list of fusion experiments

{{Short description|List of efforts toward artificial nuclear fusion}}

{{Multiple issues|

{{external links|date=April 2018}}

{{citation style|date=April 2018}}

}}

File:Shiva laser target chamber.jpg, used for inertial confinement fusion experiments from 1978 until decommissioned in 1981]]

File:U.S. Department of Energy - Science - 114 035 002 (14281232230).jpg, used for magnetic confinement fusion experiments, which produced {{val|11|u=MW}} of fusion power in 1994]]

Experiments directed toward developing fusion power are invariably done with dedicated machines which can be classified according to the principles they use to confine the plasma fuel and keep it hot.

The major division is between magnetic confinement and inertial confinement. In magnetic confinement, the tendency of the hot plasma to expand is counteracted by the Lorentz force between currents in the plasma and magnetic fields produced by external coils. The particle densities tend to be in the range of {{val|e=18}} to {{val|e=22|u=m−3}} and the linear dimensions in the range of {{val|0.1|to|10|u=m}}. The particle and energy confinement times may range from under a millisecond to over a second, but the configuration itself is often maintained through input of particles, energy, and current for times that are hundreds or thousands of times longer. Some concepts are capable of maintaining a plasma indefinitely.

In contrast, with inertial confinement, there is nothing to counteract the expansion of the plasma. The confinement time is simply the time it takes the plasma pressure to overcome the inertia of the particles, hence the name. The densities tend to be in the range of {{val|e=31}} to {{val|e=33|u=m−3}} and the plasma radius in the range of 1 to 100 micrometers. These conditions are obtained by irradiating a millimeter-sized solid pellet with a nanosecond laser or ion pulse. The outer layer of the pellet is ablated, providing a reaction force that compresses the central 10% of the fuel by a factor of 10 or 20 to 103 or {{val|e=4}} times solid density. These microplasmas disperse in a time measured in nanoseconds. For a fusion power reactor, a repetition rate of several per second will be needed.

Magnetic confinement

Within the field of magnetic confinement experiments, there is a basic division between toroidal and open magnetic field topologies. Generally speaking, it is easier to contain a plasma in the direction perpendicular to the field than parallel to it. Parallel confinement can be solved either by bending the field lines back on themselves into circles or, more commonly, toroidal surfaces, or by constricting the bundle of field lines at both ends, which causes some of the particles to be reflected by the mirror effect. The toroidal geometries can be further subdivided according to whether the machine itself has a toroidal geometry, i.e., a solid core through the center of the plasma. The alternative is to dispense with a solid core and rely on currents in the plasma to produce the toroidal field.

Mirror machines have advantages in a simpler geometry and a better potential for direct conversion of particle energy to electricity. They generally require higher magnetic fields than toroidal machines, but the biggest problem has turned out to be confinement. For good confinement there must be more particles moving perpendicular to the field than there are moving parallel to the field. Such a non-Maxwellian velocity distribution is, however, very difficult to maintain and energetically costly.

The mirrors' advantage of simple machine geometry is maintained in machines which produce compact toroids, but there are potential disadvantages for stability in not having a central conductor and there is generally less possibility to control (and thereby optimize) the magnetic geometry. Compact toroid concepts are generally less well developed than those of toroidal machines. While this does not necessarily mean that they cannot work better than mainstream concepts, the uncertainty involved is much greater.

Somewhat in a class by itself is the Z-pinch, which has circular field lines. This was one of the first concepts tried, but it did not prove very successful. Furthermore, there was never a convincing concept for turning the pulsed machine requiring electrodes into a practical reactor.

The dense plasma focus is a controversial and "non-mainstream" device that relies on currents in the plasma to produce a toroid. It is a pulsed device that depends on a plasma that is not in equilibrium and has the potential for direct conversion of particle energy to electricity. Experiments are ongoing to test relatively new theories to determine if the device has a future.

= Toroidal machine =

Toroidal machines can be axially symmetric, like the tokamak and the reversed field pinch (RFP), or asymmetric, like the stellarator. The additional degree of freedom gained by giving up toroidal symmetry might ultimately be usable to produce better confinement, but the cost is complexity in the engineering, the theory, and the experimental diagnostics. Stellarators typically have a periodicity, e.g. a fivefold rotational symmetry. The RFP, despite some theoretical advantages such as a low magnetic field at the coils, has not proven very successful.

== Tokamak ==

class="wikitable sortable"
Device name{{Cite web |title=International tokamak research |url=http://www.iter.org/sci/tkmkresearch |website=ITER|date=13 November 2023 }}StatusConstructionOperationLocationOrganisationdata-sort-type=number| Major/minor radiusdata-sort-type=number| B-fielddata-sort-type=number| Plasma currentPurposeImage
T-1 (Tokamak-1){{cite journal | last1 = Smirnov | first1 = V.P. | title = Tokamak foundation in USSR/Russia 1950–1990 | journal = Nuclear Fusion | date = 30 December 2009 | volume = 50 | issue = 1 | page = 014003 | issn = 0029-5515 | eissn = 1741-4326 | doi = 10.1088/0029-5515/50/1/014003 | s2cid = 17487157 | doi-access = free }}{{no|Shut down}}19571958–1959{{flagicon|SOV}} MoscowKurchatov Institute{{val|0.625|u=m}}/{{val|0.13|u=m}}{{val|1|u=T}}{{val|0.04|u=MA}}First tokamakFile:Tokamak T-1.jpg
{{Anchor|T-2}}T-2 (Tokamak-2){{CRecurring|Recycled}} →FT-119591960–1970{{flagicon|SOV}} MoscowKurchatov Institute{{val|0.62|u=m}}/{{val|0.22|u=m}}{{val|1|u=T}}{{val|0.04|u=MA}}
T-3 (Tokamak-3){{no|Shut down}}19601962–?{{flagicon|SOV}} MoscowKurchatov Institute{{val|1|u=m}}/{{val|0.12|u=m}}{{val|3.5|u=T}}{{val|0.15|u=MA}}Overcame Bohm diffusion by a factor of 10, temperature {{val|10|u=MK}}, confinement time {{val|10|u=ms}}
T-5 (Tokamak-5){{no|Shut down}}?1962–1970{{flagicon|SOV}} MoscowKurchatov Institute{{val|0.625|u=m}}/{{val|0.15|u=m}}{{val|1.2|u=T}}{{val|0.06|u=MA}}Investigation of plasma equilibrium in vertical and horizontal direction
TM-1{{no|Shut down}}??{{flagicon|SOV}} MoscowKurchatov Institute
TM-2{{no|Shut down}}?1965{{flagicon|SOV}} MoscowKurchatov Institute
TM-3{{no|Shut down}}?1970{{flagicon|SOV}} MoscowKurchatov Institute
{{Anchor|FT-1}}FT-1{{CRecurring|Recycled}} →CASTORdata-sort-value="1970"| T-21972–2002{{flagicon|SOV}} Saint PetersburgIoffe Institute{{val|0.62|u=m}}/{{val|0.22|u=m}}{{val|1.2|u=T}}{{val|0.05|u=MA}}
{{Anchor|ST}}ST (Symmetric Tokamak){{no|Shut down}}data-sort-value="1969"| Model C1970–1974{{flagicon|USA}} PrincetonPrinceton Plasma Physics Laboratory{{val|1.09|u=m}}/{{val|0.13|u=m}}{{val|5.0|u=T}}{{val|0.13|u=MA}}First American tokamak, converted from Model C stellarator
T-6 (Tokamak-6){{no|Shut down}}?1970–1974{{flagicon|SOV}} MoscowKurchatov Institute{{val|0.7|u=m}}/{{val|0.25|u=m}}{{val|1.5|u=T}}{{val|0.22|u=MA}}
TUMAN-2, 2A{{no|Shut down}}?1971–1985{{flagicon|SOV}} Saint PetersburgIoffe Institute{{val|0.4|u=m}}/{{val|0.08|u=m}}{{val|1.5|u=T}}{{val|0.012|u=MA}}
ORMAK (Oak Ridge tokaMAK){{no|Shut down}}1971–1976{{flagicon|USA}} Oak RidgeOak Ridge National Laboratory{{val|0.8|u=m}}/{{val|0.23|u=m}}{{val|2.5|u=T}}{{val|0.34|u=MA}}First to achieve {{val|20|u=MK}} plasma temperatureFile:ORMAK (46436229152).jpg
Doublet II{{no|Shut down}}1972–1974{{flagicon|USA}} San DiegoGeneral Atomics{{val|0.63|u=m}}/{{val|0.08|u=m}}{{val|0.95|u=T}}{{val|0.21|u=MA}}
ATC (Adiabatic Toroidal Compressor){{no|Shut down}}1971–19721972–1976{{flagicon|USA}} PrincetonPrinceton Plasma Physics Laboratory{{val|0.88|u=m}}/{{val|0.11|u=m}}{{val|2|u=T}}{{val|0.05|u=MA}}Demonstrate compressional plasma heatingFile:HD.6D.745 (13471450163).jpg
T-9 (Tokamak-9){{no|Shut down}}?1972–1977{{flagicon|SOV}} MoscowKurchatov Institute{{val|0.36|u=m}}/{{val|0.07|u=m}}{{val|1|u=T}}
TO-1{{no|Shut down}}?1972–1978{{flagicon|SOV}} MoscowKurchatov Institute{{val|0.6|u=m}}/{{val|0.13|u=m}}{{val|1.5|u=T}}{{val|0.07|u=MA}}
Alcator A (Alto Campo Toro){{no|Shut down}}?1972–1978{{flagicon|USA}} CambridgeMassachusetts Institute of Technology{{val|0.54|u=m}}/{{val|0.10|u=m}}{{val|9.0|u=T}}{{val|0.3|u=MA}}
JFT-2 (JAERI Fusion Torus 2){{no|Shut down}}?1972–1982{{flagicon|JP}} NakaJapan Atomic Energy Research Institute{{val|0.9|u=m}}/{{val|0.25|u=m}}{{val|1.8|u=T}}{{val|0.25|u=MA}}
Turbulent Tokamak Frascati (TTF, torello){{no|Shut down}}1973{{flagicon|ITA}} FrascatiENEA{{val|0.3|u=m}}/{{val|0.04|u=m}}{{val|1|u=T}}{{val|0.005|u=MA}}Study of turbulent plasma heating
Pulsator{{Cite web|url=https://www.ipp.mpg.de/3951851/pulsator|title=Pulsator|website=www.ipp.mpg.de}}{{no|Shut down}}1970–19731973–1979{{flagicon|DEU}} GarchingMax Planck Institute for Plasma Physics{{val|0.7|u=m}}/{{val|0.12|u=m}}{{val|2.7|u=T}}{{val|0.125|u=MA}}Discovery of high-density operation with tokamaks
TFR (Tokamak de Fontenay-aux-Roses){{no|Shut down}}1973–1984{{flagicon|FRA}} Fontenay-aux-RosesCEA{{val|0.98|u=m}}/{{val|0.2|u=m}}{{val|6|u=T}}{{val|0.49|u=MA}}
T-4 (Tokamak-4){{no|Shut down}}?1974–1978{{flagicon|SOV}} MoscowKurchatov Institute{{val|0.9|u=m}}/{{val|0.16|u=m}}{{val|5|u=T}}{{val|0.3|u=MA}}Observed fast thermal quench before major plasma disruptions
Doublet IIA{{no|Shut down}}1974–1979{{flagicon|USA}} San DiegoGeneral Atomics{{val|0.66|u=m}}/{{val|0.15|u=m}}{{val|0.76|u=T}}{{val|0.35|u=MA}}
Petula-B{{no|Shut down}}?1974–1986{{flagicon|FRA}} GrenobleCEA{{val|0.72|u=m}}/{{val|0.18|u=m}}{{val|2.7|u=T}}{{val|0.23|u=MA}}
T-10 (Tokamak-10){{active|Operational}}1975–{{flagicon|SOV}} MoscowKurchatov Institute{{val|1.50|u=m}}/{{val|0.37|u=m}}{{val|4|u=T}}{{val|0.8|u=MA}}Largest tokamak of its timeFile:Polytec TOKAMAK model (4260325496).jpg
T-11 (Tokamak-11){{no|Shut down}}?1975–1984{{flagicon|SOV}} MoscowKurchatov Institute{{val|0.7|u=m}}/{{val|0.25|u=m}}{{val|1|u=T}}
PLT (Princeton Large Torus){{no|Shut down}}1972–19751975–1986{{flagicon|USA}} PrincetonPrinceton Plasma Physics Laboratory{{val|1.32|u=m}}/{{val|0.42|u=m}}{{val|4|u=T}}{{val|0.7|u=MA}}First to achieve {{val|1|u=MA}} plasma currentFile:HD.6B.701 (10348295326).jpg
Divertor Injection Tokamak Experiment (DITE){{no|Shut down}}1975–1989{{flagicon|UK}} CulhamUnited Kingdom Atomic Energy Authority{{val|1.17|u=m}}/{{val|0.27|u=m}}{{val|2.7|u=T}}{{val|0.26|u=MA}}
JIPP T-II{{no|Shut down}}?1976{{flagicon|JP}} NagoyaNagoya University{{val|0.91|u=m}}/{{val|0.17|u=m}}{{val|3|u=T}}{{val|0.16|u=MA}}
TNT-A{{no|Shut down}}?1976{{flagicon|JP}} TokyoTokyo University{{val|0.4|u=m}}/{{val|0.09|u=m}}{{val|0.42|u=T}}{{val|0.02|u=MA}}
T-8 (Tokamak-8){{no|Shut down}}?1976–?{{flagicon|SOV}} MoscowKurchatov Institute{{val|0.28|u=m}}/{{val|0.048|u=m}}{{val|0.9|u=T}}{{val|0.024|u=MA}}First D-shaped tokamak
Microtor{{cite report|author=Taylor, R. J. |author2=Lee, P. |author3=Luhmann, N. C. Jr | date=1981| title=ICRF heating, particle transport and fluctuations in tokamaks| url=http://plasma.caltech.edu/Rwgpubs/Pub66.pdf |archive-url=https://web.archive.org/web/20220225031806/http://plasma.caltech.edu/Rwgpubs/Pub66.pdf|archive-date=2022-02-25}}{{no|Shut down}}?1976–1983?{{flagicon|USA}} Los AngelesUCLA{{val|0.3|u=m}}/{{val|0.1|u=m}}{{val|2.5|u=T}}{{val|0.12|u=MA}}Plasma impurity control and diagnostic development
Macrotor{{no|Shut down}}?1970s–80s{{flagicon|USA}} Los AngelesUCLA{{val|0.9|u=m}}/{{val|0.4|u=m}}{{val|0.4|u=T}}{{val|0.1|u=MA}}Understanding plasma rotation driven by radial current
TUMAN-3{{active|Operational}}?1977–
(1990–, 3M)
{{flagicon|SOV}} Saint PetersburgIoffe Institute{{val|0.55|u=m}}/{{val|0.23|u=m}}{{val|3|u=T}}{{val|0.18|u=MA}}Study adiabatic compression, RF and NB heating, H-mode and parametric instability
Thor{{cite journal | last1 = Argenti | first1 = D. | last2 = Bonizzoni | first2 = G. | last3 = Cirant | first3 = S. | last4 = Corti | first4 = S. | last5 = Grosso | first5 = G. | last6 = Lampis | first6 = G. | last7 = Rossi | first7 = L. | last8 = Carretta | first8 = U. | last9 = Jacchia | first9 = A. | last10 = De Luca | first10 = F. | last11 = Fontanesi | first11 = M. | title = The Thor tokamak experiment | journal = Il Nuovo Cimento B | date = June 1981 | volume = 63 | issue = 2 | pages = 471–486 | eissn = 1826-9877 | doi = 10.1007/BF02755093 | bibcode = 1981NCimB..63..471A | s2cid = 123205206 }}{{no|Shut down}}?{{flagicon|ITA}} MilanoUniversity of Milano{{val|0.52|u=m}}/{{val|0.195|u=m}}{{val|1|u=T}}{{val|0.055|u=MA}}
FT (Frascati Tokamak){{no|Shut down}}1978{{flagicon|ITA}} FrascatiENEA{{val|0.83|u=m}}/{{val|0.20|u=m}}{{val|10|u=T}}{{val|0.8|u=MA}}
PDX (Poloidal Divertor Experiment){{no|Shut down}}?1978–1983{{flagicon|USA}} PrincetonPrinceton Plasma Physics Laboratory{{val|1.4|u=m}}/{{val|0.4|u=m}}{{val|2.4|u=T}}{{val|0.5|u=MA}}
ISX-B{{no|Shut down}}?1978–1984{{flagicon|USA}} Oak RidgeOak Ridge National Laboratory{{val|0.93|u=m}}/{{val|0.27|u=m}}{{val|1.8|u=T}}{{val|0.2|u=MA}}Attempt high-beta operation
Doublet III{{no|Shut down}}1978–1985{{flagicon|USA}} San DiegoGeneral Atomics{{val|1.45|u=m}}/{{val|0.45|u=m}}{{val|2.6|u=T}}{{val|0.61|u=MA}}
T-12 (Tokamak-12){{no|Shut down}}?1978–1985{{flagicon|SOV}} MoscowKurchatov Institute{{val|0.36|u=m}}/{{val|0.08|u=m}}{{val|1|u=T}}{{val|0.03|u=MA}}
Alcator C (Alto Campo Toro){{no|Shut down}}?1978–1986{{flagicon|USA}} CambridgeMassachusetts Institute of Technology{{val|0.64|u=m}}/{{val|0.16|u=m}}{{val|13|u=T}}{{val|0.8|u=MA}}
{{Anchor|T-7}}T-7 (Tokamak-7){{CRecurring|Recycled}} →HT-7{{Cite web|url=https://www.iter.org/newsline/81/508|title=From Russia with love|date=2009-05-18|author=Robert Arnoux}}?1979–1985{{flagicon|SOV}} MoscowKurchatov Institute{{val|1.2|u=m}}/{{val|0.31|u=m}}{{val|3|u=T}}{{val|0.3|u=MA}}First tokamak with superconducting toroidal field coils
ASDEX (Axially Symmetric Divertor Experiment){{Cite web|url=https://www.ipp.mpg.de/3951875/asdex|title=ASDEX|website=www.ipp.mpg.de}}{{CRecurring|Recycled}} →HL-2A1973–19801980–1990{{flagicon|DEU}} GarchingMax-Planck-Institut für Plasmaphysik{{val|1.65|u=m}}/{{val|0.4|u=m}}{{val|2.8|u=T}}{{val|0.5|u=MA}}Discovery of the H-mode in 1982
FT-2{{active|Operational}}?1980–{{flagicon|SOV}} Saint PetersburgIoffe Institute{{val|0.55|u=m}}/{{val|0.08|u=m}}{{val|3|u=T}}{{val|0.05|u=MA}}H-mode physics, LH heating
TEXTOR (Tokamak Experiment for Technology Oriented Research){{Cite web|url=http://www.fz-juelich.de/ief/ief-4//textor_en/#|title=Forschungszentrum Jülich – Plasmaphysik (IEK-4)|website=fz-juelich.de|language=de}}{{Cite web|url=http://www.fz-juelich.de/SharedDocs/Downloads/IEK/IEK-4/DE/30years_TEXTOR_pdf.pdf?__blob=publicationFile|title=Progress in Fusion Research – 30 Years of TEXTOR|archive-url=https://web.archive.org/web/20161019163554/http://www.fz-juelich.de/SharedDocs/Downloads/IEK/IEK-4/DE/30years_TEXTOR_pdf.pdf?__blob=publicationFile |archive-date=19 October 2016 }}{{no|Shut down}}1976–19801981–2013{{flagicon|DEU}} JülichForschungszentrum Jülich{{val|1.75|u=m}}/{{val|0.47|u=m}}{{val|2.8|u=T}}{{val|0.8|u=MA}}Study plasma-wall interactions
TFTR (Tokamak Fusion Test Reactor){{Cite web|url=http://www.pppl.gov/projects/pages/tftr.html|archive-url=https://web.archive.org/web/20110426091028/http://www.pppl.gov/projects/pages/tftr.html|archive-date=2011-04-26|title=Tokamak Fusion Test Reactor|date=2011-04-26}}{{no|Shut down}}1980–19821982–1997{{flagicon|USA}} PrincetonPrinceton Plasma Physics Laboratory{{val|2.4|u=m}}/{{val|0.8|u=m}}{{val|5.9|u=T}}{{val|3|u=MA}}Attempted scientific break-even, reached record fusion power of {{val|10.7|u=MW}} and temperature of {{val|510|u=MK}}File:U.S. Department of Energy - Science - 114 035 002 (14281232230).jpg
Tokamak de Varennes (TdeV){{no|Shut down}}?1983–1997{{flagicon|CAN}} MontrealNational Research Council Canada{{val|0.83|u=m}}/{{val|0.27|u=m}}{{val|1.5|u=T}}{{val|0.3|u=MA}}{{cite web |url=https://www.iter.org/newsline/-/3033 |title=The second-hand market |author=Robert Arnoux |work=ITER newsline |date=2018-06-18}}
JFT-2M (JAERI Fusion Torus 2M){{no|Shut down}}?1983–2004{{flagicon|JP}} NakaJapan Atomic Energy Research Institute{{val|1.3|u=m}}/{{val|0.35|u=m}}{{val|2.2|u=T}}{{val|0.5|u=MA}}
JET (Joint European Torus){{Cite web|url=http://www.jet.efda.org/index.html|archive-url=https://web.archive.org/web/20060430205106/http://www.jet.efda.org/index.html|archive-date=2006-04-30|title=EFDA-JET, the world's largest nuclear fusion research experiment|date=2006-04-30}}{{no|Shut down}}1978–19831983–2023{{flagicon|UK}} CulhamUnited Kingdom Atomic Energy Authority{{val|2.96|u=m}}/{{val|0.96|u=m}}{{val|4|u=T}}{{val|7|u=MA}}Records for fusion output power {{val|16.1|u=MW}} (1997), fusion energy {{val|69|u=MJ}} (2023)File:JET cutaway drawing 1980.jpg
Novillo{{Cite web|url=http://www.inin.mx/paraconocer/fusionnuclear.cfm|archive-url=https://web.archive.org/web/20091125165554/http://www.inin.mx/paraconocer/fusionnuclear.cfm|archive-date=2009-11-25|title=:::. Instituto Nacional de Investigaciones Nucleares {{!}} Fusión nuclear .|date=2009-11-25}}{{Cite web|url=http://www.tokamak.info/|title=All-the-Worlds-Tokamaks|website=tokamak.info}}{{no|Shut down}}NOVA-II1983–2004{{flagicon|MEX}} Mexico CityInstituto Nacional de Investigaciones Nucleares{{val|0.23|u=m}}/{{val|0.06|u=m}}{{val|1|u=T}}{{val|0.01|u=MA}}Study plasma-wall interactions
JT-60 (Japan Torus-60){{Cite journal|url=http://www-jt60.naka.jaea.go.jp/english/jt60/index.html|archive-url=https://web.archive.org/web/20061002101524/http://www-jt60.naka.jaea.go.jp/english/jt60/index.html|archive-date=2006-10-02|title=JT-60 Project |journal=Fusion Technology 1978 |volume=2 |page=1079 |date=2006-10-02|bibcode=1979fute.conf.1079Y |last1=Yoshikawa |first1=M. }}{{CRecurring|Recycled}} →JT-60SA1985–2010{{flagicon|JP}} NakaJapan Atomic Energy Research Institute{{val|3.4|u=m}}/{{val|1.0|u=m}}{{val|4|u=T}}{{val|3|u=MA}}High-beta steady-state operation, highest fusion triple product
CCT (Continuous Current Tokamak){{no|Shut down}}?1986–199?{{flagicon|USA}} Los AngelesUCLA{{val|1.5|u=m}}/{{val|0.4|u=m}}{{val|0.2|u=T}}{{val|0.05|u=MA}}H-mode studies
DIII-D{{Cite web|url=https://fusion.gat.com/global/diii-d/home|title=diii-d:home [MFE: DIII-D and Theory]|website=fusion.gat.com|language=en|access-date=2018-09-04}}{{active|Operational}}1986{{Cite web|url=https://science.energy.gov/fes/facilities/user-facilities/diii-d/|title=DIII-D National Fusion Facility (DIII-D) {{!}} U.S. DOE Office of Science (SC)|website=science.energy.gov|language=en-us|access-date=2018-09-04}}1986–{{flagicon|USA}} San DiegoGeneral Atomics{{val|1.67|u=m}}/{{val|0.67|u=m}}{{val|2.2|u=T}}{{val|3|u=MA}}Tokamak OptimizationFile:2017 TOCAMAC Fusion Chamber N0689.jpg
STOR-M (Saskatchewan Torus-Modified){{Cite web|url=http://plasma.usask.ca/storm/index.php|archive-url=https://web.archive.org/web/20110706211727/http://plasma.usask.ca/storm/index.php|archive-date=2011-07-06|title=U of S|date=2011-07-06}}{{active|Operational}}1987–{{flagicon|CAN}} SaskatoonPlasma Physics Laboratory (Saskatchewan){{val|0.46|u=m}}/{{val|0.125|u=m}}{{val|1|u=T}}{{val|0.06|u=MA}}Study plasma heating and anomalous transport
T-15{{CRecurring|Recycled}} →T-15MD1983–19881988–1995{{flagicon|SOV}} MoscowKurchatov Institute{{val|2.43|u=m}}/{{val|0.78|u=m}}{{val|3.6|u=T}}{{val|1|u=MA}}First superconducting tokamak, pulse duration {{val|1.5|u=s}}File:1987 CPA 5891.jpg
Tore Supra{{Cite web|url=http://www-fusion-magnetique.cea.fr/gb/cea/ts/ts.htm|title=Tore Supra|website=www-fusion-magnetique.cea.fr|access-date=2018-09-04}}{{CRecurring|Recycled}} →WEST1988–2011{{flagicon|FRA}} CadaracheDépartement de Recherches sur la Fusion Contrôlée{{val|2.25|u=m}}/{{val|0.7|u=m}}{{val|4.5|u=T}}{{val|2|u=MA}}Large superconducting tokamak with active cooling
ADITYA (tokamak){{active|Operational}}1989–{{flagicon|IND}} GandhinagarInstitute for Plasma Research{{val|0.75|u=m}}/{{val|0.25|u=m}}{{val|1.2|u=T}}{{val|0.25|u=MA}}
COMPASS (COMPact ASSembly){{Cite web|url=http://www.ipp.cas.cz/Tokamak/index?m=comp|archive-url=https://web.archive.org/web/20140512214251/http://www.ipp.cas.cz/Tokamak/index?m=comp|archive-date=2014-05-12|date=2014-05-12| title=Tokamak Department, Institute of Plasma Physics }}{{Cite web|url=http://www.ipp.cas.cz/Tokamak/euratom/index.php/en/compass-general-information|archive-url=https://web.archive.org/web/20131025051208/http://www.ipp.cas.cz/Tokamak/euratom/index.php/en/compass-general-information|archive-date=2013-10-25|title=COMPASS – General information|date=2013-10-25}}{{active|Operational}}1980–1989–{{flagicon|CZ}} PragueInstitute of Plasma Physics, Czech Academy of Sciences{{val|0.56|u=m}}/{{val|0.23|u=m}}{{val|2.1|u=T}}{{val|0.32|u=MA}}Plasma physics studies for ITERFile:COMPASStokamak chamber.jpg
FTU (Frascati Tokamak Upgrade){{active|Operational}}1990–{{flagicon|ITA}} FrascatiENEA{{val|0.935|u=m}}/{{val|0.35|u=m}}{{val|8|u=T}}{{val|1.6|u=MA}}
START (Small Tight Aspect Ratio Tokamak){{Cite web |title=START experiment at Culham |url=http://www.fusion.org.uk/culham/start.htm|archive-url=https://web.archive.org/web/20060424061102/http://www.fusion.org.uk/culham/start.htm|archive-date=2006-04-24|date=2006-04-24}}{{CRecurring|Recycled}} →Proto-Sphera1990–1998{{flagicon|UK}} CulhamUnited Kingdom Atomic Energy Authority{{val|0.3|u=m}}/?{{val|0.5|u=T}}{{val|0.31|u=MA}}First full-sized Spherical Tokamak
ASDEX Upgrade (Axially Symmetric Divertor Experiment){{active|Operational}}1991–{{flagicon|DEU}} GarchingMax-Planck-Institut für Plasmaphysik{{val|1.65|u=m}}/{{val|0.5|u=m}}{{val|2.6|u=T}}{{val|1.4|u=MA}}File:ASDEX Upgrade model.jpg
Alcator C-Mod (Alto Campo Toro){{Cite web|url=http://www.psfc.mit.edu/research/alcator/|archive-url=https://web.archive.org/web/20150709210155/http://www.psfc.mit.edu/research/alcator/|archive-date=2015-07-09|title=MIT Plasma Science & Fusion Center: research>alcator>|date=2015-07-09}}{{no|Shut down}}1986–1991–2016{{flagicon|USA}} CambridgeMassachusetts Institute of Technology{{val|0.68|u=m}}/{{val|0.22|u=m}}{{val|8|u=T}}{{val|2|u=MA}}Record plasma pressure {{val|2.05|u=bar}}File:Alcator C-Mod Fisheye from Fport.jpg
ISTTOK (Instituto Superior Técnico TOKamak){{Cite web|url=http://www.cfn.ist.utl.pt/eng/Prj_Tokamak_main_1.html#intro|title=Centro de Fusão Nuclear|website=cfn.ist.utl.pt|access-date=2012-02-13|archive-url=https://web.archive.org/web/20100307154259/http://www.cfn.ist.utl.pt/eng/Prj_Tokamak_main_1.html#intro|archive-date=2010-03-07}}{{active|Operational}}1992–{{flagicon|POR}} LisbonInstituto de Plasmas e Fusão Nuclear{{val|0.46|u=m}}/{{val|0.085|u=m}}{{val|2.8|u=T}}{{val|0.01|u=MA}}
TCV (Tokamak à Configuration Variable){{Cite web|url=http://crppwww.epfl.ch/tcv/|title=EPFL|website=crppwww.epfl.ch}}{{active|Operational}}1992–{{flagicon|CH}} LausanneÉcole Polytechnique Fédérale de Lausanne{{val|0.88|u=m}}/{{val|0.25|u=m}}{{val|1.43|u=T}}{{val|1.2|u=MA}}Confinement studiesFile:Tcv int.jpg
HBT-EP (High Beta Tokamak-Extended Pulse){{active|Operational}}1993–{{flagicon|US}} New York CityColumbia University Plasma Physics Laboratory{{val|0.92|u=m}}/{{val|0.15|u=m}}{{val|0.35|u=T}}{{val|0.03|u=MA}}High-Beta tokamakFile:HBT-EP shells and sensors.jpg
{{Anchor|HT-7}}HT-7 (Hefei Tokamak-7){{no|Shut down}}1991–1994 (T-7)1995–2013{{flagicon|CHN}} HefeiHefei Institutes of Physical Science{{val|1.22|u=m}}/{{val|0.27|u=m}}{{val|2|u=T}}{{val|0.2|u=MA}}China's first superconducting tokamak
Pegasus Toroidal Experiment{{Cite web|url=http://pegasus.ep.wisc.edu|title=Pegasus Toroidal Experiment|website=pegasus.ep.wisc.edu|language=en}}{{active|Operational}}?1996–{{flagicon|USA}} MadisonUniversity of Wisconsin–Madison{{val|0.45|u=m}}/{{val|0.4|u=m}}{{val|0.18|u=T}}{{val|0.3|u=MA}}Extremely low aspect ratioFile:Pegasus Toroidal Experiment (6140926094).jpg
NSTX (National Spherical Torus Experiment){{Cite web|url=https://nstx-u.pppl.gov/|title=NSTX-U|website=nstx-u.pppl.gov|access-date=2018-09-04}}{{active|Operational}}1999–{{flagicon|USA}} Plainsboro TownshipPrinceton Plasma Physics Laboratory{{val|0.85|u=m}}/{{val|0.68|u=m}}{{val|0.3|u=T}}{{val|2|u=MA}}Study the spherical tokamak conceptFile:U.S. Department of Energy - Science - 114 003 003 (9939887676).jpg
Globus-M (UNU Globus-M){{Cite web|url=https://globus.rinno.ru/|title=Globus-M experiment|website= globus.rinno.ru/|language=ru|access-date=2021-10-23}}{{active|Operational}}1999–{{flagicon|RUS}} Saint PetersburgIoffe Institute{{val|0.36|u=m}}/{{val|0.24|u=m}}{{val|0.4|u=T}}{{val|0.3|u=MA}}Study the spherical tokamak concept
ET (Electric Tokamak){{CRecurring|Recycled}} →ETPD19981999–2006{{flagicon|USA}} Los AngelesUCLA{{val|5|u=m}}/{{val|1|u=m}}{{val|0.25|u=T}}{{val|0.045|u=MA}}Largest tokamak of its timeFile:The Electric Tokamak.jpg
TCABR (Tokamak Chauffage Alfvén Brésilien){{active|Operational}}

|1980–1999

|1999–

|{{flagicon|SWI}} Lausanne,
{{flagicon|BRA}} Sao Paulo

|University of Sao Paulo

|{{val|0.615|u=m}} / {{val|0.18|u=m}}

|{{val|1.1|u=T}}

|{{val|0.10|u=MA}}

|Most important tokamak in the southern hemisphere

|File:TCABR lab.jpg

CDX-U (Current Drive Experiment-Upgrade){{CRecurring|Recycled}} →LTX2000–2005{{flagicon|USA}} PrincetonPrinceton Plasma Physics Laboratory{{val|0.3|u=m}}/?{{val|0.23|u=T}}{{val|0.03|u=MA}}Study Lithium in plasma wallsFile:U.S. Department of Energy - Science - 413 002 003 (9952381694).jpg
MAST (Mega-Ampere Spherical Tokamak){{Cite web|url=http://www.fusion.org.uk/mast/index.html|archive-url=https://web.archive.org/web/20060421081115/http://www.fusion.org.uk/mast/index.html|archive-date=2006-04-21|title=MAST – the Spherical Tokamak at UKAEA Culham|date=2006-04-21}}{{CRecurring|Recycled}} →MAST-Upgrade1997–19992000–2013{{flagicon|UK}} CulhamUnited Kingdom Atomic Energy Authority{{val|0.85|u=m}}/{{val|0.65|u=m}}{{val|0.55|u=T}}{{val|1.35|u=MA}}Investigate spherical tokamak for fusionFile:MAST plasma image.jpg
{{Anchor|HL-2A}}HL-2A (Huan-Liuqi-2A){{active|Operational}}2000–20022002–2018{{flagicon|CHN}} ChengduSouthwestern Institute of Physics{{val|1.65|u=m}}/{{val|0.4|u=m}}{{val|2.7|u=T}}{{val|0.43|u=MA}}H-mode physics, ELM mitigation
SST-1 (Steady State Superconducting Tokamak){{Cite web|url=http://www.ipr.res.in/sst1/SST-1.html|archive-url=https://web.archive.org/web/20140620232825/http://www.ipr.res.in/sst1/SST-1.html|archive-date=2014-06-20|title=The SST-1 Tokamak Page|date=2014-06-20}}{{active|Operational}}2001–2005–{{flagicon|IND}} GandhinagarInstitute for Plasma Research{{val|1.1|u=m}}/{{val|0.2|u=m}}{{val|3|u=T}}{{val|0.22|u=MA}}Produce a {{val|1000|u=s}} elongated double null divertor plasma
EAST (Experimental Advanced Superconducting Tokamak){{Cite web|url=http://english.hf.cas.cn/ic/ip/east/|title=EAST (HT-7U Super conducting Tokamak)----Hefei Institutes of Physical Science, The Chinese Academy of Sciences|website=english.hf.cas.cn}}{{active|Operational}}2000–20052006–{{flagicon|CHN}} HefeiHefei Institutes of Physical Science{{val|1.85|u=m}}/{{val|0.43|u=m}}{{val|3.5|u=T}}{{val|0.5|u=MA}}Superheated plasma for over {{val|1066|u=s}} and {{val|20|u=s}} at {{val|160|u=M°C}}{{cite news |title=Chinese "Artificial Sun" experimental fusion reactor sets world record for superheated plasma time |url=https://nation.com.pk/29-May-2021/chinese-artificial-sun-experimental-fusion-reactor-sets-world-record-for-superheated-plasma-time |date=May 29, 2021 |work=The Nation }}{{Cite web |author1=Patrick Pester |date=2025-01-21 |title=China's 'artificial sun' shatters nuclear fusion record by generating steady loop of plasma for 1,000 seconds |url=https://www.livescience.com/planet-earth/nuclear-energy/chinas-artificial-sun-shatters-nuclear-fusion-record-by-generating-steady-loop-of-plasma-for-1-000-seconds |access-date=2025-02-04 |website=livescience.com |language=en}}File:EAST-tokamak sketch.png
J-TEXT (Joint TEXT){{active|Operational}}TEXT (Texas EXperimental Tokamak)2007–{{flagicon|CHN}} WuhanHuazhong University of Science and Technology{{val|1.05|u=m}}/{{val|0.26|u=m}}{{val|2.0|u=T}}{{val|0.2|u=MA}}Develop plasma control
KSTAR (Korea Superconducting Tokamak Advanced Research){{Cite web|title=연구분야 > KSTAR > 운영사업 > KSTAR 소개 |url=http://www.nfri.re.kr/research/kstar_m_1_1.php|archive-url=https://web.archive.org/web/20110929154613/http://www.nfri.re.kr/research/kstar_m_1_1.php|archive-date=2011-09-29|date=2008-05-30|language=ko}}{{active|Operational}}1998–20072008–{{flagicon|KOR}} DaejeonNational Fusion Research Institute{{val|1.8|u=m}}/{{val|0.5|u=m}}{{val|3.5|u=T}}{{val|2|u=MA}}Tokamak with fully superconducting magnets, {{val|48|u=s}}-long operation at {{val|100|u=MK}}{{cite news |last1=McFadden |first1=Christopher |title=South Korean 'artificial sun' reaches 7 times the Sun's core temperature |url=https://interestingengineering.com/energy/south-korea-artificial-sun-new-record |access-date=30 March 2024 |work=Interesting Engineering |date=29 March 2024}}File:KSTAR tokamak.jpg
{{Anchor|LTX}}LTX (Lithium Tokamak Experiment){{active|Operational}}2005–20082008–{{flagicon|USA}} PrincetonPrinceton Plasma Physics Laboratory{{val|0.4|u=m}}/?{{val|0.4|u=T}}{{val|0.4|u=MA}}Study Lithium in plasma wallsFile:U.S. Department of Energy - Science - 114 001 004 (29677232615).jpg
QUEST (Q-shu University Experiment with Steady-State Spherical Tokamak){{Cite web|title=Q-shuUniv. Exp. with Steady-State Spherical Tokamak|url=http://www.triam.kyushu-u.ac.jp/QUEST_HP/quest_e.html|archive-url=https://web.archive.org/web/20131110043518/http://www.triam.kyushu-u.ac.jp/QUEST_HP/quest_e.html|archive-date=2013-11-10|date=2013-11-10}}{{cite web |title=QUEST Project |url=https://www.triam.kyushu-u.ac.jp/QUEST_HP/suben/QUESTplanen.html |publisher=Advanced Fusion Research Center, Research Institute for Applied Mechanics, Kyushu University |access-date=24 February 2025}}{{active|Operational}}2008–{{flagicon|JP}} KasugaKyushu University{{val|0.68|u=m}}/{{val|0.4|u=m}}{{val|0.25|u=T}}{{val|0.02|u=MA}}Study steady state operation of a Spherical TokamakFile:QUEST tokamak (cropped).jpg
Kazakhstan Tokamak for Material testing (KTM){{active|Operational}}2000–20102010–{{flagicon|KAZ}} KurchatovNational Nuclear Center of the Republic of Kazakhstan{{val|0.86|u=m}}/{{val|0.43|u=m}}{{val|1|u=T}}{{val|0.75|u=MA}}Testing of wall and divertor
ST25-HTS{{cite web | url=https://www.tokamakenergy.co.uk/mission/st25/ | title=ST25 » Tokamak Energy | access-date=2018-10-21 | archive-date=2019-03-26 | archive-url=https://web.archive.org/web/20190326141452/https://www.tokamakenergy.co.uk/mission/st25/ }}{{active|Operational}}2012–20152015–{{flagicon|UK}} CulhamTokamak Energy Ltd{{val|0.25|u=m}}/{{val|0.125|u=m}}{{val|0.1|u=T}}{{val|0.02|u=MA}}Steady state plasmaFile:Tokamak ST25 rf discharge.jpg
{{Anchor|WEST}}WEST (Tungsten Environment in Steady-state Tokamak){{active|Operational}}2013–20162016–{{flagicon|FRA}} CadaracheDépartement de Recherches sur la Fusion Contrôlée{{val|2.5|u=m}}/{{val|0.5|u=m}}{{val|3.7|u=T}}{{val|1|u=MA}}Superconducting tokamak with active coolingFile:WEST fish-eye lens.jpg
ST40{{cite web | url=https://www.tokamakenergy.co.uk/st40/ | title=ST40 » Tokamak Energy | access-date=2018-10-21 | archive-date=2019-03-26 | archive-url=https://web.archive.org/web/20190326150138/https://www.tokamakenergy.co.uk/st40/ }}{{active|Operational}}2017–20182018–{{flagicon|UK}} DidcotTokamak Energy Ltd{{val|0.4|u=m}}/{{val|0.3|u=m}}{{val|3|u=T}}{{val|2|u=MA}}First high field spherical tokamak, reached {{val|100|u=MK}} plasmaFile:Tokamak ST40 engineering drawing.jpg
{{Anchor|MAST-Upgrade}}MAST-U (Mega-Ampere Spherical Tokamak Upgrade){{Cite web|url=http://www.firefusionpower.org/FPA2016_MAST_Upgrade_Milnes.pptx|title=Status and Plans on MAST-U|date=2016-12-13}}{{active|Operational}}2013–20192020–{{flagicon|UK}} CulhamUnited Kingdom Atomic Energy Authority{{val|0.85|u=m}}/{{val|0.65|u=m}}{{val|0.92|u=T}}{{val|2|u=MA}}Test new exhaust concepts for a spherical tokamak
HL-3 / HL-2M (Huan-Liuqi-2M){{cite web | url=https://www.neimagazine.com/news/newschina-completes-new-tokamak-7531412 | title=China completes new tokamak| date=29 November 2019}}{{active|Operational}}2018–20192020–{{flagicon|CHN}} LeshanSouthwestern Institute of Physics{{val|1.78|u=m}}/{{val|0.65|u=m}}{{val|2.2|u=T}}{{val|1.2|u=MA}}Elongated plasma with {{val|200|u=MK}}File:HL-2M tokamak CAD.jpg
{{Anchor|JT-60SA}}JT-60SA (Japan Torus-60 super, advanced){{Cite web|url=https://www.jt60sa.org/b/index_nav_1.htm?n1/introduction.htm|title=The JT-60SA project|website=www.jt60sa.org|access-date=2021-03-06|archive-date=2021-01-28|archive-url=https://web.archive.org/web/20210128153807/https://www.jt60sa.org/b/index_nav_1.htm?n1/introduction.htm}}{{active|Operational}}2013–20202021–{{flagicon|JP}} NakaJapan Atomic Energy Research Institute{{val|2.96|u=m}}/{{val|1.18|u=m}}{{val|2.25|u=T}}{{val|5.5|u=MA}}Optimise plasma configurations for ITER and DEMO with full non-inductive steady-state operationFile:JT-60SA Reactor Core.webp
{{Anchor|T-15MD}}T-15MD{{active|Operational}}2010–20202021–{{flagicon|RUS}} MoscowKurchatov Institute{{val|1.48|u=m}}/{{val|0.67|u=m}}{{val|2|u=T}}{{val|2|u=MA}}Hybrid fusion/fission reactorFile:T-15MD Toroidal winding and poloidal field coils.jpg
IGNITOR{{Cite web|url=http://www.frascati.enea.it/ignitor/|title=Ignited plasma in Tokamaks – The IGNITOR project|website=frascati.enea.it|archive-url=https://web.archive.org/web/20200419133100/http://www.frascati.enea.it/ignitor/|archive-date=2020-04-19}}{{BLACK|Cancelled}} 2022{{Cite web |title=Ignitor, il progetto del reattore nucleare italiano, è stato chiuso - Panorama |url=https://www.panorama.it/tecnologia/ignitor-progetto-reattore-nucleare |access-date=2024-06-28 |website=www.panorama.it |language=it}}data-sort-value="2022"| -data-sort-value="2022"| -{{flagicon|RUS}} TroitzkENEA{{val|1.32|u=m}}/{{val|0.47|u=m}}{{val|13|u=T}}{{val|11|u=MA}}Compact fusion reactor with self-sustained plasma and {{val|100|u=MW}} of planned fusion power
HH70 (HongHuang 70){{Cite web |date=June 20, 2024 |title=Fusion technology breakthrough: China unveils first commercial "artificial sun" (photo) |url=https://tech.news.am/eng/news/3733/fusion-technology-breakthrough-china-unveils-first-commercial-%E2%80%9Cartificial-sun%E2%80%9D-photo.html |access-date=2024-06-22 |website=NEWS.am TECH - Innovations and science}}{{cite journal| title=Development and construction of magnet system for world's first full high temperature superconducting tokamak |author=Z.Y. Li |author2=Z.C. Pan |author3=Q.J. Zhang |author4=K.P. Zhu |author5=C. Zhang |author6=Z.W. Zhang |author7=G. Dong |author8=Y.M. Ye |author9=Z. Yang |date=2024-12-01 |journal=Superconductivity |doi=10.1016/j.supcon.2024.100137 |volume=12 |page=100137|doi-access=free }}

|{{active|Operational}}

2022–20242024–{{Flagicon|China}}ShanghaiEnergy Singularity{{val|0.75|u=m}}/{{val|0.31|u=m}}{{val|2.5|u=T}}REBCO High-temperature superconducting coils
SPARC{{cite web |title=2023 Climate Tech Companies to Watch: Commonwealth and its compact tokamak |url=https://www.technologyreview.com/2023/10/04/1080113/2023-climate-tech-companies-commonwealth-compact-tokamak-carbon-free-electricity-fusion-reactor-electromagents/ |last=Harris |first=Mark |website=MIT Technology Review |date=October 4, 2023 |access-date=February 10, 2024}}{{Cite web|url=http://www.psfc.mit.edu/sparc|title=SPARC |website=MIT Plasma Science and Fusion Center}}{{Cite journal|last1=Creely|first1=A. J.|last2=Greenwald|first2=M. J.|last3=Ballinger|first3=S. B.|last4=Brunner|first4=D.|last5=Canik|first5=J.|last6=Doody|first6=J.|last7=Fülöp|first7=T.|author7-link=Tünde Fülöp|last8=Garnier|first8=D. T.|last9=Granetz|first9=R.|last10=Gray|first10=T. K.|last11=Holland|first11=C.|date=2020|title=Overview of the SPARC tokamak|journal=Journal of Plasma Physics|language=en|volume=86|issue=5|doi=10.1017/S0022377820001257|bibcode=2020JPlPh..86e8602C|issn=0022-3778|doi-access=free|hdl=1721.1/136131|hdl-access=free}}{{Cite web|last=Chesto|first=Jon|date=2021-03-03|title=MIT energy startup homes in on fusion, with plans for 47-acre site in Devens|url=https://www.bostonglobe.com/2021/03/03/business/mit-energy-startup-homes-fusion-with-plans-47-acre-site-devens/|access-date=2021-03-03|website=BostonGlobe.com|language=en-US}}Verma, Pranshu. [https://www.washingtonpost.com/technology/2022/08/26/nuclear-fusion-technology-climate-change/ Nuclear fusion power inches closer to reality.] The Washington Post, August 26, 2022.{{partial|Under construction}}2021–2026?{{flagicon|USA}} Devens, MACommonwealth Fusion Systems and MIT Plasma Science and Fusion Center{{val|1.85|u=m}}/{{val|0.57|u=m}}{{val|12.2|u=T}}{{val|8.7|u=MA}}Compact, high-field tokamak with ReBCO coils and {{val|100|u=MW}} planned fusion powerFile:Sparc february 2018.jpg
ITER{{Cite news|url=http://www.iter.org/|title=ITER – the way to new energy|work=ITER|language=en}}{{partial|Under construction}}2013–2034?2034?{{flagicon|FRA}} CadaracheITER Council{{val|6.2|u=m}}/{{val|2.0|u=m}}{{val|5.3|u=T}}{{val|15|u=MA}} ?Demonstrate feasibility of fusion on a power-plant scale with {{val|500|u=MW}} fusion powerFile:ITER Exhibit (01810402) (12219071813) (cropped).jpg
DTT (Divertor Tokamak Test facility){{Cite web|url=https://www.fsn-fusphy.enea.it/DTT/|title=The DTT Project|access-date=2020-02-21|archive-date=2019-03-30|archive-url=https://web.archive.org/web/20190330143339/https://www.fsn-fusphy.enea.it/DTT/}}{{Cite web |url=https://www.elettrotecnica.unina.it/files/albanese/upload/CERN2019_Albanese.pdf |title=The new Divertor Tokamak Test facility |access-date=2020-02-21 |archive-date=2020-02-21 |archive-url=https://web.archive.org/web/20200221125034/http://www.elettrotecnica.unina.it/files/albanese/upload/CERN2019_Albanese.pdf }}{{Cite web |last=Antonella |date=2024-06-12 |title=Divertor Tokamak Test facility Research Plan Version 1.0 |url=https://www.pubblicazioni.enea.it/le-pubblicazioni-enea/edizioni-enea/anno-2024/divertor-tokamak-test-facility-research-plan-version-1-0.html |access-date=2024-06-28 |website=www.pubblicazioni.enea.it |language=it-it}}{{planned|Planned}}2022–2029?2029?{{flagicon|ITA}} FrascatiENEA{{val|2.19|u=m}}/{{val|0.70|u=m}}{{val|5.85|u=T}} ?{{val|5.5|u=MA}} ?Superconducting tokamak to study power exhaust
SST-2 (Steady State Tokamak-2){{cite journal|last1=Srinivasan|first1=R.|title=Design and analysis of SST-2 fusion reactor|journal=Fusion Engineering and Design|volume=112|year=2016|pages=240–243|issn=0920-3796|doi=10.1016/j.fusengdes.2015.12.044|bibcode=2016FusED.112..240S }}{{planned|Planned}}2027?{{flagicon|IND}} GujaratInstitute for Plasma Research{{val|4.42|u=m}}/{{val|1.47|u=m}}{{val|5.42|u=T}}{{val|11.2|u=MA}}Full-fledged fusion reactor with tritium breeding and up to 500 MW output
CFETR (China Fusion Engineering Test Reactor){{cite journal | last1 = Zhuang | first1 = G. | last2 = Li | first2 = G.Q. | last3 = Li | first3 = J. | last4 = Wan | first4 = Y.X. | last5 = Liu | first5 = Y. | last6 = Wang | first6 = X.L. | last7 = Song | first7 = Y.T. | last8 = Chan | first8 = V. | last9 = Yang | first9 = Q.W. | last10 = Wan | first10 = B.N. | last11 = Duan | first11 = X.R. | last12 = Fu | first12 = P. | last13 = Xiao | first13 = B.J. | title = Progress of the CFETR design | journal = Nuclear Fusion | date = 5 June 2019 | volume = 59 | issue = 11 | page = 112010 | issn = 0029-5515 | eissn = 1741-4326 | doi = 10.1088/1741-4326/ab0e27 | bibcode = 2019NucFu..59k2010Z | s2cid = 127585754 }}{{planned|Planned}}data-sort-value="2024"| ≥20242030?{{flagicon|CHN}}Institute of Plasma Physics, Chinese Academy of Sciences{{val|7.2|u=m}}/{{val|2.2|u=m}} ?{{val|6.5|u=T}} ?{{val|14|u=MA}} ?Bridge gaps between ITER and DEMO, planned fusion power {{val|1000|u=MW}}
ST-F1 (Spherical Tokamak - Fusion 1){{Cite web|url=https://www.madeherenow.com/news/post/2019/10/22/energy-innovator-reaches-for-the-stars|title=Energy innovator reaches for the stars|website=www.madeherenow.com}}{{planned|Planned}}2027?{{flagicon|UK}} DidcotTokamak Energy Ltd{{val|1.4|u=m}}/{{val|0.8|u=m}} ?{{val|4|u=T}}{{val|5|u=MA}}Spherical tokamak with Q=3 and hundreds of MW planned electrical output (no longer mentioned by company as of 2024)
STX (ST80-HTS){{planned|Planned}}2026?2030?{{flagicon|UK}} CulhamTokamak Energy LtdSpherical tokamak capable of 15min-pulsed operation{{cite web |url=https://www.gov.uk/government/news/tokamak-energys-fusion-prototype-to-be-built-at-ukaeas-campus |title=Tokamak Energy's fusion prototype to be built at UKAEA's campus |date=2023-02-10 |work=gov.uk}}{{cite web |url=https://tokamakenergy.com/2023/02/10/tokamak-energys-new-advanced-fusion-prototype-to-be-built-at-ukaeas-culham-campus/ |title=Tokamak Energy's new advanced fusion prototype to be built at UKAEA's Culham Campus |date=2023-02-10 |work=tokamakenergy.com}}
ST-E1{{planned|Planned}}2030s?{{flagicon|UK}} CulhamTokamak Energy LtdSpherical tokamak with {{val|200|u=MW}} planned net electric output{{cite news| url=https://world-nuclear-news.org/Articles/Tokamak-to-construct-demo-fusion-reactor-at-Culham |title=Tokamak to construct demo fusion reactor at Culham |date=2023-02-10 |work=World Nuclear News}}
STEP (Spherical Tokamak for Energy Production){{planned|Planned}}2032-20402040 D-D
Mid 2040s DT Campaign
{{flagicon|UK}} West Burton, NottinghamshireUnited Kingdom Atomic Energy Authority{{val|3|u=m}}/{{val|2|u=m}} ??{{val|16.5|u=MA}} ?Spherical tokamak with {{val|100|u=MW}} planned electrical output{{Cite web |first=UKAEA |last=STEP |title=STEP Project Partner Slide Deck |url=https://step.ukaea.uk/step-supply-chain/ |access-date=2023-04-04 |website=STEP UKAEA Portal}}
JA-DEMO

|{{Planned}}

|2030?

|2050?

|{{flagicon|JP}}

|?

|{{val|8.5|u=m}}/{{val|2.4|u=m}}{{Cite journal |last1=Tobita |first1=Kenji |last2=Hiwatari |first2=Ryoji |last3=Sakamoto |first3=Yoshiteru |last4=Someya |first4=Youji |last5=Asakura |first5=Nobuyuki |last6=Utoh |first6=Hiroyasu |last7=Miyoshi |first7=Yuya |last8=Tokunaga |first8=Shinsuke |last9=Homma |first9=Yuki |last10=Kakudate |first10=Satoshi |last11=Nakajima |first11=Noriyoshi |last12=for Fusion DEMO |first12=the Joint Special Design Team |date=2019-07-04 |title=Japan's Efforts to Develop the Concept of JA DEMO During the Past Decade |journal=Fusion Science and Technology |volume=75 |issue=5 |pages=372–383 |doi=10.1080/15361055.2019.1600931 |bibcode=2019FuST...75..372T |s2cid=164357381 |issn=1536-1055|doi-access=free }}

|{{val|5.94|u=T}}

|{{val|12.3|u=MA}}

|Prototype for development of Commercial Fusion Reactors {{val|1.5

2|u=GW}} Fusion output.{{Cite journal |last1=Iwai |first1=Yasunori |last2=Edao |first2=Yuki |last3=Kurata |first3=Rie |last4=Isobe |first4=Kanetsugu |date=2021-05-01 |title=Basic concept of JA DEMO fuel cycle |url=https://www.sciencedirect.com/science/article/pii/S0920379621000375 |journal=Fusion Engineering and Design |language=en |volume=166 |page=112261 |doi=10.1016/j.fusengdes.2021.112261 |bibcode=2021FusED.16612261I |s2cid=233566366 |issn=0920-3796}}

|

K-DEMO (Korean fusion demonstration tokamak reactor){{Cite journal|last1=Kim|first1=K.|last2=Im|first2=K.|last3=Kim|first3=H. C.|last4=Oh|first4=S.|last5=Park|first5=J. S.|last6=Kwon|first6=S.|last7=Lee|first7=Y. S.|last8=Yeom|first8=J. H.|last9=Lee|first9=C.|date=2015|title=Design concept of K-DEMO for near-term implementation|url=http://stacks.iop.org/0029-5515/55/i=5/a=053027|journal=Nuclear Fusion|language=en|volume=55|issue=5|page=053027|doi=10.1088/0029-5515/55/5/053027|issn=0029-5515|bibcode=2015NucFu..55e3027K|doi-access=free}}{{planned|Planned}}2037?{{flagicon|KOR}}National Fusion Research Institute{{val|6.8|u=m}}/{{val|2.1|u=m}}{{val|7|u=T}}{{val|12|u=MA}} ?Prototype for the development of commercial fusion reactors with around {{val|2200|u=MW}} of fusion powerFile:K-DEMO device core design features.jpg
DEMO (DEMOnstration Power Station){{planned|Planned}}2040?2050??{{val|9|u=m}}/{{val|3|u=m}} ?{{val|6|u=T}} ?{{val|20|u=MA}} ?Prototype for a commercial fusion reactorFile:EUROfusion schematic diagram of fusion power plant.jpg

== Stellarator ==

class="wikitable sortable"
Device nameStatusConstructionOperationTypeLocationOrganisationMajor/minor radiusB-fieldPurposeImage
Model A{{no|Shut down}}1952–19531953–?Figure-8{{flagicon|USA}} PrincetonPrinceton Plasma Physics Laboratory{{val|0.3|u=m}}/{{val|0.02|u=m}}{{val|0.1|u=T}}First stellarator, table-top device
Model B{{no|Shut down}}1953–19541954–1959Figure-8{{flagicon|USA}} PrincetonPrinceton Plasma Physics Laboratory{{val|0.3|u=m}}/{{val|0.02|u=m}}{{val|5|u=T}}Development of plasma diagnostics
Model B-1{{no|Shut down}}?–1959Figure-8{{flagicon|USA}} PrincetonPrinceton Plasma Physics Laboratory{{val|0.25|u=m}}/{{val|0.02|u=m}}{{val|5|u=T}}Yielded {{val|1|u=MK}} plasma temperatures, showed cooling by X-ray radiation from impurities
Model B-2{{no|Shut down}}1957Figure-8{{flagicon|USA}} PrincetonPrinceton Plasma Physics Laboratory{{val|0.3|u=m}}/{{val|0.02|u=m}}{{val|5|u=T}}Electron temperatures up to {{val|10|u=MK}}
Model B-3{{no|Shut down}}19571958–Figure-8{{flagicon|USA}} PrincetonPrinceton Plasma Physics Laboratory{{val|0.4|u=m}}/{{val|0.02|u=m}}{{val|4|u=T}}Last figure-8 device, confinement studies of ohmically heated plasma
Model B-64{{no|Shut down}}19551955Square{{flagicon|USA}} PrincetonPrinceton Plasma Physics Laboratory? m/{{val|0.05|u=m}}{{val|1.8|u=T}}
Model B-65{{no|Shut down}}19571957Racetrack{{flagicon|USA}} PrincetonPrinceton Plasma Physics Laboratory
Model B-66{{no|Shut down}}19581958–?Racetrack{{flagicon|USA}} PrincetonPrinceton Plasma Physics Laboratory
Wendelstein 1-A{{no|Shut down}}1960Racetrack{{flagicon|DEU}} GarchingMax-Planck-Institut für Plasmaphysik{{val|0.35|u=m}}/{{val|0.02|u=m}}{{val|2|u=T}}ℓ=3 showed that stellarators can overcome Bohm diffusion, "Munich mystery"
Wendelstein 1-B{{no|Shut down}}1960Racetrack{{flagicon|DEU}} GarchingMax-Planck-Institut für Plasmaphysik{{val|0.35|u=m}}/{{val|0.02|u=m}}{{val|2|u=T}}ℓ=2
{{Anchor|Model C}}Model C{{CRecurring|Recycled}} →ST1957–19611961–1969Racetrack{{flagicon|USA}} PrincetonPrinceton Plasma Physics Laboratory{{val|1.9|u=m}}/{{val|0.07|u=m}}{{val|3.5|u=T}}Suffered from large plasma losses by Bohm diffusion through "pump-out"
L-1{{no|Shut down}}19631963–1971round{{flagicon|SOV}} MoscowLebedev Physical Institute{{val|0.6|u=m}}/{{val|0.05|u=m}}{{val|1|u=T}}First Soviet stellarator, overcame Bohm diffusion
SIRIUS{{no|Shut down}}1964–?Racetrack{{flagicon|SOV}} KharkivKharkiv Institute of Physics and Technology (KIPT)
TOR-1{{no|Shut down}}19671967–1973{{flagicon|SOV}} MoscowLebedev Physical Institute{{val|0.6|u=m}}/{{val|0.05|u=m}}{{val|1|u=T}}
TOR-2{{no|Shut down}}?1967–1973{{flagicon|SOV}} MoscowLebedev Physical Institute{{val|0.63|u=m}}/{{val|0.036|u=m}}{{val|2.5|u=T}}
Uragan-1{{no|Shut down}}1960–19671967–?Racetrack{{flagicon|SOV}} KharkivNational Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT){{val|1.1|u=m}}/{{val|0.1|u=m}}{{val|1|u=T}}Overcame Bohm-diffusion by a factor of 30
CLASP (Closed Line And Single Particle){{cite journal | last1 = Lees | first1 = D.J. | title = Culham stellarator programme, 1965–1980 | journal = Nuclear Fusion | date = 1 September 1985 | volume = 25 | issue = 9 | pages = 1259–1265 | issn = 0029-5515 | eissn = 1741-4326 | doi = 10.1088/0029-5515/25/9/044 | s2cid = 119660036 }}{{no|Shut down}}?1967–?{{flagicon|UK}} CulhamUnited Kingdom Atomic Energy Authority{{val|0.3|u=m}}/{{val|0.056|u=m}}{{val|0.1|u=T}}Study confinement of electrons in a high-shear stellarator
TWIST{{no|Shut down}}?1967–?{{flagicon|UK}} CulhamUnited Kingdom Atomic Energy Authority{{val|0.32|u=m}}/{{val|0.045|u=m}}{{val|0.3|u=T}}Study turbulent heating
Proto-CLEO{{no|Shut down}}?1968–?single-turn helical winding inside toroidal field conductors{{flagicon|UK}} Culham,
{{flagicon|USA}} Madison
United Kingdom Atomic Energy Authority{{val|0.4|u=m}}/{{val|0.05|u=m}}{{val|0.5|u=T}}confirmed plasma confinement times of neoclassical theory
TORSO{{no|Shut down}}?1972–?data-sort-value="Torsatron"| Ultimate torsatron{{flagicon|UK}} CulhamUnited Kingdom Atomic Energy Authority{{val|0.4|u=m}}/{{val|0.05|u=m}}{{val|2|u=T}}
CLEO{{no|Shut down}}?1974–?{{flagicon|UK}} CulhamUnited Kingdom Atomic Energy Authority{{val|0.9|u=m}}/{{val|0.125|u=m}}{{val|2|u=T}}Study of particle transport and beta limits, reached similar performance as tokamaks
Wendelstein 2-A{{no|Shut down}}1965–19681968–1974Heliotron{{flagicon|DEU}} GarchingMax-Planck-Institut für Plasmaphysik{{val|0.5|u=m}}/{{val|0.05|u=m}}{{val|0.6|u=T}}Good plasma confinementFile:DMM 1988-643 Fusionsexperiment Wendelstein-IIa.jpg
Saturn{{cite journal | last1 = Georgiyevskiy | first1 = A. V. | last2 = Solodovchenko | first2 = S. I. | last3 = Voitsenya | first3 = V. S. | title = Contributions of the "Saturn" to Modern Stellarator-Torsatron Research | journal = Journal of Fusion Energy | date = 13 February 2010 | volume = 29 | issue = 4 | pages = 399–406 | issn = 0164-0313 | eissn = 1572-9591 | doi = 10.1007/s10894-010-9284-0 | bibcode = 2010JFuE...29..399G | s2cid = 123305093 }}{{no|Shut down}}19701970–?Torsatron{{flagicon|SOV}} KharkivKharkiv Institute of Physics and Technology{{val|0.36|u=m}}/{{val|0.08|u=m}}{{val|1|u=T}}first Torsatron, ℓ=3, m=8 field periods, base for several torsatrons at KIPT
Wendelstein 2-B{{no|Shut down}}?–19701971–?Heliotron{{flagicon|DEU}} GarchingMax-Planck-Institut für Plasmaphysik{{val|0.5|u=m}}/{{val|0.055|u=m}}{{val|1.25|u=T}}Demonstrated similar performance as tokamaksFile:W7x 026.jpg
Vint-20{{cite journal | last1 = Georgievskii | first1 = A. V. | last2 = Suprunenko | first2 = V. A. | last3 = Sukhomlin | first3 = E. A. | title = Vint-20 single-helix torsatron machine with three-dimensional magnetic axis | journal = Soviet Atomic Energy | date = May 1973 | volume = 34 | issue = 5 | pages = 518–519 | issn = 0038-531X | eissn = 1573-8205 | doi = 10.1007/BF01163768 | s2cid = 94405830 }}{{no|Shut down}}19721973–?Torsatron{{flagicon|SOV}} KharkivKharkiv Institute of Physics and Technology{{val|0.315|u=m}}/{{val|0.0725|u=m}}{{val|1.8|u=T}}single-pole ℓ=1, m=13 field periods
L-2{{no|Shut down}}?1975–?{{flagicon|SOV}} MoscowLebedev Physical Institute{{val|1|u=m}}/{{val|0.11|u=m}}{{val|2.0|u=T}}
WEGA (Wendelstein Experiment in Greifswald für die Ausbildung){{CRecurring|Recycled}} →HIDRA1972–19751975–2013Classical stellarator{{flagicon|DEU}} GreifswaldMax-Planck-Institut für Plasmaphysik{{val|0.72|u=m}}/{{val|0.15|u=m}}{{val|1.4|u=T}}Test lower hybrid heatingFile:WEGA-Stuttgart.jpg
Wendelstein 7-A{{no|Shut down}}?1975–1985Classical stellarator{{flagicon|DEU}} GarchingMax-Planck-Institut für Plasmaphysik{{val|2|u=m}}/{{val|0.1|u=m}}{{val|3.5|u=T}}First "pure" stellarator without plasma current, solved stellarator heating problem
Heliotron-E{{no|Shut down}}?1980–?Heliotron{{flagicon|JP}}{{val|2.2|u=m}}/{{val|0.2|u=m}}{{val|1.9|u=T}}
Heliotron-DR{{no|Shut down}}?1981–?Heliotron{{flagicon|JP}}{{val|0.9|u=m}}/{{val|0.07|u=m}}{{val|0.6|u=T}}
Uragan-3 ({{Interlanguage link multi|Uragan-3M|uk|3=Ураган-3М|lt=M}}){{Cite web|url=http://www.kipt.kharkov.ua/en/bhr.html|title=History {{!}} ННЦ ХФТИ|website=kipt.kharkov.ua}}{{active|Operational}}?1982–?{{Cite web|url=https://ipp.kipt.kharkov.ua/u3m/u3m_eng.html|title=Uragan-3M {{pipe}} IPP NSC KIPT|website=ipp.kipt.kharkov.ua}}
M: 1990–
Torsatron{{flagicon|UKR}} KharkivNational Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT){{val|1.0|u=m}}/{{val|0.12|u=m}}{{val|1.3|u=T}}?
Auburn Torsatron (AT){{no|Shut down}}?1984–1990Torsatron{{flagicon|USA}} AuburnAuburn University{{val|0.58|u=m}}/{{val|0.14|u=m}}{{val|0.2|u=T}}File:Auburn Torsatron.jpg
Wendelstein 7-AS{{no|Shut down}}1982–19881988–2002Modular, advanced stellarator{{flagicon|DEU}} GarchingMax-Planck-Institut für Plasmaphysik{{val|2|u=m}}/{{val|0.13|u=m}}{{val|2.6|u=T}}First computer-optimized stellarator, first H-mode in a stellarator in 1992File:Garching Experiment Wendelstein 7-AS.jpg
Advanced Toroidal Facility (ATF){{no|Shut down}}1984–1988{{Cite web|url=https://www.ornl.gov/content/ornl-review-v17n3|title=ORNL Review v17n3 1984.pdf {{pipe}} ORNL|website=www.ornl.gov}}1988–1994Torsatron{{flagicon|USA}} Oak RidgeOak Ridge National Laboratory{{val|2.1|u=m}}/{{val|0.27|u=m}}{{val|2.0|u=T}}First large American stellarator after Tokamak stampede, high-beta operation, >1h plasma operationFile:Advanced Toroidal Facility, 1986 (49743086486).png
Compact Helical System (CHS){{no|Shut down}}?1989–?Heliotron{{flagicon|JP}} TokiNational Institute for Fusion Science{{val|1|u=m}}/{{val|0.2|u=m}}{{val|1.5|u=T}}
Compact Auburn Torsatron (CAT){{no|Shut down}}?–19901990–2000Torsatron{{flagicon|USA}} AuburnAuburn University{{val|0.53|u=m}}/{{val|0.11|u=m}}{{val|0.1|u=T}}Study magnetic flux surfacesFile:CATphoto2.jpg
H-1 (Heliac-1){{Cite web|url=http://prl.anu.edu.au/H-1NF|title=Plasma Research Laboratory – PRL – ANU|last1=Department|first1=Head of|last2=prl@physics.anu.edu.au|website=prl.anu.edu.au|language=en|access-date=2005-12-26|archive-date=2010-02-13|archive-url=https://web.archive.org/web/20100213172059/http://prl.anu.edu.au/H-1NF}}{{active|Operational}}1992–Heliac{{flagicon|AUS}} Canberra,
{{flagicon|CHN}}
Research School of Physical Sciences and Engineering, Australian National University{{val|1.0|u=m}}/{{val|0.19|u=m}}{{val|0.5|u=T}}shipped to China in 2017File:H1 Heliac.jpg
TJ-K (Tokamak de la Junta Kiel){{Cite web|url=http://fusionwiki.ciemat.es/wiki/TJ-K|title=TJ-K – FusionWiki|website=fusionwiki.ciemat.es|language=en}}{{active|Operational}}TJ-IU (1999)1994–Torsatron{{flagicon|DEU}} Kiel, StuttgartUniversity of Stuttgart{{val|0.60|u=m}}/{{val|0.10|u=m}}{{val|0.5|u=T}}One helical and two vertical coil sets; Teaching; moved from Kiel to Stuttgart in 2005
TJ-II (Tokamak de la Junta II){{Cite web|url=http://www.ciemat.es|title=Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas|last=CIEMAT|website=ciemat.es|language=es}}{{active|Operational}}1991–19961997–flexible Heliac{{flagicon|ESP}} MadridNational Fusion Laboratory, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas{{val|1.5|u=m}}/{{val|0.28|u=m}}{{val|1.2|u=T}}Study plasma in flexible configurationFile:TJ-II model including plasma, coils and vacuum vessel.jpg
LHD (Large Helical Device){{Cite web|url=http://www.lhd.nifs.ac.jp/en/home/lhd.html|title=Large Helical Device Project|website=lhd.nifs.ac.jp|access-date=2006-04-20|archive-url=https://web.archive.org/web/20100412200938/http://www.lhd.nifs.ac.jp/en/home/lhd.html|archive-date=2010-04-12}}{{active|Operational}}1990–19981998–Heliotron{{flagicon|JP}} TokiNational Institute for Fusion Science{{val|3.5|u=m}}/{{val|0.6|u=m}}{{val|3|u=T}}Demonstrated long-term operation of large superconducting coilsFile:LHD Querschnitt.png
HSX (Helically Symmetric Experiment){{Cite web|url=https://hsx.wisc.edu/|title=HSX – Helically Symmetric eXperiment|website=hsx.wisc.edu}}{{active|Operational}}1999–Modular, quasi-helically symmetric{{flagicon|USA}} MadisonUniversity of Wisconsin–Madison{{val|1.2|u=m}}/{{val|0.15|u=m}}{{val|1|u=T}}Investigate plasma transport in quasi-helically-symmetric field, similar to tokamaksFile:HSX picture.jpg
Heliotron J{{Cite web|url=http://www.iae.kyoto-u.ac.jp/en/joint/heliotron-j.html|title=Heliotron J Project|website=iae.kyoto-u.ac.jp/en/joint/heliotron-j.html|access-date=2018-12-06|archive-date=2018-10-24|archive-url=https://web.archive.org/web/20181024030724/http://www.iae.kyoto-u.ac.jp/en/joint/heliotron-j.html}}{{active|Operational}}2000–Heliotron{{flagicon|JP}} KyotoInstitute of Advanced Energy{{val|1.2|u=m}}/{{val|0.1|u=m}}{{val|1.5|u=T}}Study helical-axis heliotron configuration
Columbia Non-neutral Torus (CNT){{active|Operational}}?2004–Circular interlocked coils{{flagicon|USA}} New York CityColumbia University{{val|0.3|u=m}}/{{val|0.1|u=m}}{{val|0.2|u=T}}Study of non-neutral (mostly electron) plasmas
Uragan-2(M){{active|Operational}}1988–20062006–{{Cite web|url=https://ipp.kipt.kharkov.ua/u2m/u2m_en.html|title=Uragan-2M {{pipe}} IPP NSC KIPT|website=ipp.kipt.kharkov.ua}}Heliotron, Torsatron{{flagicon|UKR}} KharkivNational Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT){{val|1.7|u=m}}/{{val|0.22|u=m}}{{val|2.4|u=T}}ℓ=2 Torsatron
Quasi-poloidal stellarator (QPS){{cite web | url=http://web.utk.edu/~qps/ | title=QPS Home Page | access-date=2018-09-01 | archive-date=2016-04-24 | archive-url=https://web.archive.org/web/20160424174351/http://web.utk.edu/~qps/ }}{{cite web |author1 = D.B. Batchelor | author2 = R.D. Benson | author3 = L.A. Berry | author4 = T.S. Bigelow | author5 = M.J. Cole | author6 = P.J. Fogarty | author7 = R.H. Fowler | author8 = P. Goranson | author9 = E.F. Jaeger | author10 = S.P. Hirshman | author11 = J.F. Lyon | author12 = P.K. Mioduszewski | author13 = B.E. Nelson | author14 = D.A. Rasmussen | author15 = D.A. Spong | author16 = D.J. Strickler | author17 = J.C. Whitson | author18 = D.E. Williamson | author19 = W.H. Miner, jr. | author20 = P.M. Valanju | author21 = A. Deisher | author22 = D. Heskett | author23 = A.S. Ware | author24 = A. Brooks | author25 = G.Y. Fu | author26 = S. Hudson | author27 = D.A. Monticello | author28 = N. Pomphrey | author29 = T. Shannon | author30 = R. Sanchez|title=QPS A LOW-ASPECT-RATIO QUASI-POLOIDAL CONCEPT EXPLORATION EXPERIMENT |url=http://qps.fed.ornl.gov/pvr/pdf/qpsentire.pdf |archive-url=https://web.archive.org/web/20041019073850/http://qps.fed.ornl.gov/pvr/pdf/qpsentire.pdf |archive-date=19 October 2004 |url-status=dead}}{{BLACK|Cancelled}}2001–2007Modular{{flagicon|USA}} Oak RidgeOak Ridge National Laboratory{{val|0.9|u=m}}/{{val|0.33|u=m}}{{val|1.0|u=T}}Stellarator researchFile:Quasi-Poloidal Stellarator 3d render.jpg
NCSX (National Compact Stellarator Experiment){{BLACK|Cancelled}}2004–2008Helias{{flagicon|USA}} PrincetonPrinceton Plasma Physics Laboratory{{val|1.4|u=m}}/{{val|0.32|u=m}}{{val|1.7|u=T}}High-β stabilityFile:NCSXmachine.jpg
Compact Toroidal Hybrid (CTH){{active|Operational}}?2007?–Torsatron{{flagicon|USA}} AuburnAuburn University{{val|0.75|u=m}}/{{val|0.2|u=m}}{{val|0.7|u=T}}Hybrid stellarator/tokamakFile:Compact Toroidal Hybrid at Auburn University.jpg
{{Anchor|HIDRA}}HIDRA (Hybrid Illinois Device for Research and Applications){{Cite web|url=http://cpmi.illinois.edu/2016/04/26/hidra-hybrid-illinois-device-for-research-and-applications/|title=HIDRA – Hybrid Illinois Device for Research and Applications {{!}} CPMI – Illinois|website=cpmi.illinois.edu|language=en-US}}{{active|Operational}}2013–2014 (WEGA)2014–?{{flagicon|USA}} Urbana, ILUniversity of Illinois{{val|0.72|u=m}}/{{val|0.19|u=m}}{{val|0.5|u=T}}Stellarator and tokamak in one device, capable of long pulse steady-state operation; study plasma-wall interactionsFile:HIDRA.jpg
UST_2{{Cite web|url=http://www.fusionvic.org/index_UST_2.shtml|title=Vying Fusion Energy - V. Queral|website=www.fusionvic.org}}{{active|Operational}}20132014–modular three period quasi-isodynamic{{flagicon|ESP}} MadridCharles III University of Madrid{{val|0.29|u=m}}/{{val|0.04|u=m}}{{val|0.089|u=T}}3D-printed stellaratorFile:UST 2 stellarator concept and design.jpg
Wendelstein 7-X{{Cite web|url=http://www.ipp.mpg.de/w7x|title=Wendelstein 7-X|website=ipp.mpg.de/w7x}}{{active|Operational}}1996–20222015–Helias{{flagicon|DEU}} GreifswaldMax-Planck-Institut für Plasmaphysik{{val|5.5|u=m}}/{{val|0.53|u=m}}{{val|3|u=T}}Steady-state plasma in large fully optimized stellaratorFile:Schematic diagram of Wendelstein 7-X.jpg
SCR-1 (Stellarator of Costa Rica){{active|Operational}}2011–20152016–Modular{{flagicon|CRI}} CartagoCosta Rica Institute of Technology{{val|0.14|u=m}}/{{val|0.042|u=m}}{{val|0.044|u=T}}File:SCR-1 vacuum vessel drawing.jpg
MUSE{{cite journal |title=Design and construction of the MUSE permanent magnet stellarator |journal=Journal of Plasma Physics |volume=89 |issue=5 |page=955890502 |doi=10.1017/S0022377823000880 |date=2023-10-31 |author=T.M. Qian |author2=X. Chu |author3=C. Pagano |author4=D. Patch |author5=M.C. Zarnstorff |author6=B. Berlinger |author7=D. Bishop |author8=A. Chambliss |author9=M. Haque |author10=D. Seidita |author11=C. Zhu |bibcode=2023JPlPh..89e9502Q |doi-access=free }}

|{{active|Operational}}

|2022–2023

|2023–

|Quasiaxi-symmetrical

|{{flagicon|USA}} Princeton

|Princeton Plasma Physics Laboratory

|{{val|0.3|u=m}}/{{val|0.075|u=m}}

|{{val|0.15|u=T}}

|First stellarator with permanent magnets

|File:Design and construction of the MUSE permanent magnet stellarator - Fig21 (cropped).jpg

CFQS (Chinese First Quasi-Axisymmetric Stellarator){{Cite journal|last1=KINOSHITA|first1=Shigeyoshi|last2=SHIMIZU|first2=Akihiro|last3=OKAMURA|first3=Shoichi|last4=ISOBE|first4=Mitsutaka|last5=XIONG|first5=Guozhen|last6=LIU|first6=Haifeng|last7=XU|first7=Yuhong|last8=The CQFS Team|date=2019-06-03|title=Engineering Design of the Chinese First Quasi-Axisymmetric Stellarator (CFQS)|journal=Plasma and Fusion Research|volume=14|pages=3405097 |doi=10.1585/pfr.14.3405097|bibcode=2019PFR....1405097K|issn=1880-6821|doi-access=free}}

|{{partial|Under construction}}

|2017–

|

|Helias

|{{flagicon|CHN}} Chengdu

|Southwest Jiaotong University, National Institute for Fusion Science in Japan

|{{val|1|u=m}}/{{val|0.25|u=m}}

|{{val|1|u=T}}

|m=2 quasi-axisymmetric stellarator, modular

| File:CFQS coils Bfield Su2020.jpg

EFPP (European Fusion Power Plant){{Cite web|url=https://www.filo.kit.edu/downloads/Forum%20FUSION%20Dtl/Event_FFD_081222/Presentationen/6-Gauss%20Fusion%20Initiative-Introduction%202.pdf|title=Introduction to the Gauss Fusion Initiative|date=2022-12-08}}

|{{planned|Planned}}

|2030 ?

|2045 ?

|Helias

|{{flagicon|DEU}}

|Gauss Fusion

|

|7–{{val|9|u=T}} ?

|Fusion power plant with 2–{{val|3|u=GW}} output

|

== [[Magnetic mirror]] ==

== Toroidal [[Z-pinch]] ==

  • Perhapsatron (1953, USA)
  • ZETA (Zero Energy Thermonuclear Assembly) (1957, United Kingdom)

== Reversed field pinch (RFP) ==

  • ETA-BETA II in Padua, Italy (1979–1989)
  • RFX (Reversed-Field eXperiment), Consorzio RFX, Padova, Italy{{Cite web|url=http://www.igi.cnr.it/|title=CONSORZIO RFX – Ricerca Formazione Innovazione|website=igi.cnr.it|access-date=2018-04-16|archive-url=https://web.archive.org/web/20090901010034/http://www.igi.cnr.it/|archive-date=2009-09-01}}
  • MST (Madison Symmetric Torus), University of Wisconsin–Madison, United States{{Cite web|url=http://plasma.physics.wisc.edu/viewpage.php?id=mst|title=MST – UW Plasma Physics|last=Hartog|first=Peter Den|website=plasma.physics.wisc.edu|access-date=2013-02-28|archive-date=2019-03-13|archive-url=https://web.archive.org/web/20190313201537/http://plasma.physics.wisc.edu/viewpage.php?id=mst}}
  • T2R, Royal Institute of Technology, Stockholm, Sweden
  • TPE-RX, AIST, Tsukuba, Japan
  • KTX (Keda Torus eXperiment) in China (since 2015){{cite journal|last1=Liu|first1=Wandong|last2=et|first2=al.|title=Overview of Keda Torus eXperiment initial results|journal=Nuclear Fusion|volume=57|issue=11|year=2017|page=116038|issn=0029-5515|doi=10.1088/1741-4326/aa7f21|bibcode=2017NucFu..57k6038L|s2cid=116431906 }}

== [[Spheromak]] ==

== [[Field-reversed configuration]] (FRC) ==

== Other toroidal machines ==

  • TMP (Tor s Magnitnym Polem, torus with magnetic field): A porcelain torus with major radius {{val|80|u=cm}}, minor radius {{val|13|u=cm}}, toroidal field of {{val|1.5|u=T}} and plasma current {{val|0.25|u=MA}}, predecessor to the first tokamak (1955, USSR)

= Open field lines =

== [[Pinch (plasma physics)|Plasma pinch]] ==

  • Trisops – 2 facing theta-pinch guns
  • FF-2B, Lawrenceville Plasma Physics, United States{{Cite web|url=https://lppfusion.com/wp-content/uploads/2021/10/LPPFusion%20Report%20Oct.15,%202021.pdf|archive-url=https://web.archive.org/web/20211025065311/https://lppfusion.com/wp-content/uploads/2021/10/LPPFusion%20Report%20Oct.15,%202021.pdf|url-status=live|archive-date=2021-10-25|title=Report Oct 15, 2021|date=2021-10-15}}

== [[Levitated dipole]] ==

  • Levitated Dipole Experiment (LDX), MIT/Columbia University, United States{{Cite web|url=http://www.psfc.mit.edu/ldx/|archive-url=https://web.archive.org/web/20040823034735/http://www.psfc.mit.edu/ldx/|archive-date=2004-08-23|title=Levitated Dipole Experiment|date=2004-08-23}}

Inertial confinement

{{Main|Inertial confinement fusion}}

= Laser-driven =

class="wikitable sortable"
Device nameStatuswidth=55| Constructionwidth=55| OperationDescriptionPeak laser powerPulse energyFusion yieldwidth=110| LocationOrganisationImage
4 pi laser{{no|Shut down}}196?Semiconductor laser{{val|5|u=GW}}{{val|12|u=J}}{{flagicon|USA}} LivermoreLLNL
Long path laser{{no|Shut down}}19721972First ICF laser with neodymium doped glass (Nd:glass) as lasing medium{{val|5|u=GW}}{{val|50|u=J}}{{flagicon|USA}} LivermoreLLNL
Single Beam System (SBS) "67"{{no|Shut down}}1971-19731973Single-beam CO2 laser{{cite web|url=http://library.sciencemadness.org/lanl2_a/lib-www/la-pubs/00322724.pdf|title=Los Alamos Laser Fusion Program|date=July 1967|author=F Skoberne}}{{val|200|u=GW}}{{val|1|u=kJ}}{{flagicon|USA}} Los AlamosLANL
Double Bounce Illumination System (DBIS){{no|Shut down}}1972-19741974-1990First private laser fusion effort, YAG laser, neutron yield {{val|e=4}} to {{val|3|e=5}} neutrons{{val|1|u=kJ}}data-sort-value="{{val|100|u=nJ}}"| ≈{{val|100|u=nJ}}{{flagicon|USA}} Ann Arbor, MichiganKMS FusionFile:Double Bounce System KMS Fusion 1974.png
MERLIN (Medium Energy Rod Laser Incorporating Neodymium), N78 laser{{no|Shut down}}1972-19751975-?Nd:glass laser{{val|100|u=GW}}{{val|40|u=J}}{{flagicon|UK}} RAF AldermastonAWEFile:MERLIN target chamber.jpg
Cyclops laser{{no|Shut down}}19751975Single-beam Nd:glass laser, prototype for Shiva{{cite web|url=https://lasers.llnl.gov/multimedia/publications/pdfs/etr/1976_02_3.pdf|title=Beam-propagation studies on Cyclops|date=February 1976}}{{val|1|u=TW}}{{val|270|u=J}}{{flagicon|USA}} LivermoreLLNLFile:Cyclops laser 1975.jpg
Janus laser{{no|Shut down}}1974-19751975Two-beam Nd:glass laser demonstrated laser compression and thermonuclear burn of deuterium–tritium{{val|1|u=TW}}{{val|10|u=J}}{{flagicon|USA}} LivermoreLLNLFile:Janus laser 1975.jpg
Gemini laser, Dual-Beam Module (DBM){{no|Shut down}}≤ 19751976Two-beam CO2 laser, tests for Helios{{val|5|u=TW}}{{val|2.5|u=kJ}}{{flagicon|USA}} Los AlamosLANL
Argus laser{{no|Shut down}}19761976-1981Two-beam Nd:glass laser, advanced the study of laser-target interaction and paved the way for Shiva{{val|4|u=TW}}{{val|2|u=kJ}}data-sort-value="{{val|3|u=mJ}}"| ≈{{val|3|u=mJ}}{{flagicon|USA}} LivermoreLLNLFile:Argus_laser_1976.jpg
Vulcan laser (Versicolor Ultima Lux Coherens pro Academica Nostra){{cite journal | last1 = Danson | first1 = Colin N. | display-authors=etal | title = A history of high-power laser research and development in the United Kingdom | journal = High Power Laser Science and Engineering | date = 2021 | volume = 9 | issn = 2095-4719 | eissn = 2052-3289 | doi = 10.1017/hpl.2021.5 | bibcode = 2021HPLSE...9E..18D | s2cid = 233401354 | doi-access = free | hdl = 10044/1/89337 | hdl-access = free }}{{active|Operational}}1976-19771977-8-beam Nd:glass laser, highest-intensity focussed laser in the world in 2005{{cite web | url=https://www.clf.stfc.ac.uk/Pages/Meet-the-CLF-lasers.aspx | title=CLF Get to know the CLF Lasers }}{{val|1|u=PW}}{{val|2.6|u=kJ}}{{flagicon|UK}} DidcotRALFile:Green Lase.JPG
{{Anchor|Shiva}}Shiva laser{{no|Shut down}}19771977-198120-beam Nd:glass laser; proof-of-concept for Nova; fusion yield of 1011 neutrons; found that its infrared wavelength of 1062 nm was too long to achieve ignition{{val|30|u=TW}}{{val|10.2|u=kJ}}data-sort-value="{{val|0.1|u=J}}"| ≈{{val|0.1|u=J}}{{flagicon|USA}} LivermoreLLNLFile:Shiva laser target chamber.jpg
{{Anchor|Helios}}Helios laser, Eight-Beam System (EBS){{no|Shut down}}1975-197819788-beam CO2 laser; Media at Wikimedia Commons{{val|20|u=TW}}{{val|10|u=kJ}}{{flagicon|USA}} Los AlamosLANLFile:U.S. Department of Energy - Science - 282 005 003 (16388751641).jpg
HELEN (High Energy Laser Embodying Neodymium){{no|Shut down}}1976-19791979-2009Two-beam Nd:glass laser{{val|1|u=TW}}{{val|200|u=J}}{{flagicon|UK}} DidcotRALFile:HELEN laser.jpg
ISKRA-4{{active|Operational}}-19791979-8-beam iodine gas laser, prototype for ISKRA-5{{Cite web|url=http://www.vniief.ru/science/laserphysics_1_e.html|archive-url=https://web.archive.org/web/20050406140306/http://www.vniief.ru/science/laserphysics_1_e.html|archive-date=2005-04-06|title=RFNC-VNIIEF – Science – Laser physics|date=2005-04-06}}{{val|10|u=TW}}{{val|2|u=kJ}}{{val|6|u=mJ}}{{flagicon|SOV}} SarovRFNC-VNIIEF
Sprite laser{{no|Shut down}}1981-19831983-1995First high-power Krypton fluoride laser used for target irradiation, λ={{val|249|u=nm}}{{val|1|u=TW}}{{val|7.5|u=J}}{{flagicon|UK}} DidcotRALFile:Sprite e-beam pumped amplifier cell 1982.jpg
Gekko XII{{active|Operational}}1983-12-beam, Nd:glass laser{{val|500|u=TW}}{{val|10|u=kJ}}{{flagicon|JP}} OsakaInstitute for Laser Engineering
Novette laser{{no|Shut down}}1981-19831983-1984Nd:glass laser to validate the Nova design, first X-ray laser{{cite book | title = Laser Interaction and Related Plasma Phenomena | date = 1984 | publisher = Springer US | doi = 10.1007/978-1-4615-7332-6 | isbn = 978-1-4615-7334-0 | editor-last1 = Hora | editor-last2 = Miley | editor-first1 = Heinrich | editor-first2 = George H }}{{val|13|u=TW}}{{val|18|u=kJ}}{{flagicon|USA}}LivermoreLLNLFile:U.S. Department of Energy - Science - 281 004 001 (16315143010).jpg
Antares laser, High Energy Gas Laser Facility (HEGLF){{no|Shut down}}1983{{cite journal | url=https://physicstoday.scitation.org/doi/10.1063/1.2916397 | doi=10.1063/1.2916397 | title=Fusion experiments have begun at Antares | journal=Physics Today | year=1984 | volume=37 | issue=9 | page=19 | bibcode=1984PhT....37i..19S | last1=Schwarzschild | first1=Bertram M. }}24-beam largest CO2 laser ever built. Missed goal of scientific fusion breakeven, because production of hot electrons in target plasma due to long 10.6 μm wavelength of laser resulted in poor laser/plasma energy coupling{{val|200|u=TW}}{{val|40|u=kJ}}{{flagicon|USA}} Los AlamosLANL
PHAROS laser{{active|Operational}}198?Two-beam Nd:glass laser{{val|300|u=GW}}{{val|1|u=kJ}}{{flagicon|USA}} Washington D.C.NRL
{{Anchor|Nova}}Nova laser{{no|Shut down}}1984-199910-beam NIR and frequency-tripled 351 nm UV laser; fusion yield of 1013 neutrons; attempted ignition, but failed due to fluid instability of targets; led to construction of NIF{{val|1.3|u=PW}}{{val|120|u=kJ}}{{val|30|u=J}}{{flagicon|USA}}LivermoreLLNL
{{Anchor|ISKRA-5}}ISKRA-5{{active|Operational}}-198912-beam iodine gas laser, fusion yield 1010 to 1011 neutrons{{val|100|u=TW}}{{val|30|u=kJ}}{{val|0.3|u=J}}{{flagicon|SOV}} SarovRFNC-VNIIEF
Aurora laser{{no|Shut down}}≤ 1988-1989199096-beam Krypton fluoride laserdata-sort-value="{{val|300|u=GW}}"| ≈{{val|300|u=GW}}{{val|1.3|u=kJ}}{{flagicon|USA}} Los AlamosLANL
Shenguang-I{{no|Shut down}}

|

|1990

|2-beam Nd:glass laser, λ={{val|1053|u=nm}}{{cite conference | last=Peng | first=Hansheng | title=Inertial confinement fusion program at CAEP | publisher=AIP | volume=369 | date=1996 | doi=10.1063/1.50487 | page=61–70}}

|

|{{val|1.6|u=kJ}}

|{{val|100|u=nJ}}{{cite web |date=2025-02-02 |title=Wayback Machine |url=https://apps.dtic.mil/sti/tr/pdf/ADA345521.pdf |url-status=dead |archive-url=https://web.archive.org/web/20250318222726/https://apps.dtic.mil/sti/tr/pdf/ADA345521.pdf |archive-date=2025-03-18 |access-date=2025-03-18 |website=apps.dtic.mil}}

|{{Flag|China}}

|Joint Laboratory of High Power Laser and Physics

|

PALS, formerly "Asterix IV"{{active|Operational}}-19911991-Iodine gas laser, λ={{val|1315|u=nm}}{{val|3|u=TW}}{{val|1|u=kJ}}{{flagicon|DEU}} Garching,
{{flagicon|CZE}} Prague
MPQ, CASFile:Prague asterix laser system.jpeg
Trident laser{{active|Operational}}198?-19921992-20173-beam Nd:glass laser; 2 x 400 J beams, 100 ps – 1 us; 1 beam ~100 J, 600 fs – 2 ns{{val|200|u=TW}}{{val|500|u=J}}{{flagicon|USA}} Los AlamosLANLFile:Alfoil.jpg
Nike laser{{active|Operational}}≤ 1991-19941994-56-beam, most-capable Krypton fluoride laser for laser target interactions{{cite journal | last1 = Lehecka | first1 = T. | last2 = Bodner | first2 = S. | last3 = Deniz | first3 = A. V. | last4 = Mostovych | first4 = A. N. | last5 = Obenschain | first5 = S. P. | last6 = Pawley | first6 = C. J. | last7 = Pronko | first7 = M. S. | title = The NIKE KrF laser fusion facility | journal = Journal of Fusion Energy | date = December 1991 | volume = 10 | issue = 4 | pages = 301–303 | issn = 0164-0313 | eissn = 1572-9591 | doi = 10.1007/BF01052128 | bibcode = 1991JFuE...10..301L | s2cid = 122087249 }}{{cite journal | display-authors=etal | last1 = Obenschain | first1 = Stephen | last2 = Lehmberg | first2 = Robert | last3 = Kehne | first3 = David | last4 = Hegeler | first4 = Frank | last5 = Wolford | first5 = Matthew | last6 = Sethian | first6 = John | last7 = Weaver | first7 = James | last8 = Karasik | first8 = Max | title = High-energy krypton fluoride lasers for inertial fusion | journal = Applied Optics | date = 19 August 2015 | volume = 54 | issue = 31 | pages = F103-22 | issn = 0003-6935 | eissn = 1539-4522 | doi = 10.1364/AO.54.00F103 | pmid = 26560597 | bibcode = 2015ApOpt..54F.103O }}{{val|2.6|u=TW}}{{val|3|u=kJ}}{{flagicon|USA}} Washington, D.C.NRLFile:Nike_laser_amplifier.jpg
OMEGA laser{{active|Operational}}?-19951995-60-beam UV frequency-tripled Nd:glass laser, fusion yield 1014 neutrons{{val|60|u=TW}}{{val|40|u=kJ}}{{val|300|u=J}}{{flagicon|USA}} RochesterLLE
Electra{{active|Operational}}Krypton fluoride laser, 5 Hz operation with 90,000+ shots continuous{{val|4|u=GW}}{{val|730|u=J}}{{flagicon|USA}} Washington D.C.NRLFile:Electra Laser System NRL 2013.png
LULI2000{{active|Operational}}?2003-6-beam Nd:glass laser, λ={{val|1.06|u=μm}}, λ={{val|0.53|u=μm}}, λ={{val|0.26|u=μm}}{{val|500|u=GW}}{{val|600|u=J}}{{flagicon|FRA}} PalaiseauÉcole polytechnique
OMEGA EP{{active|Operational}}2008-60-beam UV{{val|1.4|u=PW}}{{val|5|u=kJ}}{{flagicon|USA}} RochesterLLE
{{Anchor|NIF}}National Ignition Facility (NIF){{active|Operational}}1997-20092010-192-beam Nd:glass laser, achieved scientific breakeven with fusion gain of 1.5 and {{val|1.2|e=18}} neutrons{{Cite web |last=CLERY |first=DANIEL |date=13 December 2022 |title=With historic explosion, a long sought fusion breakthrough |url=https://www.science.org/content/article/historic-explosion-long-sought-fusion-breakthrough |access-date=2022-12-14 |website=www.science.org |language=en}}{{val|500|u=TW}}{{val|2.05|u=MJ}}{{val|3.15|u=MJ}}{{flagicon|USA}} LivermoreLLNLFile:NIF target chamber construction.jpg
Orion{{active|Operational}}2006-20102010-10-beams, λ={{val|351|u=nm}}{{val|200|u=TW}}{{val|5|u=kJ}}{{flagicon|UK}} RAF AldermastonAWEFile:Orion target chamber.jpg
Laser Mégajoule (LMJ){{active|Operational}}1999-20142014-Second-largest laser fusion facility, 10 out of 22 beam lines operational in 2022{{Cite web|url=http://www-lmj.cea.fr/|title=CEA – Laser Mégajoule|website=www-lmj.cea.fr}}{{val|800|u=TW}}{{val|1|u=MJ}}{{flagicon|FRA}} BordeauxCEA[https://www.asso-alp.fr/wp-content/uploads/2020/09/LMJ_3.jpg]
Laser for Fast Ignition Experiments (LFEX){{active|Operational}}2003-20152015-High-contrast heating laser for FIREX, λ={{val|1053|u=nm}}{{val|2|u=PW}}{{val|10|u=kJ}}{{val|100|u=µJ}}{{flagicon|JP}} OsakaInstitute for Laser Engineering
HiPER (High Power Laser Energy Research Facility){{BLACK|Cancelled}}2007-2015-Pan-European project to demonstrate the technical and economic viability of laser fusion for the production of energy{{cite web| url=https://www.hiper-laser.org/ |title=The HiPER Project |archive-url=https://web.archive.org/web/20221223061920/https://www.hiper-laser.org/|archive-date=2022-12-23}}data-sort-value="{{val|4|u=PW}}"| ({{val|4|u=PW}})data-sort-value="{{val|270|u=kJ}}"|({{val|270|u=kJ}})data-sort-value="{{val|25|u=MJ}}"|({{val|25|u=MJ}}){{flagicon|EU}}File:High Power Laser Energy Research Facility drawing.jpg
Laser Inertial Fusion Energy (LIFE){{BLACK|Cancelled}}2008-2013-Effort to develop a fusion power plant succeeding NIFdata-sort-value="{{val|2.2|u=MJ}}"| ({{val|2.2|u=MJ}})data-sort-value="{{val|40|u=MJ}}"| ({{val|40|u=MJ}}){{flagicon|USA}} LivermoreLLNLFile:LIFE_fusion_chamber.jpg
ISKRA-6{{planned|Planned}}??128 beam Nd:glass laser{{val|300|u=TW}}?{{val|300|u=kJ}}?{{flagicon|RUS}} SarovRFNC-VNIIEF

= Z-pinch =

{{Main|Z-pinch}}

  • Z Pulsed Power Facility
  • ZEBRA device at the University of Nevada's Nevada Terawatt Facility{{Cite news|url=http://physics.unr.edu/facility/ntf/index.html|archive-url=https://archive.today/20000919130352/http://physics.unr.edu/facility/ntf/index.html|archive-date=2000-09-19|title=University of Nevada, Reno. Nevada Terawatt Facility|date=2000-09-19|work=archive.is}}
  • Saturn accelerator at Sandia National Laboratory{{Cite web|url=http://www.sandia.gov/capabilities/pulsed-power/facilities/saturn.html|title=Sandia National Laboratories: National Security Programs|website=sandia.gov|language=en}}
  • MAGPIE at Imperial College London
  • COBRA at Cornell University
  • PULSOTRON{{Cite web|url=http://pulsotron.org|title=PULSOTRON|website=pulsotron.org|access-date=2020-03-09|archive-url=https://web.archive.org/web/20190401022923/http://www.pulsotron.org/|archive-date=2019-04-01}}
  • Z-FFR (Z(-pinch)-Fission-Fusion Reactor), a nuclear fusion–fission hybrid machine to be built in Chengdu, China by 2025 and generate power as early as 2028

Inertial electrostatic confinement

{{Main|Inertial electrostatic confinement}}

Magnetized target fusion

{{Main|Magnetized target fusion}}

References

{{Reflist}}

See also