chemical nomenclature#Additive nomenclature

{{Short description|Systematic naming of chemical compounds}}

Chemical nomenclature is a set of rules to generate systematic names for chemical compounds. The nomenclature used most frequently worldwide is the one created and developed by the International Union of Pure and Applied Chemistry (IUPAC).

IUPAC Nomenclature ensures that each compound (and its various isomers) have only one formally accepted name known as the systematic IUPAC name. However, some compounds may have alternative names that are also accepted, known as the preferred IUPAC name which is generally taken from the common name of that compound. Preferably, the name should also represent the structure or chemistry of a compound.

For example, the main constituent of white vinegar is {{Chem|C|H|3|C|O|O|H}}, which is commonly called acetic acid and is also its recommended IUPAC name, but its formal, systematic IUPAC name is ethanoic acid.

The IUPAC's rules for naming organic and inorganic compounds are contained in two publications, known as the Blue Book{{citation |title=Nomenclature of Organic Chemistry |chapter=1958 (A: Hydrocarbons, and B: Fundamental Heterocyclic Systems), 1965 (C: Characteristic Groups) |year=1971 |edition=3rd |publisher=Butterworths |location=London |isbn=978-0-408-70144-0}}.{{BlueBook1979}}. {{BlueBook1993}}. {{BlueBook2004}} and the Red Book,{{RedBook2005}}. respectively. A third publication, known as the Green Book,{{GreenBook2nd}}. recommends the use of symbols for physical quantities (in association with the IUPAP), while a fourth, the Gold Book,Compendium of Chemical Terminology, IMPACT Recommendations (2nd Ed.), Oxford:Blackwell Scientific Publications. (1997) defines many technical terms used in chemistry. Similar compendia exist for biochemistryBiochemical Nomenclature and Related Documents, London: Portland Press, 1992. (the White Book, in association with the IUBMB), analytical chemistry{{OrangeBook3rd}} (the Orange Book), macromolecular chemistryCompendium of Macromolecular Nomenclature, Oxford: Blackwell Scientific Publications, 1991. (the Purple Book), and clinical chemistry{{citation |title=Compendium of Terminology and Nomenclature of Properties in Clinical Laboratory Sciences |series=IMPACT Recommendations 1995 |location=Oxford |publisher=Blackwell Science |isbn=978-0-86542-612-2 |year=1995}}. (the Silver Book). These "color books" are supplemented by specific recommendations published periodically in the journal Pure and Applied Chemistry.

Purpose of chemical nomenclature

The main purpose of chemical nomenclature is to disambiguate the spoken or written names of chemical compounds: each name should refer to one compound. Secondarily, each compound should have only one name, although in some cases some alternative names are accepted.

Preferably, the name should also represent the structure or chemistry of a compound. This is achieved by the International Chemical Identifier (InChI) nomenclature. However, the American Chemical Society's CAS numbers nomenclature does not represent a compound's structure.

The nomenclature used depends on the needs of the user, so no single correct nomenclature exists. Rather, different nomenclatures are appropriate for different circumstances.

A common name will successfully identify a chemical compound, given context. Without context, the name should indicate at least the chemical composition. To be more specific, the name may need to represent the three-dimensional arrangement of the atoms. This requires adding more rules to the standard IUPAC system (the Chemical Abstracts Service system (CAS system) is the one used most commonly in this context), at the expense of having names which are longer and less familiar.

The IUPAC system is often criticized for failing to distinguish relevant compounds (for example, for differing reactivity of sulfur allotropes, which IUPAC does not distinguish). While IUPAC has a human-readable advantage over CAS numbering, IUPAC names for some larger, relevant molecules (such as rapamycin) are barely human-readable, so common names are used instead.

Differing needs of chemical nomenclature and lexicography

It is generally understood that the purposes of lexicography versus chemical nomenclature vary and are to an extent at odds. Dictionaries of words, whether in traditional print or on the internet, collect and report the meanings of words as their uses appear and change over time. For internet dictionaries with limited or no formal editorial process, definitions —in this case, definitions of chemical names and terms— can change rapidly without concern for the formal or historical meanings. Chemical nomenclature however (with IUPAC nomenclature as the best example) is necessarily more restrictive: Its purpose is to standardize communication and practice so that, when a chemical term is used it has a fixed meaning relating to chemical structure, thereby giving insights into chemical properties and derived molecular functions. These differing purposes can affect understanding, especially with regard to chemical classes that have achieved popular attention. Examples of the effect of these are as follows:

  • resveratrol, a single compound defined clearly by this common name, but that can be confused, popularly, with its cis-isomer,
  • omega-3 fatty acids, a reasonably well-defined class of chemical structures that is nevertheless broad as a result of its formal definition, and
  • polyphenols, a fairly broad structural class with a formal definition, but where mistranslations and general misuse of the term relative to the formal definition has resulted in serious errors of usage, and so ambiguity in the relationship between structure and activity (SAR).

The rapid pace at which meanings can change on the internet, in particular for chemical compounds with perceived health benefits, ascribed rightly or wrongly, complicate the monosemy of nomenclature (and so access to SAR understanding). Specific examples appear in the Polyphenol article, where varying internet and common-use definitions conflict with any accepted chemical nomenclature connecting polyphenol structure and bioactivity.

History

= Alchemical names =

The nomenclature of alchemy is descriptive, but does not effectively represent the functions mentioned above. Opinions differ about whether this was deliberate on the part of the early practitioners of alchemy or whether it was a consequence of the particular (and often esoteric) theories according to which they worked. While both explanations are probably valid to some extent, it is remarkable that the first "modern" system of chemical nomenclature appeared at the same time as the distinction (by French chemist Antoine Lavoisier) between elements and compounds, during the late eighteenth century.

= ''Méthode de nomenclature chimique'' =

File:Méthode de Nomenclature Chimique (cropped).jpg

The French chemist Louis-Bernard Guyton de Morveau published his recommendations in 1782,{{citation |last=Guyton de Morveau |first=L. B. |title=Mémoire sur les dénominations chimiques, la necessité d'en perfectionner le système et les règles pour y parvenir |journal=Observations Sur la Physique |volume=19 |pages=370–382 |year=1782 |author-link=Louis-Bernard Guyton de Morveau}} hoping that his "constant method of denomination" would "help the intelligence and relieve the memory". The system was refined in {{interlanguage link|Méthode de nomenclature chimique|fr}},{{citation |last1=Guyton de Morveau |first1=L. B. |title=Méthode de Nomenclature Chimique |year=1787 |url=https://archive.org/details/b2803806x/page/n7/mode/2up |location=Paris |publisher=Cuchet |last2=Lavoisier |first2=A. L. |last3=Berthollet |first3=C. L. |last4=Fourcroy |first4=A. F. de |author-link1=Louis-Bernard Guyton de Morveau |author-link2=Antoine Lavoisier |author-link3=Claude Louis Berthollet |author-link4=Antoine François, comte de Fourcroy}} published in 1787 in collaboration with Lavoisier, Claude Louis Berthollet, and Antoine-François de Fourcroy, and translated into English as Method of Chymical Nomenclature by James St. John in 1788.{{Cite book |last=Guyton de Morveau |first=L. B. |url=https://archive.org/details/bim_eighteenth-century_methode-du-nomenclature_guyton-de-morveau-louis_1788/page/n2/mode/1up |title=Method of chymical nomenclature, proposed by Messrs. de Morveau, Lavoisier, Bertholet, and de Fourcroy: To which is added A new system of chymical characters adapted to the nomenclature by Mess. Hassenfratz and Adet |last2=Lavoisier |first2=A. |last3=Berthollet |first3=C. L. |last4=Fourcroy |first4=A.-F. de |publisher=G. Kearsley |year=1788 |translator-last=St. John |translator-first=James |orig-date=1787}} Méthode de nomenclature chimique contained handy dictionaries{{Cite web |last=Giunta |first=C. |title=A Dictionary of the New Chymical Nomenclature |url=https://web.lemoyne.edu/~giunta/nomenclature.html |website=Classic Chemistry}} in which older chemical names were listed with their new counterparts{{Sfn|Guyton de Morveau|Lavoisier|p=[https://archive.org/details/b2803806x/page/107/mode/1up 107]|Berthollet|Fourcroy|1787}} and vice versa.{{Sfn|Guyton de Morveau|Lavoisier|p=[https://archive.org/details/b2803806x/page/144/mode/1up 144]|Berthollet|Fourcroy|1787}} New names were provided in both French and Latin for the benefit of an international readership. For a modern reader these dictionaries are still useful, but now to discover and understand older names, rather than the new. In the English version,{{Sfn|Guyton de Morveau|Lavoisier|p=[https://archive.org/details/bim_eighteenth-century_methode-du-nomenclature_guyton-de-morveau-louis_1788/page/n98/mode/1up 81]|Berthollet|Fourcroy|1788}} the new names had been adapted to English, though they did not always align with current conventions. St. John used "acetat" instead of "acetate" for example. For gases, the word "gas" ("gaz") was being popularized by its consistent use in the new names, whereas the old names used the affix "air".

{{Multiple image

| total_width = 600

| align = center

| image1 = Louis-Bernard Guyton de Morveau (cropped 2).jpg

| caption1 = Louis-Bernard Guyton de Morveau

| image2 = Antoine Lavoisier by Jacques-Louis David (cropped 2).jpg

| caption2 = Antoine Lavoisier

| image3 = Berthollet Claude Louis (cropped).jpg

| caption3 = Claude Louis Berthollet

| image4 = Antoine François de Fourcroy, by Z. Belliar.jpg

| caption4 = Antoine François de Fourcroy

| footer = The authors of Méthode de nomenclature chimique.

}}

= ''Traité élémentaire de chimie'' =

The new system was presented to a wider audience in Lavoisier's 1789 textbook Traité élémentaire de chimie,{{citation |last=Lavoisier |first=A. L. |title=Traité Élémentaire de Chimie |year=1789 |url=https://archive.org/details/traitlmentairede01lavo/page/n7/mode/2up |location=Paris |publisher=Deterville |author-link=Antoine Lavoisier}} translated into English as Elements of Chemistry by Robert Kerr in 1790,{{Cite book |last=Lavoisier |first=A. |url=https://www.gutenberg.org/cache/epub/30775/pg30775-images.html |title=Elements of Chemistry, in a New Systematic Order, Containing All the Modern Discoveries |publisher=William Creech |year=1790 |translator-last=Kerr |translator-first=Robert |orig-date=1789}} and it would be of great influence long after his death at the guillotine in 1794. The project was also endorsed by Swedish chemist Jöns Jakob Berzelius,{{citation |last=Berzelius |first=J. J. |title=Essai sur la nomenclature chimique |journal=Journal de Physique |volume=73 |pages=253–286 |year=1811 |author-link=Jöns Jakob Berzelius}}.{{citation |last=Wisniak |first=Jaime |title=Jöns Jacob Berzelius A Guide to the Perplexed Chemist |journal=The Chemical Educator |volume=5 |issue=6 |pages=343–50 |year=2000 |doi=10.1007/s00897000430a |s2cid=98774420}}. who adapted the ideas for the German-speaking world.

Traité élémentaire de chimie included the first modern list of elements ("simple substances"). Also here were older names provided to explain their new counterparts.{{Sfn|Lavoisier|1789|p=[https://archive.org/details/traitlmentairede01lavo/page/192/mode/1up 192]}} Some element names were new and received English versions similar to the French names.{{Sfn|Lavoisier|1790|p=[https://www.gutenberg.org/cache/epub/30775/pg30775-images.html#Page_175 175]}} For the new "element" caloric, both the new and some of the "old" names (igneous fluid and matter of fire and of heat) were coined by Lavoisier, their discoverer. Most element names, however, were not new, so they retained their existing English versions. But their status as elements was new—a product of the chemical revolution.

= Geneva Rules =

The recommendations of Guyton were only for what would later be known as inorganic compounds. With the massive expansion of organic chemistry during the mid-nineteenth century and the greater understanding of the structure of organic compounds, the need for a less ad hoc system of nomenclature was felt just as the theoretical basis became available to make this possible. An international conference was convened in Geneva in 1892 by the national chemical societies, from which the first widely accepted proposals for standardization developed.{{citation |title=Congrès de nomenclature chimique, Genève 1892 |journal=Bulletin de la Société Chimique de Paris |series=Série 3 |volume=8 |pages=xiii–xxiv |year=1892 |url=https://gallica.bnf.fr/ark:/12148/bpt6k2820064.image}}.

= IUPAC =

{{Main article|IUPAC nomenclature of chemistry}}

A commission was established in 1913 by the Council of the International Association of Chemical Societies, but its work was interrupted by World War I. After the war, the task passed to the newly formed International Union of Pure and Applied Chemistry, which first appointed commissions for organic, inorganic, and biochemical nomenclature in 1921 and continues to do so to this day.

Types of nomenclature

Nomenclature has been developed for both organic and inorganic chemistry. There are also designations having to do with structure{{snd}}see Descriptor (chemistry).

=Organic chemistry=

{{Main article|IUPAC nomenclature of organic chemistry}}

  • Additive name
  • Conjunctive name
  • Functional class name, also known as a radicofunctional name
  • Fusion name
  • Hantzsch–Widman nomenclature
  • Multiplicative name
  • Replacement name
  • Substitutive name
  • Subtractive name

=Inorganic chemistry=

{{Main article|IUPAC nomenclature of inorganic chemistry}}

==Compositional nomenclature==

===Type-I ionic binary compounds===

For type-I ionic binary compounds, the cation (a metal in most cases) is named first, and the anion (usually a nonmetal) is named second. The cation retains its elemental name (e.g., iron or zinc), but the suffix of the nonmetal changes to -ide. For example, the compound {{chem2|LiBr}} is made of {{chem2|Li(+)}} cations and {{chem2|Br(−)}} anions; thus, it is called lithium bromide. The compound {{chem2|BaO}}, which is composed of {{chem2|Ba(2+)}} cations and {{chem2|O(2−)}} anions, is referred to as barium oxide.

The oxidation state of each element is unambiguous. When these ions combine into a type-I binary compound, their equal-but-opposite charges are neutralized, so the compound's net charge is zero.

===Type-II ionic binary compounds===

Type-II ionic binary compounds are those in which the cation does not have just one oxidation state. This is common among transition metals. To name these compounds, one must determine the charge of the cation and then render the name as would be done with Type-I ionic compounds, except that a Roman numeral (indicating the charge of the cation) is written in parentheses next to the cation name (this is sometimes referred to as Stock nomenclature). For example, for the compound {{chem2|FeCl3}}, the cation, iron, can occur as {{chem2|Fe(2+)}} and {{chem2|Fe(3+)}}. In order for the compound to have a net charge of zero, the cation must be {{chem2|Fe(3+)}} so that the three {{chem2|Cl(−)}} anions can be balanced (3+ and 3− balance to 0). Thus, this compound is termed iron(III) chloride. Another example could be the compound {{chem2|PbS2}}. Because the {{chem2|S(2−)}} anion has a subscript of 2 in the formula (giving a 4− charge), the compound must be balanced with a 4+ charge on the {{chem2|Pb}} cation (lead can form cations with a 4+ or a 2+ charge). Thus, the compound is made of one {{chem2|Pb(4+)}} cation to every two {{chem2|S(2−)}} anions, the compound is balanced, and its name is written as lead(IV) sulfide.

An older system – relying on Latin names for the elements – is also sometimes used to name Type-II ionic binary compounds. In this system, the metal (instead of a Roman numeral next to it) has a suffix "-ic" or "-ous" added to it to indicate its oxidation state ("-ous" for lower, "-ic" for higher). For example, the compound {{chem2|FeO}} contains the {{chem2|Fe(2+)}} cation (which balances out with the {{chem2|O(2−)}} anion). Since this oxidation state is lower than the other possibility ({{chem2|Fe(3+)}}), this compound is sometimes called ferrous oxide. For the compound, {{chem2|SnO2}}, the tin ion is {{chem2|Sn(4+)}} (balancing out the 4− charge on the two {{chem2|O(2−)}} anions), and because this is a higher oxidation state than the alternative ({{chem2|Sn(2+)}}), this compound is termed stannic oxide.

Some ionic compounds contain polyatomic ions, which are charged entities containing two or more covalently bonded types of atoms. It is important to know the names of common polyatomic ions; these include:

The formula {{chem2|Na2SO3}} denotes that the cation is sodium, or {{chem2|Na(+)}}, and that the anion is the sulfite ion ({{chem2|SO3(2−)}}). Therefore, this compound is named sodium sulfite. If the given formula is {{chem2|Ca(OH)2}}, it can be seen that {{chem2|OH(-)}} is the hydroxide ion. Since the charge on the calcium ion is 2+, it makes sense there must be two {{chem2|OH(-)}} ions to balance the charge. Therefore, the name of the compound is calcium hydroxide. If one is asked to write the formula for copper(I) chromate, the Roman numeral indicates that copper ion is {{chem2|Cu(+)}} and one can identify that the compound contains the chromate ion ({{chem2|CrO4(2−)}}). Two of the 1+ copper ions are needed to balance the charge of one 2− chromate ion, so the formula is {{chem2|Cu2CrO4}}.

===Type-III binary compounds===

Type-III binary compounds are bonded covalently. Covalent bonding occurs between nonmetal elements. Compounds bonded covalently are also known as molecules. For the compound, the first element is named first and with its full elemental name. The second element is named as if it were an anion (base name of the element + -ide suffix). Then, prefixes are used to indicate the numbers of each atom present: these prefixes are mono- (one), di- (two), tri- (three), tetra- (four), penta- (five), hexa- (six), hepta- (seven), octa- (eight), nona- (nine), and deca- (ten). The prefix mono- is never used with the first element. Thus, {{chem2|NCl3}} is termed nitrogen trichloride, {{chem2|BF3}} is termed boron trifluoride, and {{chem2|P2O5}} is termed diphosphorus pentoxide (although the a of the prefix penta- should actually not be omitted before a vowel: the IUPAC Red Book 2005 page 69 states, "The final vowels of multiplicative prefixes should not be elided (although "monoxide", rather than "monooxide", is an allowed exception because of general usage).").

Carbon dioxide is written {{chem2|CO2}}; sulfur tetrafluoride is written {{chem2|SF4}}. A few compounds, however, have common names that prevail. {{chem2|H2O}}, for example, is usually termed water rather than dihydrogen monoxide, and {{chem2|NH3}} is preferentially termed ammonia rather than nitrogen trihydride.

==Substitutive nomenclature==

This naming method generally follows established IUPAC organic nomenclature. Hydrides of the main group elements (groups 13–17) are given the base name ending with -ane, e.g. borane ({{chem2|auto=yes|BH3}}), oxidane ({{chem2|auto=yes|H2O}}), phosphane ({{chem2|auto=yes|PH3}}) (Although the name phosphine is also in common use, it is not recommended by IUPAC). The compound {{chem2|auto=yes|PCl3}} would thus be named substitutively as trichlorophosphane (with chlorine "substituting"). However, not all such names (or stems) are derived from the element name. For example, {{chem2|auto=yes|NH3}} is termed "azane".

==Additive nomenclature==

This method of naming has been developed principally for coordination compounds although it can be applied more widely. An example of its application is {{chem2|[CoCl(NH3)5]Cl2}}, pentaamminechloridocobalt(III) chloride.

Ligands, too, have a special naming convention. Whereas chloride becomes the prefix chloro- in substitutive naming, for a ligand it becomes chlorido-.

See also

References

{{Reflist|30em}}