="text-align: right" |7.5 cm

Hand
Handsbreadth

| D46{{efn|Alternative representations for the Egyptian hand include D46:X1*F51, D46:X1*Z1, and U28-X1:D47.}}

| rt

{{lang|cop|ϩⲱϩϥ}}{{sfnp|Crum|1939|p=742}}{{citation |url=https://corpling.uis.georgetown.edu/coptic-dictionary/ |title=Online Coptic Dictionary |publisher=Georgetown |location=Washington |last=Feder |first=Frank |author2=Maxim Kupreyev |author3=Sonja Dahlgren |author4=Julien Delhez |author5=Lena Krastel |author6=Tonio Sebastian Richter |author7=Anne Sörgel |display-authors=1 }}.hōhf

| style="text-align: right" | {{frac|1|1|4}}

| style="text-align: right" | 5

| style="text-align: right" |9.38 cm

Fist

| D49{{efn|Alternative representations for the Egyptian fist include Aa1:I9-D36:D49 and Aa1:I9-D36-D49:Z1 as f and G1-G17-G17-D49, G1-G17-G17-X1:D49, and M17-G17-D49 as mm.}}

| f
mm

ϭⲁϫⲙⲏ{{sfnp|Crum|1939|p=842}}
ϫⲁⲙⲏ{{sfnp|Crum|1939|p=842}}
qajmē
jamē

| style="text-align: right" | {{frac|1|1|2}}

| style="text-align: right" | 6

| style="text-align: right" |11.25 cm

Double Handbreadth

| D48:D48{{efn|Alternative representations for the Egyptian double handbreadth include D48-D48.}}

| šspwy

| style="text-align: right" | 2

| style="text-align: right" | 8

| style="text-align: right" | 15{{nbsp}}cm

Small Span
Pedj-Sheser
Shat Nedjes
Little Shat{{harvp|Clagett|1999|p=[https://archive.org/details/bub_gb_8c10QYoGa4UC/page/n17 9]}}.

| H7-G37

| p šsr
št ns

| rowspan=2 | {{lang|cop|ⲣⲧⲱ}}{{sfnp|Crum|1939|p=305}}
{{lang|cop|ⲉⲣⲧⲱ}}{{sfnp|Crum|1939|p=58}}

| rowspan=2 | rtō
ertō

| style="text-align: right" | 3

| style="text-align: right" | 12

| style="text-align: right" |22.5 cm

Great Span
Half-Cubit
Pedj-Aa
Shat Aa
Great Shat

| H7-O29{{efn|Alternative representations for the Egyptian half-cubit include Z12 of uncertain pronunciation.}}

| pḏ
št

| style="text-align: right" | {{frac|3|1|2}}

| style="text-align: right" | 14

| style="text-align: right" |26 cm

Foot
Djeser
Ser
Bent Arm

| D45

| sr

| style="text-align: right" | 4

| style="text-align: right" | 16

| style="text-align: right" | 30 cm

Shoulder
Remen
Upper Arm

| D41

| rmn

| style="text-align: right" | 5

| style="text-align: right" | 20

| style="text-align: right" | 37.5 cm

Small Cubit
Short Cubit
Meh Nedjes

| D42-G37

| m ns
m šsr

| rowspan=2 | {{lang|cop|ⲙⲁϩⲉ}}{{harvp|Crum|1939|p=210}}.{{citation |title=Journal of Egyptian Archaeology, Vol. IV |date=1917 |publisher=Egypt Exploration Fund |page=135 }}.
{{lang|cop|ⲙⲉϩⲓ}}{{sfnp|Crum|1939|p=211}}

| rowspan=2 | mahe
mehi

| style="text-align: right" | 6

| style="text-align: right" | 24

| style="text-align: right" |45 cm

Cubit
Royal Cubit
Sacred Cubit{{harvp|Bagnall|2009|p=[https://books.google.com/books?id=iD1nDAAAQBAJ&pg=PA186 186]}}.
Meh Nesut
Meh Nisut{{harvp|Clagett|1999|p=[https://archive.org/details/bub_gb_8c10QYoGa4UC/page/n16 8]}}.
Mahi
Ell

| D42{{efn|Alternative representations of the Egyptian cubit or royal cubit include D36, D36:Y1, D36:Z1, V22:D36, V22:D42, V22:Z1:D36, all pronounced m, and the explicit "royal" or "sacred cubit" M23-t:n-D42, pronounced m nswt or n-swt.}}

| m

| style="text-align: right" | 7

| style="text-align: right" | 28

| style="text-align: right" | 52.3{{nbsp}}cm{{harvp|Clagett|1999|p=[https://archive.org/details/bub_gb_8c10QYoGa4UC/page/n15 7]}}.
52.5{{nbsp}}cm

Pole
Nebiu{{citation |last=Obenga |first=Théophile |publisher=Per Ankh |date=2004 |title=African Philosophy: The Pharaonic Period 2780–330 BC |page=460 }}.

| N35:D58-M17-V1-T19

| nbiw

| style="text-align: right" | 8

| style="text-align: right" | 32

| style="text-align: right" |60 cm

colspan=8 |
Rod
Rod of Cord
Stick of Rope
Khet
Schoinion

| W24-G43-V28{{efn|Alternative representations of the Egyptian rod include M3{{citation |title=Hat-'a em Sbayet r-en Kemet: An Introduction to the Study of the Egyptian Language: A Semitic Approach |author=Abd el-Mohsen Bakir |date=1978 |publisher=General Egyptian Book Organization |page=70 }}. and M3:X1*Z1-N35-N35:U19-W24-G43-V28-V1, M3:X1*Z1-N35-N35:U19:W24-V28-V1, and M3:X1*Z1-N35-U19-W24-V28, which were pronounced t n nw ({{langx|cop|ϣⲉ ⲛ ⲛⲟϩ}}, she n noh).}}

| t

{{lang|cop|ϩⲱⲧⲉ}}{{sfnp|Crum|1939|p=722}}
{{lang|cop|ϩⲱϯ}}{{sfnp|Crum|1939|p=722}}
hōte
hōti

| colspan=2 | 100 cubits

| style="text-align: right" |52.5 m

Schoenus
River-Measure
League
Ater
{{nowrap|Iter or Iteru}}

| M17-X1:D21-G43-N35B-N36:N21*Z1{{efn|Alternative representations of the Egyptian schoenus include M17-X1:D21-G43-D54, M17-X1:D21-G43-D54-Z1, M17-X1:D21-G43-N36, M17-X1:D21-N35A-D54:N21*Z1, M17-X1*Z7:D21-N35A-D54, M17-X1*Z7:D21-N35A-N17:N21*N21-Z2, M17-X1*Z7:D21-N35A-N36:N21*Z1-Z2, M17-X1*Z7:D21-N35A-N36:N23, M17-X1:D21-Z7-N37:Z2, and M17-D21-D56-D54.}}

| trw

ϣϥⲱ{{sfnp|Crum|1939|p=611}}
ϣⲃⲱ{{sfnp|Crum|1939|p=611}}
shfō
shvō

| colspan=2 | 20,000 cubits

| style="text-align: right" |10.5 km

The digit was also subdivided into smaller fractions of {{1/2}}, {{1/3}}, {{1/4}}, and {{frac|1|16}}.{{harvp|Lepsius|1865|p=[https://archive.org/details/bub_gb_PRQGAAAAQAAJ/page/n48 44]}}. Minor units include the Middle Kingdom reed of 2 royal cubits,{{efn|The Egyptian reed was written N35:D58*M17-M3 or N35:D58-M17-Z7-T19 and pronounced nb.}} the Ptolemaic xylon ({{langx|grc|ξύλον}}, {{abbr|lit|literally}}.{{nbsp}}"timber") of three royal cubits,{{citation |contribution-url=https://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0063%3Aalphabetic+letter%3DM%3Aentry+group%3D2%3Aentry%3Dmensura-cn |contribution=Mensura |title=A Dictionary of Greek and Roman Antiquities |date=1890 |editor-last=Smith |editor-first=William |editor2=William Wayte |editor3=G.E. Marindin |display-editors=0 |last=Ridgeway |first=William |location=London |publisher=John Murray }}.{{citation |publisher=American Philological Association |date=1941 |title=Transactions and Proceedings |page=443 }}. the Ptolemaic fathom ({{langx|grc|ὀργυιά}}, orgyiá; {{langx|egy|pt}}; {{langx|cop|ϩⲡⲟⲧ}}, hpot) of four lesser cubits,{{citation |url=https://books.google.com/books?id=3_wUAAAAIAAJ |contribution-url=https://books.google.com/books?id=3_wUAAAAIAAJ&pg=PA1312 |page=[https://books.google.com/books?id=3_wUAAAAIAAJ&pg=PA1313 1313] |contribution=3997: Iversen, Erik, Canon and Proportions in Egyptian Art |title=Annual Egyptological Bibliography 1955 |last=Janssen |first=Jozef M.A. |date=1956 |location=Leiden |publisher=E.J. Brill for the International Association of Egyptologists }}. and the kalamos of six royal cubits.

Area

Records of land area also date to the Early Dynastic Period. The Palermo stone records grants of land expressed in terms of kha and setat. Mathematical papyri also include units of land area in their problems. For example, several problems in the Moscow Mathematical Papyrus give the area of rectangular plots of land in terms of setat and the ratio of the sides and then require the scribe to solve for their exact lengths.

The setat was the basic unit of land measure and may originally have varied in size across Egypt's nomes. Later, it was equal to one square khet, where a khet measured 100 cubits. The setat could be divided into strips one khet long and ten cubit wide (a kha).[http://www.digitalegypt.ucl.ac.uk/weights/area.html Digital Egypt: Measuring area in Ancient Egypt]

During the Old Kingdom:

class="wikitable" style="margin: 1em auto 1em auto; text-align: center"

|+ Units of Area

! colspan=5 | Names

! colspan=3 | Equivalents{{harvp|Clagett|1999|p=[https://archive.org/details/bub_gb_8c10QYoGa4UC/page/n20 12]}}.

English

! colspan=2 | Egyptian

! colspan=2 | Coptic

! Setat

! Square
Cubits

! Metric

Sa
Eighth

| G39

z| style="text-align: right" | {{frac|1|800}}

| style="text-align: right" | {{frac|12|1|2}}

| style="text-align: right" | 3.4456{{nbsp}}m2

Heseb
Fourth
Account Unit

| Z9

sb| style="text-align: right" | {{frac|1|400}}

| style="text-align: right" | 25

| style="text-align: right" | 6.8913{{nbsp}}m2

Remen
Half
Shoulder

| D41

rmn| style="text-align: right" | {{frac|1|200}}

| style="text-align: right" | 50

| style="text-align: right" | 13.783{{nbsp}}m2

Ta
Khet
Cubit{{harvp|Clagett|1999|p=[https://archive.org/details/bub_gb_8c10QYoGa4UC/page/n21 13]}}.
Cubit of Land
Land Cubit
Ground Cubit
Cubit Strip
Land Unit

| N17{{efn|Alternative representations of the 100-square-cubit measure include D41 and D41:N16, both pronounced m t, and V28-G1-X1-N37-M12.{{citation needed|date=February 2017}}}}

| t
t
m
m itn

| {{lang|cop|ϫⲓⲥⲉ}}{{sfnp|Crum|1939|p=790}}

jise

| style="text-align: right" | {{frac|1|100}}

| style="text-align: right" | 100

| style="text-align: right" | 27.565{{nbsp}}m2

Kha
Thousand

| M12

| style="text-align: right" | {{frac|1|10}}

| style="text-align: right" | 1,000

| style="text-align: right" | 275.65{{nbsp}}m2

Setat
Setjat
Aroura
Square Khet

| s t-F29-t:Z4{{efn|Alternative representations of the setat include N18, O39:Z1, S22:X1*X1, S29-V13:V2-X1:O39, V2:X1*N23, V2:X1*X1-N23:Z1, V2:X1*X1-O39, V2:X1*Z4, V2:X1*Z4-N23-Z1:Z1, and D35:X1*Z4-V20:Z2, all pronounced st.}}

s{{harvp|Bagnall|2009|p=[https://books.google.com/books?id=iD1nDAAAQBAJ&pg=PA185 185]}}.
st

| {{lang|cop|ⲥⲱⲧ}}{{sfnp|Crum|1939|p=360}}
{{lang|cop|ⲥⲧⲉⲓⲱϩⲉ}}{{sfnp|Crum|1939|p=367}}

sōt
steiōhe

| style="text-align: right" | 1

| style="text-align: right" | 10,000

| style="text-align: right" | 2,756.5{{nbsp}}m2

During the Middle and New Kingdom, the "eighth", "fourth", "half", and "thousand" units were taken to refer to the setat rather than the cubit strip:

class="wikitable" style="margin: 1em auto 1em auto; text-align: center"
Sa
Eighth

| G39{{efn|Alternative representations of the {{frac|1|8}} setat include Z30.}}

s| style="text-align: right" | {{frac|1|8}}

| style="text-align: right" | 1,250

| style="text-align: right" | 345{{nbsp}}m2

Heseb
Fourth

| Z9{{efn|Alternative representations of the quarter-setat include Aa2:Y1.{{citation needed|date=February 2017}}}}

hsb
r-fdw
| style="text-align: right" | {{1/4}}

| style="text-align: right" | 2,500

| style="text-align: right" | 689{{nbsp}}m2

Gs
Remen
Half

| Aa13{{efn|Alternative representations of the half-setat include W11-S29-Aa13, pronounced gs, D41, pronounced rmn, and Y5:N35-M40.{{citation needed|date=February 2017}}}}

gs

| {{lang|cop|ⲣⲉⲣⲙⲏ}}

rermē

| style="text-align: right" | {{1/2}}

| style="text-align: right" | 5,000

| style="text-align: right" | 1378{{nbsp}}m2

Kha
Thousand

| M12{{efn|Alternative representations of the thousand-ta measure include M12-N16:N23*Z1, M12-N17, and M12-Z1-N35-N16:N23*Z1.}}


t
| style="text-align: right" | 10

| style="text-align: right" | 100,000

| style="text-align: right" | 2.76{{nbsp}}ha

During the Ptolemaic period, the cubit strip square was surveyed using a length of 96 cubits rather than 100, although the aroura was still figured to compose 2,756.25{{nbsp}}m2. A 36{{nbsp}}square{{nbsp}}cubit area was known as a kalamos and a 144{{nbsp}}square{{nbsp}}cubit area as a hamma. The uncommon bikos may have been {{frac|1|1|2}}{{nbsp}}hammata or another name for the cubit strip. The Coptic shipa ({{lang|cop|ϣⲓⲡⲁ}}) was a land unit of uncertain value, possibly derived from Nubia.{{sfnp|Crum|1939|p=570}}

Volume

File:Bronze vessel used a capacity measure. Inscribed with the cartouches of the birth-name and throne name of Amenhotep III. 18th Dynasty. From Egypt. The Petrie Museum of Egyptian Archaeology, London.jpg of the birth and throne names of Amenhotep III of the 18th Dynasty]]

Units of volume appear in the mathematical papyri. For example, computing the volume of a circular granary in RMP{{nbsp}}42 involves cubic cubits, khar, heqats, and quadruple heqats. RMP{{nbsp}}80 divides heqats of grain into smaller henu.

File:RMP-80.jpg: As for vessels (debeh) used in measuring grain by the functionaries of the granary: done into henu, 1 hekat makes 10; {{1/2}} makes 5; {{1/4}} makes {{frac|2|1|2}}; etc.]]

class="wikitable" style="margin: 1em auto 1em auto; text-align: center"

|+ Units of Volume

! colspan=3 | Names

! colspan=3 | Equivalents

English

! colspan=2 | Egyptian

! Heqats

! Ro

! Metric

Ro

| r

r

| style="text-align: right" | {{frac|1|320}}

| style="text-align: right" | 1

| style="text-align: right" | 0.015{{nbsp}}L

Dja

|

dja

| style="text-align: right" | {{frac|1|16}}

| style="text-align: right" | 20{{citation |first=T. |last=Pommerening |contribution=Altagyptische Rezepturen Netrologisch Neu Onterpretiert |title=Berichte zur Wissenschaftgeschichte, No. 26 |date=2003 |page=1–16}}. {{in lang|de}}

| style="text-align: right" | 0.30{{nbsp}}L

Jar
Hinu

| h-n:W24*V1-W22

hnw

| style="text-align: right" | {{frac|1|10}}

| style="text-align: right" | 32

| style="text-align: right" | 0.48{{nbsp}}L

Barrel
Heqat
Hekat

| U9

hqt

| style="text-align: right" | 1

| style="text-align: right" | 320

| style="text-align: right" | 4.8{{nbsp}}L

Double{{nbsp}}Barrel
Double Heqat
Double Hekat

|

hqty

| style="text-align: right" | 2

| style="text-align: right" | 640

| style="text-align: right" | 9.6{{nbsp}}L

Quadruple Heqat{{nbsp}}(MK)
Oipe{{citation |page=[https://books.google.com/books?id=6KUdBAAAQBAJ&pg=PA129 129] |url=https://books.google.com/books?id=6KUdBAAAQBAJ |title=Middle Egyptian: An Introduction to the Language and Culture of Hieroglyphics, 3rd ed. |last=Allen |first=James P. |date=2014 |location=Cambridge |publisher=Cambridge University Press |isbn = 9781139917094}}. (NK){{citation |contribution-url=https://www.ucl.ac.uk/museums-static/digitalegypt/weights/volume.html |contribution=Measuring Volume in Ancient Egypt |title=Digital Egypt for Universities |url=https://www.ucl.ac.uk/museums-static/digitalegypt/Welcome.html |publisher=University College |location=London |date=2002 }}.

| T14-U9
-i-p:t-U9-

hqt-fdw
jpt{{citation |contribution-url=http://www.reshafim.org.il/ad/egypt/people/counting_and_measuring.htm#volume |contribution=Counting and Measuring |title=Pharaonic Egypt |url=http://www.reshafim.org.il/ad/egypt/index.html |date=2012 |last=Dollinger |first=André |location=Reshafim }}.
ipt

| style="text-align: right" | 4

| style="text-align: right" | 1,280

| style="text-align: right" | 19.2{{nbsp}}L

Sack
Khar

| Aa1:r

khar

| style="text-align: right" | 20{{nbsp}}(MK)
16{{nbsp}}(NK){{citation |editor-last=Katz |editor-first=Victor J. |editor2=Annette Imhausen |display-editors=1 |title=The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook |publisher=Princeton University Press |date=2007 |page=17 |isbn=978-0-691-11485-9 }}.

| style="text-align: right" | 6,400{{nbsp}}(MK)
5120{{nbsp}}(NK)

| style="text-align: right" | 96.5{{nbsp}}L{{nbsp}}(MK)
76.8{{nbsp}}L{{nbsp}}(NK)

Deny
Cubic{{nbsp}}cubit

|

deny

| style="text-align: right" | 30

| style="text-align: right" | 9,600

| style="text-align: right" | 144{{nbsp}}L

The oipe was also formerly romanized as the apet.{{citation |title=Encyclopaedia Britannica, 9th ed. |contribution=Weights and Measures |volume=XXIV |date=1888 }}.

Weight

File:Green glazed faience weight, inscribed for the high Steward Aabeni. Late Middle Kingdom. From Abydos, Egypt. The Petrie Museum of Egyptian Archaeology, London.jpg, inscribed for the high steward Aabeni during the late Middle Kingdom]]

File:Serpentine weight of 10 daric. Inscribed for Taharqa in the midst of Sais. 25th Dynasty. From Egypt, probably from Nesaft. The Petrie Museum of Egyptian Archaeology, London.jpg]]

Weights were measured in terms of deben. This unit would have been equivalent to 13.6 grams in the Old Kingdom and Middle Kingdom. During the New Kingdom however it was equivalent to 91 grams. For smaller amounts the qedet ({{frac|1|10}} of a deben) and the shematy ({{frac|1|12}} of a deben) were used.

class="wikitable" style="margin: 1em auto 1em auto; text-align: center"

|+ Units of Weight

! colspan=3 | Names

! colspan=2 | Equivalents

English

! colspan=2 | Egyptian

!Debens

!Metric

Piece
Shematy

|

shȝts

| style="text-align: right" | {{frac|1|12}}

| style="text-align: right" |

Qedet
Kedet
Kite

| Aa28-X1:S106

qdt

| style="text-align: right" | {{frac|1|10}}

| style="text-align: right" |

Deben

| D46-D58-N35:F46

dbn

| style="text-align: right" | 1

| style="text-align: right" | 13.6 g (OK & MK)
91 g (NK)

The qedet or kedet is also often known as the kite, from the Coptic form of the same name ({{lang|cop|ⲕⲓⲧⲉ}} or {{lang|cop|ⲕⲓϯ}}).{{sfnp|Weigall|1908|p=ix}} In 19th-century sources, the deben and qedet are often mistakenly transliterated as the uten and kat respectively, although this was corrected by the 20th century.{{sfnp|Weigall|1908|pp=iii & ix}}

Time

{{main|Egyptian calendar|Alexandrian calendar}}

The former annual flooding of the Nile organized prehistoric and ancient Egypt into three seasons: Akhet ("Flood"), Peret ("Growth"), and Shemu or Shomu ("Low Water" or "Harvest").{{harvp|Tetley|2014|p=[http://www.egyptchronology.com/uploads/2/6/9/4/26943741/ch_3_investigating_ancient_egyptian_calendars.pdf 39]}}.{{sfnp|Winlock|1940|p=453}}{{sfnp|Clagett|1995|p=[https://archive.org/details/bub_gb_8c10QYoGa4UC/page/n84 4–5]}}

The Egyptian civil calendar in place by Dynasty V{{sfnp|Clagett|1995|p=[https://archive.org/details/bub_gb_8c10QYoGa4UC/page/n36 28]}} followed regnal eras resetting with the ascension of each new pharaoh.{{harvp|Clagett|1995|p=[https://archive.org/details/bub_gb_8c10QYoGa4UC/page/n187 5]}}. It was based on the solar year and apparently initiated during a heliacal rising of Sirius following a recognition of its rough correlation with the onset of the Nile flood.{{sfnp|Parker|1950|p=23}} It followed none of these consistently, however. Its year was divided into 3 seasons, 12 months, 36 decans, or 360 days with another 5 epagomenal days{{sfnp|Parker|1950|p=7}}—celebrated as the birthdays of five major gods{{sfnp|Spalinger|1995|p=33}} but feared for their ill luck{{sfnp|Spalinger|1995|p=35}}—added "upon the year". The Egyptian months were originally simply numbered within each season{{sfnp|Parker|1950|pp=43–5}} but, in later sources, they acquired names from the year's major festivals{{sfnp|Clagett|1995|p=14–15}} and the three decans of each one were distinguished as "first", "middle", and "last".{{sfnp|Clagett|1995|p=[https://archive.org/details/bub_gb_8c10QYoGa4UC/page/n84 4]}} It has been suggested that during the Nineteenth Dynasty and the Twentieth Dynasty the last two days of each decan were usually treated as a kind of weekend for the royal craftsmen, with royal artisans free from work.{{sfnp|Jauhiainen|2009|p=39}} This scheme lacked any provision for leap year intercalation until the introduction of the Alexandrian calendar by Augustus in the 20s{{nbsp}}BC, causing it to slowly move through the Sothic cycle against the solar, Sothic, and Julian years.Marshall Clagett, Ancient Egyptian Science: Calendars, clocks, and astronomy, 1989 Dates were typically given in a YMD format.

The civil calendar was apparently preceded by an observational lunar calendar which was eventually made lunisolar{{efn|Parker extensively developed the thesis that the predynastic lunar calendar was already lunisolar, using intercalary months every 2 or 3 years to maintain Sirius's return to the night sky in its twelfth month,{{sfnp|Parker|1950|pp=30–2}} but no evidence of such intercalation exists predating the schematic lunisolar calendar developed in {{nowrap|4th century BC.{{sfnp|Tetley|2014|p=[http://www.egyptchronology.com/uploads/2/6/9/4/26943741/ch_10_resolving_the_eponymous_month_conflict.pdf 153]}}}}}} and fixed to the civil calendar, probably in 357{{nbsp}}BC.{{sfnp|Clagett|1995|p=[https://archive.org/details/bub_gb_8c10QYoGa4UC/page/n34 26]}} The months of these calendars were known as "temple months"{{sfnp|Parker|1950|p=17}} and used for liturgical purposes until the closing of Egypt's pagan temples under Theodosius ITheodosian Code 16.10.12 in the AD{{nbsp}}390s and the subsequent suppression of individual worship by his successors.{{sfn|Høyrup|p=13}}

Smaller units of time were vague approximations for most of Egyptian history. Hours—known by a variant of the word for "stars"{{sfnp|Vygus|2015|p=409}}—were initially only demarcated at night and varied in length. They were measured using decan stars and by water clocks. Equal 24-part divisions of the day were only introduced in 127{{nbsp}}BC. Division of these hours into 60 equal minutes is attested in Ptolemy's 2nd-century works.

class="wikitable" style="margin: 1em auto 1em auto; text-align: center"

|+ Units of Time

! colspan=3 |Name

! rowspan=2 | Days

English

! colspan=2 | Egyptian

style="text-align: left" | hour

| E34:N35-W24:X1-N14:N5{{efn|Variant representations of hour include E34:N35-D54,{{sfnp|Vygus|2015|p=399}} E34:N35-W24:X1-N5, E34:N35-W24*X1:N14, E34:N35-W24-G43-X1:N14-N5:Z1,{{sfnp|Vygus|2015|p=408}} E34:N35-W24:X1-N14-X1:N5-Z1, E34:N35-W24:X1-N2-N5-Z1, E34:N35-W24:X1-N2-D6 (properly N46B with a star at the end of the line and a second shorter line to its right),{{sfnp|Vygus|2015|p=409}}E34:N35-W24:Z7-N14-N5:Z2,{{sfnp|Vygus|2015|p=410}} N5:Z2,{{sfnp|Vygus|2015|p=1229}} N14:V13-N5, N14:V13-N5:Z2, N14:X1*N5, N14:X1-N5:Z2,{{sfnp|Vygus|2015|p=1239}} N14:X1*Z1,{{sfnp|Vygus|2015|p=1240}} T14-X1:N5,{{sfnp|Vygus|2015|p=1984}} and E34-N35-W24-X1-N14.{{citation needed|date=February 2017}} As nwt, hour also appears as N35:U19-W24-G43-X1:N5.{{sfnp|Vygus|2015|p=1382}}}}

| {{lang|egy|wnwt}}

| variable

style="text-align: left" | dayS29-S29-S29-Z7-N5{{efn|Variant representations of day include N5,{{sfnp|Vygus|2015|p=1228}} S29-S29-S29-G43-N5,{{sfnp|Vygus|2015|p=1880}} and S29-S29-Z4-N5.{{sfnp|Vygus|2015|p=1881}} In the plural sww, it appears as O35-G43-N5:Z2{{sfnp|Vygus|2015|p=1611}} S29-G43-N5:Z2{{sfnp|Vygus|2015|p=1790}} and S29-S29-S29-N5.{{sfnp|Vygus|2015|p=1880}} As hrw ("daytime", "day"), it appears as N5-Z1,{{sfnp|Vygus|2015|p=1228}} O4-N5,{{sfnp|Vygus|2015|p=1500}} Z5:N5-Z1,{{sfnp|Vygus|2015|p=2467}} O1:D21-N5-Z1,{{sfnp|Vygus|2015|p=1461}} O4-G1-D21:N5*Z1,{{sfnp|Vygus|2015|p=1477}} O4-G1-D21:Z7-N5-Z1,{{sfnp|Vygus|2015|p=1478}} O4-G1-Z7-N5:Z1,{{sfnp|Vygus|2015|p=1492}} O4-G43-N5:Z1,{{sfnp|Vygus|2015|p=1495}} O4-Z1-G43-N5, O4-Z5-N5-Z1,{{sfnp|Vygus|2015|p=1513}} O4-Z5-X1:N5, O4-Z5-Z5-N5, O4-Z5-Z5-Z1,{{sfnp|Vygus|2015|p=1514}} and O4:D21-G43-N5:Z1.{{sfnp|Vygus|2015|p=1471}} As rꜥ ("sun", "day"), it appears as N5, N5-Z1,{{sfnp|Vygus|2015|p=1228}} and D21:D36-N5-Z1.{{sfnp|Vygus|2015|p=75}} As ḏt, day appears as I10:X1*Z1-D12, although properly the loaf and stroke are smaller and fit within the curve of the snake.{{sfnp|Vygus|2015|p=822}}}}{{lang|egy|sw}}

| style="text-align: right" | 1

style="text-align: left" | decan
decade
week
S29-S29-S29-Z7-N5-V20{{efn|Variant representations of decan include S29-S29-Z7-N5-V20.{{sfnp|Vygus|2015|p=1881}}}}"ten-day"
{{lang|egy|sw mḏ}}{{sfnp|Vygus|2015|p=1880}}

| style="text-align: right" | 10

style="text-align: left" | monthN11:N14-D46:N5{{efn|Variant representations of month include N11, N11:N14, N11:N14:D46,{{sfnp|Vygus|2015|p=1233}} N11:N14-D46,{{citation needed|date=February 2017}} N11:N14-D46:N5*Z1, N11:N14*D46-Z7-N5, N11:N14*Z1-D46:N5*Z1, and N11:N14*Z5*Z5-N5.{{sfnp|Vygus|2015|p=1234}} In the plural {{lang|egy|ꜣbdtyw}}, it appears as N11:N14*D46-G4-Z7:Z7-X1:N5.{{sfnp|Vygus|2015|p=1233}} As ꜣbdw, month appears as G1-N11:D46-G43.{{sfnp|Vygus|2015|p=547}}}}{{lang|egy|ꜣbd}}

| style="text-align: right" | 30

style="text-align: left" | seasonM17-X1:D21-G43-M6{{lang|egy|ı͗trw}}{{efn|In the plural ı͗trw, "seasons" appears as M17-V13:D21-G43-M5 (properly M5B with a triangular leaf),{{sfnp|Vygus|2015|p=1156}} M17-X1:D21-G43-M4-M4-M4-N5*N5:N5, and M17-X1:D21-E23-M5-M5-M5, although properly the palm branches of the last are reversed.{{sfnp|Vygus|2015|p=1168}} As tr ("time", "period", "season"), it appears as M6-N5,{{sfnp|Vygus|2015|p=958}} M17-X1:D21-N5,{{sfnp|Vygus|2015|p=1167}} X1:D21-M6-N5,{{sfnp|Vygus|2015|p=2386}} and X1:D21-M17-M6-N5.{{sfnp|Vygus|2015|p=2387}} In the dual number, this appears as trwy in X1:D21-G43-M6-N5:N5, X1:D21-M6-N5:N5,{{sfnp|Vygus|2015|p=2386}} and X1:D21-M17-M6-Z4-G43-N5:N5.{{sfnp|Vygus|2015|p=2387}} In the plural, this appears as trw in M17-G43-X1:D21-G43-M6-N5:Z2,{{sfnp|Vygus|2015|p=1085}} M17-X1:D21-M6-N5:Z2,{{sfnp|Vygus|2015|p=1167}} and X1:D21-G43-M4-N5:Z2.{{sfnp|Vygus|2015|p=2386}}}}

| style="text-align: right" | 120

style="text-align: left" | yearM4-X1:Z1{{efn|Variant representations of year include M5, M7-X1:Z1,{{sfnp|Vygus|2015|p=958}} M4-X1 and M4-X1:Z1-G7.{{sfnp|Vygus|2015|p=957}} In the plural {{lang|egy|rnpwt}}, it appears as D21:N35:Q3*Z2 on the Naucratis Stela{{sfnp|Vygus|2015|p=103}} and as M4-M4-M4, M4-M4-M4-X1:Z1-Y1:Z2, M4-M4-M4-X1:Z2, M4-X1:Z1-Z3A, M4-X1:Z2,{{sfnp|Vygus|2015|p=957}} and M4-Z3.{{sfnp|Vygus|2015|p=958}}}}{{lang|egy|rnpt}}

| style="text-align: right" | 365
{{frac|365|1|4}}

See also

Notes

{{Noteslist}}

References

=Citations=

{{Reflist|30em}}

=Bibliography=

  • {{citation |url=https://books.google.com/books?id=iD1nDAAAQBAJ |editor-last=Bagnall |editor-first=Roger S. |title=The Oxford Handbook of Papyrology |publisher=Oxford University Press |location=Oxford |date=2009 |display-editors=0 |last=Bagnall |first=Roger Shaler |author-link=Roger S. Bagnall |contribution=Practical Help: Chronology, Geography, Measures, Currency, Names, Prosopography, and Technical Vocabulary |pages=[https://books.google.com/books?id=iD1nDAAAQBAJ&pg=PA179 179–196] |isbn=9780199843695 }}.
  • {{citation |first=Marshall |last=Clagett |url=https://books.google.com/books?id=xKKPUpDOTKAC |title=Ancient Egyptian Science: A Source Book, Vol. II: Calendars, Clocks, and Astronomy |location=Philadelphia |publisher=American Philosophical Society |series=Memoirs of the APS, No. 214 |date=1995 |isbn=9780871692146 }}.
  • {{citation |last=Clagett |first=Marshall |author-link=Marshall Clagett |title=Ancient Egyptian Science: A Source Book, Vol. III: Ancient Egyptian Mathematics |series=Memoirs of the APS, Vol. 232 |date=1999 |publisher=American Philosophical Society |location=Philadelphia |isbn=978-0-87169-232-0 |url=https://books.google.com/books?id=8c10QYoGa4UC }}.
  • {{citation |last=Crum |first=Walter Ewing |author-link=Walter Ewing Crum |url=http://www.tyndalearchive.com/TABS/crum/index.htm |title=A Coptic Dictionary |location=Oxford |publisher=Clarendon Press |date=1939 |page=210 }}.
  • {{citation |last=Høyrup |first=Jens |contribution=A Historian's History of Ancient Egyptian Science |title=Physis |contribution-url=http://webhotel4.ruc.dk/~jensh/Publications/1996%7BR%7D10_Clagett.PDF }}, a review of Clagett's Ancient Egyptian Science, Vols. I & II.
  • {{citation |url=https://helda.helsinki.fi/bitstream/handle/10138/19196/donotcel.pdf?sequence=2 |title=Do Not Celebrate Your Feast without Your Neighbors: A Study of References to Feasts and Festivals in Non-Literary Documents from Ramesside Period Deir el-Medina |last=Jauhiainen |first=Heidi |publisher=University of Helsinki |location=Helsinki |date=2009 |series=Publications of the Institute for Asian and African Studies, No. 10 }}.
  • {{citation |last=Lepsius |first=Karl Richard |author-link=Karl Richard Lepsius |title=Die Alt-Aegyptische Elle und Ihre Eintheilung |date=1865 |publisher=Dümmler |location=Berlin |url=https://books.google.com/books?id=PRQGAAAAQAAJ }}. {{in lang|de}}
  • {{citation |last=Parker |first=Richard Anthony |author-link=Richard Anthony Parker |title=The Calendars of Ancient Egypt |series=Studies in Ancient Oriental Civilization, No. 26 |location=Chicago |publisher=University of Chicago Press |date=1950 |url=https://oi.uchicago.edu/sites/oi.uchicago.edu/files/uploads/shared/docs/saoc26.pdf }}.
  • {{citation |last=Spalinger |first=Anthony |contribution=Some Remarks on the Epagomenal Days in Ancient Egypt |title=Journal of Near Eastern Studies, Vol. 54, No. 1 |date=January 1995 |pages=33–47 }}.
  • {{citation |last=Tetley |first=M. Christine |title=The Reconstructed Chronology of the Egyptian Kings, Vol. I |url=http://www.egyptchronology.com/vols-1--2.html |date=2014 |access-date=2017-02-24 |archive-url=https://web.archive.org/web/20170211075421/http://www.egyptchronology.com/vols-1--2.html |archive-date=2017-02-11 |url-status=dead }}.
  • {{citation |last=Weigall |first=Arthur Edward Pearse Brome |author-link=Arthur Weigall |publisher=Imprimerie de l'Institut Français d'Archéologie Orientale |date=1908 |location=Cairo |series=Catalogue Général des Antiquités Égyptiennes du Musée du Caire, No. 31271-31670 |title=Weights and Balances |url=http://dlib.nyu.edu/awdl/sites/dl-pa.home.nyu.edu.awdl/files/weightsbalances00weig/weightsbalances00weig.pdf }}.
  • {{citation |last=Winlock |first=Herbert Eustis |author-link=Herbert Eustis Winlock |date=1940 |contribution-url=https://archive.org/stream/H.e.WinlockTheOriginOfTheAncientEgyptianCalendar1840/Winlock_originOfTheAncientEgyptianCalendar_procAmerPhilosophSoc_1940_sep_v83_n3_447-464#page/n0/mode/2up |contribution=The Origin of the Ancient Egyptian Calendar |pages=447–464 |title=Proceedings of the American Philosophical Society, No. 83 |location=New York |publisher=Metropolitan Museum of Art }}.