list of fusion experiments
{{Short description|List of efforts toward artificial nuclear fusion}}
{{Multiple issues|
{{external links|date=April 2018}}
{{citation style|date=April 2018}}
}}
File:Shiva laser target chamber.jpg, used for inertial confinement fusion experiments from 1978 until decommissioned in 1981]]
File:U.S. Department of Energy - Science - 114 035 002 (14281232230).jpg, used for magnetic confinement fusion experiments, which produced {{val|11|u=MW}} of fusion power in 1994]]
Experiments directed toward developing fusion power are invariably done with dedicated machines which can be classified according to the principles they use to confine the plasma fuel and keep it hot.
The major division is between magnetic confinement and inertial confinement. In magnetic confinement, the tendency of the hot plasma to expand is counteracted by the Lorentz force between currents in the plasma and magnetic fields produced by external coils. The particle densities tend to be in the range of {{val|e=18}} to {{val|e=22|u=m−3}} and the linear dimensions in the range of {{val|0.1|to|10|u=m}}. The particle and energy confinement times may range from under a millisecond to over a second, but the configuration itself is often maintained through input of particles, energy, and current for times that are hundreds or thousands of times longer. Some concepts are capable of maintaining a plasma indefinitely.
In contrast, with inertial confinement, there is nothing to counteract the expansion of the plasma. The confinement time is simply the time it takes the plasma pressure to overcome the inertia of the particles, hence the name. The densities tend to be in the range of {{val|e=31}} to {{val|e=33|u=m−3}} and the plasma radius in the range of 1 to 100 micrometers. These conditions are obtained by irradiating a millimeter-sized solid pellet with a nanosecond laser or ion pulse. The outer layer of the pellet is ablated, providing a reaction force that compresses the central 10% of the fuel by a factor of 10 or 20 to 103 or {{val|e=4}} times solid density. These microplasmas disperse in a time measured in nanoseconds. For a fusion power reactor, a repetition rate of several per second will be needed.
Magnetic confinement
Within the field of magnetic confinement experiments, there is a basic division between toroidal and open magnetic field topologies. Generally speaking, it is easier to contain a plasma in the direction perpendicular to the field than parallel to it. Parallel confinement can be solved either by bending the field lines back on themselves into circles or, more commonly, toroidal surfaces, or by constricting the bundle of field lines at both ends, which causes some of the particles to be reflected by the mirror effect. The toroidal geometries can be further subdivided according to whether the machine itself has a toroidal geometry, i.e., a solid core through the center of the plasma. The alternative is to dispense with a solid core and rely on currents in the plasma to produce the toroidal field.
Mirror machines have advantages in a simpler geometry and a better potential for direct conversion of particle energy to electricity. They generally require higher magnetic fields than toroidal machines, but the biggest problem has turned out to be confinement. For good confinement there must be more particles moving perpendicular to the field than there are moving parallel to the field. Such a non-Maxwellian velocity distribution is, however, very difficult to maintain and energetically costly.
The mirrors' advantage of simple machine geometry is maintained in machines which produce compact toroids, but there are potential disadvantages for stability in not having a central conductor and there is generally less possibility to control (and thereby optimize) the magnetic geometry. Compact toroid concepts are generally less well developed than those of toroidal machines. While this does not necessarily mean that they cannot work better than mainstream concepts, the uncertainty involved is much greater.
Somewhat in a class by itself is the Z-pinch, which has circular field lines. This was one of the first concepts tried, but it did not prove very successful. Furthermore, there was never a convincing concept for turning the pulsed machine requiring electrodes into a practical reactor.
The dense plasma focus is a controversial and "non-mainstream" device that relies on currents in the plasma to produce a toroid. It is a pulsed device that depends on a plasma that is not in equilibrium and has the potential for direct conversion of particle energy to electricity. Experiments are ongoing to test relatively new theories to determine if the device has a future.
= Toroidal machine =
Toroidal machines can be axially symmetric, like the tokamak and the reversed field pinch (RFP), or asymmetric, like the stellarator. The additional degree of freedom gained by giving up toroidal symmetry might ultimately be usable to produce better confinement, but the cost is complexity in the engineering, the theory, and the experimental diagnostics. Stellarators typically have a periodicity, e.g. a fivefold rotational symmetry. The RFP, despite some theoretical advantages such as a low magnetic field at the coils, has not proven very successful.
== Tokamak ==
== Stellarator ==
class="wikitable sortable" | ||||||||||
Device name | Status | Construction | Operation | Type | Location | Organisation | Major/minor radius | B-field | Purpose | Image |
---|---|---|---|---|---|---|---|---|---|---|
Model A | {{no|Shut down}} | 1952–1953 | 1953–? | Figure-8 | {{flagicon|USA}} Princeton | Princeton Plasma Physics Laboratory | {{val|0.3|u=m}}/{{val|0.02|u=m}} | {{val|0.1|u=T}} | First stellarator, table-top device | |
Model B | {{no|Shut down}} | 1953–1954 | 1954–1959 | Figure-8 | {{flagicon|USA}} Princeton | Princeton Plasma Physics Laboratory | {{val|0.3|u=m}}/{{val|0.02|u=m}} | {{val|5|u=T}} | Development of plasma diagnostics | |
Model B-1 | {{no|Shut down}} | ?–1959 | Figure-8 | {{flagicon|USA}} Princeton | Princeton Plasma Physics Laboratory | {{val|0.25|u=m}}/{{val|0.02|u=m}} | {{val|5|u=T}} | Yielded {{val|1|u=MK}} plasma temperatures, showed cooling by X-ray radiation from impurities | ||
Model B-2 | {{no|Shut down}} | 1957 | Figure-8 | {{flagicon|USA}} Princeton | Princeton Plasma Physics Laboratory | {{val|0.3|u=m}}/{{val|0.02|u=m}} | {{val|5|u=T}} | Electron temperatures up to {{val|10|u=MK}} | ||
Model B-3 | {{no|Shut down}} | 1957 | 1958– | Figure-8 | {{flagicon|USA}} Princeton | Princeton Plasma Physics Laboratory | {{val|0.4|u=m}}/{{val|0.02|u=m}} | {{val|4|u=T}} | Last figure-8 device, confinement studies of ohmically heated plasma | |
Model B-64 | {{no|Shut down}} | 1955 | 1955 | Square | {{flagicon|USA}} Princeton | Princeton Plasma Physics Laboratory | ? m/{{val|0.05|u=m}} | {{val|1.8|u=T}} | ||
Model B-65 | {{no|Shut down}} | 1957 | 1957 | Racetrack | {{flagicon|USA}} Princeton | Princeton Plasma Physics Laboratory | ||||
Model B-66 | {{no|Shut down}} | 1958 | 1958–? | Racetrack | {{flagicon|USA}} Princeton | Princeton Plasma Physics Laboratory | ||||
Wendelstein 1-A | {{no|Shut down}} | 1960 | Racetrack | {{flagicon|DEU}} Garching | Max-Planck-Institut für Plasmaphysik | {{val|0.35|u=m}}/{{val|0.02|u=m}} | {{val|2|u=T}} | ℓ=3 showed that stellarators can overcome Bohm diffusion, "Munich mystery" | ||
Wendelstein 1-B | {{no|Shut down}} | 1960 | Racetrack | {{flagicon|DEU}} Garching | Max-Planck-Institut für Plasmaphysik | {{val|0.35|u=m}}/{{val|0.02|u=m}} | {{val|2|u=T}} | ℓ=2 | ||
{{Anchor|Model C}}Model C | {{CRecurring|Recycled}} →ST | 1957–1961 | 1961–1969 | Racetrack | {{flagicon|USA}} Princeton | Princeton Plasma Physics Laboratory | {{val|1.9|u=m}}/{{val|0.07|u=m}} | {{val|3.5|u=T}} | Suffered from large plasma losses by Bohm diffusion through "pump-out" | |
L-1 | {{no|Shut down}} | 1963 | 1963–1971 | round | {{flagicon|SOV}} Moscow | Lebedev Physical Institute | {{val|0.6|u=m}}/{{val|0.05|u=m}} | {{val|1|u=T}} | First Soviet stellarator, overcame Bohm diffusion | |
SIRIUS | {{no|Shut down}} | 1964–? | Racetrack | {{flagicon|SOV}} Kharkiv | Kharkiv Institute of Physics and Technology (KIPT) | |||||
TOR-1 | {{no|Shut down}} | 1967 | 1967–1973 | {{flagicon|SOV}} Moscow | Lebedev Physical Institute | {{val|0.6|u=m}}/{{val|0.05|u=m}} | {{val|1|u=T}} | |||
TOR-2 | {{no|Shut down}} | ? | 1967–1973 | {{flagicon|SOV}} Moscow | Lebedev Physical Institute | {{val|0.63|u=m}}/{{val|0.036|u=m}} | {{val|2.5|u=T}} | |||
Uragan-1 | {{no|Shut down}} | 1960–1967 | 1967–? | Racetrack | {{flagicon|SOV}} Kharkiv | National Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT) | {{val|1.1|u=m}}/{{val|0.1|u=m}} | {{val|1|u=T}} | Overcame Bohm-diffusion by a factor of 30 | |
CLASP (Closed Line And Single Particle){{cite journal | last1 = Lees | first1 = D.J. | title = Culham stellarator programme, 1965–1980 | journal = Nuclear Fusion | date = 1 September 1985 | volume = 25 | issue = 9 | pages = 1259–1265 | issn = 0029-5515 | eissn = 1741-4326 | doi = 10.1088/0029-5515/25/9/044 | s2cid = 119660036 }} | {{no|Shut down}} | ? | 1967–? | {{flagicon|UK}} Culham | United Kingdom Atomic Energy Authority | {{val|0.3|u=m}}/{{val|0.056|u=m}} | {{val|0.1|u=T}} | Study confinement of electrons in a high-shear stellarator | ||
TWIST | {{no|Shut down}} | ? | 1967–? | {{flagicon|UK}} Culham | United Kingdom Atomic Energy Authority | {{val|0.32|u=m}}/{{val|0.045|u=m}} | {{val|0.3|u=T}} | Study turbulent heating | ||
Proto-CLEO | {{no|Shut down}} | ? | 1968–? | single-turn helical winding inside toroidal field conductors | {{flagicon|UK}} Culham, {{flagicon|USA}} Madison | United Kingdom Atomic Energy Authority | {{val|0.4|u=m}}/{{val|0.05|u=m}} | {{val|0.5|u=T}} | confirmed plasma confinement times of neoclassical theory | |
TORSO | {{no|Shut down}} | ? | 1972–? | data-sort-value="Torsatron"| Ultimate torsatron | {{flagicon|UK}} Culham | United Kingdom Atomic Energy Authority | {{val|0.4|u=m}}/{{val|0.05|u=m}} | {{val|2|u=T}} | ||
CLEO | {{no|Shut down}} | ? | 1974–? | {{flagicon|UK}} Culham | United Kingdom Atomic Energy Authority | {{val|0.9|u=m}}/{{val|0.125|u=m}} | {{val|2|u=T}} | Study of particle transport and beta limits, reached similar performance as tokamaks | ||
Wendelstein 2-A | {{no|Shut down}} | 1965–1968 | 1968–1974 | Heliotron | {{flagicon|DEU}} Garching | Max-Planck-Institut für Plasmaphysik | {{val|0.5|u=m}}/{{val|0.05|u=m}} | {{val|0.6|u=T}} | Good plasma confinement | File:DMM 1988-643 Fusionsexperiment Wendelstein-IIa.jpg |
Saturn{{cite journal | last1 = Georgiyevskiy | first1 = A. V. | last2 = Solodovchenko | first2 = S. I. | last3 = Voitsenya | first3 = V. S. | title = Contributions of the "Saturn" to Modern Stellarator-Torsatron Research | journal = Journal of Fusion Energy | date = 13 February 2010 | volume = 29 | issue = 4 | pages = 399–406 | issn = 0164-0313 | eissn = 1572-9591 | doi = 10.1007/s10894-010-9284-0 | bibcode = 2010JFuE...29..399G | s2cid = 123305093 }} | {{no|Shut down}} | 1970 | 1970–? | Torsatron | {{flagicon|SOV}} Kharkiv | Kharkiv Institute of Physics and Technology | {{val|0.36|u=m}}/{{val|0.08|u=m}} | {{val|1|u=T}} | first Torsatron, ℓ=3, m=8 field periods, base for several torsatrons at KIPT | |
Wendelstein 2-B | {{no|Shut down}} | ?–1970 | 1971–? | Heliotron | {{flagicon|DEU}} Garching | Max-Planck-Institut für Plasmaphysik | {{val|0.5|u=m}}/{{val|0.055|u=m}} | {{val|1.25|u=T}} | Demonstrated similar performance as tokamaks | File:W7x 026.jpg |
Vint-20{{cite journal | last1 = Georgievskii | first1 = A. V. | last2 = Suprunenko | first2 = V. A. | last3 = Sukhomlin | first3 = E. A. | title = Vint-20 single-helix torsatron machine with three-dimensional magnetic axis | journal = Soviet Atomic Energy | date = May 1973 | volume = 34 | issue = 5 | pages = 518–519 | issn = 0038-531X | eissn = 1573-8205 | doi = 10.1007/BF01163768 | s2cid = 94405830 }} | {{no|Shut down}} | 1972 | 1973–? | Torsatron | {{flagicon|SOV}} Kharkiv | Kharkiv Institute of Physics and Technology | {{val|0.315|u=m}}/{{val|0.0725|u=m}} | {{val|1.8|u=T}} | single-pole ℓ=1, m=13 field periods | |
L-2 | {{no|Shut down}} | ? | 1975–? | {{flagicon|SOV}} Moscow | Lebedev Physical Institute | {{val|1|u=m}}/{{val|0.11|u=m}} | {{val|2.0|u=T}} | |||
WEGA (Wendelstein Experiment in Greifswald für die Ausbildung) | {{CRecurring|Recycled}} →HIDRA | 1972–1975 | 1975–2013 | Classical stellarator | {{flagicon|DEU}} Greifswald | Max-Planck-Institut für Plasmaphysik | {{val|0.72|u=m}}/{{val|0.15|u=m}} | {{val|1.4|u=T}} | Test lower hybrid heating | File:WEGA-Stuttgart.jpg |
Wendelstein 7-A | {{no|Shut down}} | ? | 1975–1985 | Classical stellarator | {{flagicon|DEU}} Garching | Max-Planck-Institut für Plasmaphysik | {{val|2|u=m}}/{{val|0.1|u=m}} | {{val|3.5|u=T}} | First "pure" stellarator without plasma current, solved stellarator heating problem | |
Heliotron-E | {{no|Shut down}} | ? | 1980–? | Heliotron | {{flagicon|JP}} | {{val|2.2|u=m}}/{{val|0.2|u=m}} | {{val|1.9|u=T}} | |||
Heliotron-DR | {{no|Shut down}} | ? | 1981–? | Heliotron | {{flagicon|JP}} | {{val|0.9|u=m}}/{{val|0.07|u=m}} | {{val|0.6|u=T}} | |||
Uragan-3 ({{Interlanguage link multi|Uragan-3M|uk|3=Ураган-3М|lt=M}}){{Cite web|url=http://www.kipt.kharkov.ua/en/bhr.html|title=History {{!}} ННЦ ХФТИ|website=kipt.kharkov.ua}} | {{active|Operational}} | ? | 1982–?{{Cite web|url=https://ipp.kipt.kharkov.ua/u3m/u3m_eng.html|title=Uragan-3M {{pipe}} IPP NSC KIPT|website=ipp.kipt.kharkov.ua}} M: 1990– | Torsatron | {{flagicon|UKR}} Kharkiv | National Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT) | {{val|1.0|u=m}}/{{val|0.12|u=m}} | {{val|1.3|u=T}} | ? | |
Auburn Torsatron (AT) | {{no|Shut down}} | ? | 1984–1990 | Torsatron | {{flagicon|USA}} Auburn | Auburn University | {{val|0.58|u=m}}/{{val|0.14|u=m}} | {{val|0.2|u=T}} | File:Auburn Torsatron.jpg | |
Wendelstein 7-AS | {{no|Shut down}} | 1982–1988 | 1988–2002 | Modular, advanced stellarator | {{flagicon|DEU}} Garching | Max-Planck-Institut für Plasmaphysik | {{val|2|u=m}}/{{val|0.13|u=m}} | {{val|2.6|u=T}} | First computer-optimized stellarator, first H-mode in a stellarator in 1992 | File:Garching Experiment Wendelstein 7-AS.jpg |
Advanced Toroidal Facility (ATF) | {{no|Shut down}} | 1984–1988{{Cite web|url=https://www.ornl.gov/content/ornl-review-v17n3|title=ORNL Review v17n3 1984.pdf {{pipe}} ORNL|website=www.ornl.gov}} | 1988–1994 | Torsatron | {{flagicon|USA}} Oak Ridge | Oak Ridge National Laboratory | {{val|2.1|u=m}}/{{val|0.27|u=m}} | {{val|2.0|u=T}} | First large American stellarator after Tokamak stampede, high-beta operation, >1h plasma operation | File:Advanced Toroidal Facility, 1986 (49743086486).png |
Compact Helical System (CHS) | {{no|Shut down}} | ? | 1989–? | Heliotron | {{flagicon|JP}} Toki | National Institute for Fusion Science | {{val|1|u=m}}/{{val|0.2|u=m}} | {{val|1.5|u=T}} | ||
Compact Auburn Torsatron (CAT) | {{no|Shut down}} | ?–1990 | 1990–2000 | Torsatron | {{flagicon|USA}} Auburn | Auburn University | {{val|0.53|u=m}}/{{val|0.11|u=m}} | {{val|0.1|u=T}} | Study magnetic flux surfaces | File:CATphoto2.jpg |
H-1 (Heliac-1){{Cite web|url=http://prl.anu.edu.au/H-1NF|title=Plasma Research Laboratory – PRL – ANU|last1=Department|first1=Head of|last2=prl@physics.anu.edu.au|website=prl.anu.edu.au|language=en|access-date=2005-12-26|archive-date=2010-02-13|archive-url=https://web.archive.org/web/20100213172059/http://prl.anu.edu.au/H-1NF}} | {{active|Operational}} | 1992– | Heliac | {{flagicon|AUS}} Canberra, {{flagicon|CHN}} | Research School of Physical Sciences and Engineering, Australian National University | {{val|1.0|u=m}}/{{val|0.19|u=m}} | {{val|0.5|u=T}} | shipped to China in 2017 | File:H1 Heliac.jpg | |
TJ-K (Tokamak de la Junta Kiel){{Cite web|url=http://fusionwiki.ciemat.es/wiki/TJ-K|title=TJ-K – FusionWiki|website=fusionwiki.ciemat.es|language=en}} | {{active|Operational}} | TJ-IU (1999) | 1994– | Torsatron | {{flagicon|DEU}} Kiel, Stuttgart | University of Stuttgart | {{val|0.60|u=m}}/{{val|0.10|u=m}} | {{val|0.5|u=T}} | One helical and two vertical coil sets; Teaching; moved from Kiel to Stuttgart in 2005 | |
TJ-II (Tokamak de la Junta II){{Cite web|url=http://www.ciemat.es|title=Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas|last=CIEMAT|website=ciemat.es|language=es}} | {{active|Operational}} | 1991–1996 | 1997– | flexible Heliac | {{flagicon|ESP}} Madrid | National Fusion Laboratory, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas | {{val|1.5|u=m}}/{{val|0.28|u=m}} | {{val|1.2|u=T}} | Study plasma in flexible configuration | File:TJ-II model including plasma, coils and vacuum vessel.jpg |
LHD (Large Helical Device){{Cite web|url=http://www.lhd.nifs.ac.jp/en/home/lhd.html|title=Large Helical Device Project|website=lhd.nifs.ac.jp|access-date=2006-04-20|archive-url=https://web.archive.org/web/20100412200938/http://www.lhd.nifs.ac.jp/en/home/lhd.html|archive-date=2010-04-12}} | {{active|Operational}} | 1990–1998 | 1998– | Heliotron | {{flagicon|JP}} Toki | National Institute for Fusion Science | {{val|3.5|u=m}}/{{val|0.6|u=m}} | {{val|3|u=T}} | Demonstrated long-term operation of large superconducting coils | File:LHD Querschnitt.png |
HSX (Helically Symmetric Experiment){{Cite web|url=https://hsx.wisc.edu/|title=HSX – Helically Symmetric eXperiment|website=hsx.wisc.edu}} | {{active|Operational}} | 1999– | Modular, quasi-helically symmetric | {{flagicon|USA}} Madison | University of Wisconsin–Madison | {{val|1.2|u=m}}/{{val|0.15|u=m}} | {{val|1|u=T}} | Investigate plasma transport in quasi-helically-symmetric field, similar to tokamaks | File:HSX picture.jpg | |
Heliotron J{{Cite web|url=http://www.iae.kyoto-u.ac.jp/en/joint/heliotron-j.html|title=Heliotron J Project|website=iae.kyoto-u.ac.jp/en/joint/heliotron-j.html|access-date=2018-12-06|archive-date=2018-10-24|archive-url=https://web.archive.org/web/20181024030724/http://www.iae.kyoto-u.ac.jp/en/joint/heliotron-j.html}} | {{active|Operational}} | 2000– | Heliotron | {{flagicon|JP}} Kyoto | Institute of Advanced Energy | {{val|1.2|u=m}}/{{val|0.1|u=m}} | {{val|1.5|u=T}} | Study helical-axis heliotron configuration | ||
Columbia Non-neutral Torus (CNT) | {{active|Operational}} | ? | 2004– | Circular interlocked coils | {{flagicon|USA}} New York City | Columbia University | {{val|0.3|u=m}}/{{val|0.1|u=m}} | {{val|0.2|u=T}} | Study of non-neutral (mostly electron) plasmas | |
Uragan-2(M) | {{active|Operational}} | 1988–2006 | 2006–{{Cite web|url=https://ipp.kipt.kharkov.ua/u2m/u2m_en.html|title=Uragan-2M {{pipe}} IPP NSC KIPT|website=ipp.kipt.kharkov.ua}} | Heliotron, Torsatron | {{flagicon|UKR}} Kharkiv | National Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT) | {{val|1.7|u=m}}/{{val|0.22|u=m}} | {{val|2.4|u=T}} | ℓ=2 Torsatron | |
Quasi-poloidal stellarator (QPS){{cite web | url=http://web.utk.edu/~qps/ | title=QPS Home Page | access-date=2018-09-01 | archive-date=2016-04-24 | archive-url=https://web.archive.org/web/20160424174351/http://web.utk.edu/~qps/ }}{{cite web |author1 = D.B. Batchelor | author2 = R.D. Benson | author3 = L.A. Berry | author4 = T.S. Bigelow | author5 = M.J. Cole | author6 = P.J. Fogarty | author7 = R.H. Fowler | author8 = P. Goranson | author9 = E.F. Jaeger | author10 = S.P. Hirshman | author11 = J.F. Lyon | author12 = P.K. Mioduszewski | author13 = B.E. Nelson | author14 = D.A. Rasmussen | author15 = D.A. Spong | author16 = D.J. Strickler | author17 = J.C. Whitson | author18 = D.E. Williamson | author19 = W.H. Miner, jr. | author20 = P.M. Valanju | author21 = A. Deisher | author22 = D. Heskett | author23 = A.S. Ware | author24 = A. Brooks | author25 = G.Y. Fu | author26 = S. Hudson | author27 = D.A. Monticello | author28 = N. Pomphrey | author29 = T. Shannon | author30 = R. Sanchez|title=QPS A LOW-ASPECT-RATIO QUASI-POLOIDAL CONCEPT EXPLORATION EXPERIMENT |url=http://qps.fed.ornl.gov/pvr/pdf/qpsentire.pdf |archive-url=https://web.archive.org/web/20041019073850/http://qps.fed.ornl.gov/pvr/pdf/qpsentire.pdf |archive-date=19 October 2004 |url-status=dead}} | {{BLACK|Cancelled}} | 2001–2007 | – | Modular | {{flagicon|USA}} Oak Ridge | Oak Ridge National Laboratory | {{val|0.9|u=m}}/{{val|0.33|u=m}} | {{val|1.0|u=T}} | Stellarator research | File:Quasi-Poloidal Stellarator 3d render.jpg |
NCSX (National Compact Stellarator Experiment) | {{BLACK|Cancelled}} | 2004–2008 | – | Helias | {{flagicon|USA}} Princeton | Princeton Plasma Physics Laboratory | {{val|1.4|u=m}}/{{val|0.32|u=m}} | {{val|1.7|u=T}} | High-β stability | File:NCSXmachine.jpg |
Compact Toroidal Hybrid (CTH) | {{active|Operational}} | ? | 2007?– | Torsatron | {{flagicon|USA}} Auburn | Auburn University | {{val|0.75|u=m}}/{{val|0.2|u=m}} | {{val|0.7|u=T}} | Hybrid stellarator/tokamak | File:Compact Toroidal Hybrid at Auburn University.jpg |
{{Anchor|HIDRA}}HIDRA (Hybrid Illinois Device for Research and Applications){{Cite web|url=http://cpmi.illinois.edu/2016/04/26/hidra-hybrid-illinois-device-for-research-and-applications/|title=HIDRA – Hybrid Illinois Device for Research and Applications {{!}} CPMI – Illinois|website=cpmi.illinois.edu|language=en-US}} | {{active|Operational}} | 2013–2014 (WEGA) | 2014– | ? | {{flagicon|USA}} Urbana, IL | University of Illinois | {{val|0.72|u=m}}/{{val|0.19|u=m}} | {{val|0.5|u=T}} | Stellarator and tokamak in one device, capable of long pulse steady-state operation; study plasma-wall interactions | File:HIDRA.jpg |
UST_2{{Cite web|url=http://www.fusionvic.org/index_UST_2.shtml|title=Vying Fusion Energy - V. Queral|website=www.fusionvic.org}} | {{active|Operational}} | 2013 | 2014– | modular three period quasi-isodynamic | {{flagicon|ESP}} Madrid | Charles III University of Madrid | {{val|0.29|u=m}}/{{val|0.04|u=m}} | {{val|0.089|u=T}} | 3D-printed stellarator | File:UST 2 stellarator concept and design.jpg |
Wendelstein 7-X{{Cite web|url=http://www.ipp.mpg.de/w7x|title=Wendelstein 7-X|website=ipp.mpg.de/w7x}} | {{active|Operational}} | 1996–2022 | 2015– | Helias | {{flagicon|DEU}} Greifswald | Max-Planck-Institut für Plasmaphysik | {{val|5.5|u=m}}/{{val|0.53|u=m}} | {{val|3|u=T}} | Steady-state plasma in large fully optimized stellarator | File:Schematic diagram of Wendelstein 7-X.jpg |
SCR-1 (Stellarator of Costa Rica) | {{active|Operational}} | 2011–2015 | 2016– | Modular | {{flagicon|CRI}} Cartago | Costa Rica Institute of Technology | {{val|0.14|u=m}}/{{val|0.042|u=m}} | {{val|0.044|u=T}} | File:SCR-1 vacuum vessel drawing.jpg | |
MUSE{{cite journal |title=Design and construction of the MUSE permanent magnet stellarator |journal=Journal of Plasma Physics |volume=89 |issue=5 |page=955890502 |doi=10.1017/S0022377823000880 |date=2023-10-31 |author=T.M. Qian |author2=X. Chu |author3=C. Pagano |author4=D. Patch |author5=M.C. Zarnstorff |author6=B. Berlinger |author7=D. Bishop |author8=A. Chambliss |author9=M. Haque |author10=D. Seidita |author11=C. Zhu |bibcode=2023JPlPh..89e9502Q |doi-access=free }}
|{{active|Operational}} |2022–2023 |2023– |Quasiaxi-symmetrical |{{flagicon|USA}} Princeton |Princeton Plasma Physics Laboratory |{{val|0.3|u=m}}/{{val|0.075|u=m}} |{{val|0.15|u=T}} |First stellarator with permanent magnets |File:Design and construction of the MUSE permanent magnet stellarator - Fig21 (cropped).jpg | ||||||||||
CFQS (Chinese First Quasi-Axisymmetric Stellarator){{Cite journal|last1=KINOSHITA|first1=Shigeyoshi|last2=SHIMIZU|first2=Akihiro|last3=OKAMURA|first3=Shoichi|last4=ISOBE|first4=Mitsutaka|last5=XIONG|first5=Guozhen|last6=LIU|first6=Haifeng|last7=XU|first7=Yuhong|last8=The CQFS Team|date=2019-06-03|title=Engineering Design of the Chinese First Quasi-Axisymmetric Stellarator (CFQS)|journal=Plasma and Fusion Research|volume=14|pages=3405097 |doi=10.1585/pfr.14.3405097|bibcode=2019PFR....1405097K|issn=1880-6821|doi-access=free}}
|{{partial|Under construction}} |2017– | |Helias |{{flagicon|CHN}} Chengdu |Southwest Jiaotong University, National Institute for Fusion Science in Japan |{{val|1|u=m}}/{{val|0.25|u=m}} |{{val|1|u=T}} |m=2 quasi-axisymmetric stellarator, modular | ||||||||||
EFPP (European Fusion Power Plant){{Cite web|url=https://www.filo.kit.edu/downloads/Forum%20FUSION%20Dtl/Event_FFD_081222/Presentationen/6-Gauss%20Fusion%20Initiative-Introduction%202.pdf|title=Introduction to the Gauss Fusion Initiative|date=2022-12-08}}
|{{planned|Planned}} |2030 ? |2045 ? |Helias |{{flagicon|DEU}} |Gauss Fusion | |7–{{val|9|u=T}} ? |Fusion power plant with 2–{{val|3|u=GW}} output | |
== [[Magnetic mirror]] ==
- Tabletop/Toytop, Lawrence Livermore National Laboratory, Livermore CA.
- DCX/DCX-2, Oak Ridge National Laboratory
- OGRA (Odin GRAm neitronov v sutki, one gram of neutrons per day), Akademgorodok, Russia. A 20-meter-long pipe
- Baseball I/Baseball II Lawrence Livermore National Laboratory, Livermore CA.
- 2X/2XIII/2XIII-B, Lawrence Livermore National Laboratory, Livermore CA.
- TMX, TMX-U Lawrence Livermore National Laboratory, Livermore CA.
- MFTF Lawrence Livermore National Laboratory, Livermore CA.
- Gas Dynamic Trap at Budker Institute of Nuclear Physics, Akademgorodok, Russia.
== Toroidal [[Z-pinch]] ==
- Perhapsatron (1953, USA)
- ZETA (Zero Energy Thermonuclear Assembly) (1957, United Kingdom)
== Reversed field pinch (RFP) ==
- ETA-BETA II in Padua, Italy (1979–1989)
- RFX (Reversed-Field eXperiment), Consorzio RFX, Padova, Italy{{Cite web|url=http://www.igi.cnr.it/|title=CONSORZIO RFX – Ricerca Formazione Innovazione|website=igi.cnr.it|access-date=2018-04-16|archive-url=https://web.archive.org/web/20090901010034/http://www.igi.cnr.it/|archive-date=2009-09-01}}
- MST (Madison Symmetric Torus), University of Wisconsin–Madison, United States{{Cite web|url=http://plasma.physics.wisc.edu/viewpage.php?id=mst|title=MST – UW Plasma Physics|last=Hartog|first=Peter Den|website=plasma.physics.wisc.edu|access-date=2013-02-28|archive-date=2019-03-13|archive-url=https://web.archive.org/web/20190313201537/http://plasma.physics.wisc.edu/viewpage.php?id=mst}}
- T2R, Royal Institute of Technology, Stockholm, Sweden
- TPE-RX, AIST, Tsukuba, Japan
- KTX (Keda Torus eXperiment) in China (since 2015){{cite journal|last1=Liu|first1=Wandong|last2=et|first2=al.|title=Overview of Keda Torus eXperiment initial results|journal=Nuclear Fusion|volume=57|issue=11|year=2017|page=116038|issn=0029-5515|doi=10.1088/1741-4326/aa7f21|bibcode=2017NucFu..57k6038L|s2cid=116431906 }}
== [[Spheromak]] ==
== [[Field-reversed configuration]] (FRC) ==
- C-2 Tri Alpha Energy
- C-2U Tri Alpha Energy
- C-2W TAE Technologies
- LSX University of Washington
- IPA University of Washington
- HF University of Washington
- IPA- HF University of Washington
== Other toroidal machines ==
- TMP (Tor s Magnitnym Polem, torus with magnetic field): A porcelain torus with major radius {{val|80|u=cm}}, minor radius {{val|13|u=cm}}, toroidal field of {{val|1.5|u=T}} and plasma current {{val|0.25|u=MA}}, predecessor to the first tokamak (1955, USSR)
= Open field lines =
== [[Pinch (plasma physics)|Plasma pinch]] ==
- Trisops – 2 facing theta-pinch guns
- FF-2B, Lawrenceville Plasma Physics, United States{{Cite web|url=https://lppfusion.com/wp-content/uploads/2021/10/LPPFusion%20Report%20Oct.15,%202021.pdf|archive-url=https://web.archive.org/web/20211025065311/https://lppfusion.com/wp-content/uploads/2021/10/LPPFusion%20Report%20Oct.15,%202021.pdf|url-status=live|archive-date=2021-10-25|title=Report Oct 15, 2021|date=2021-10-15}}
== [[Levitated dipole]] ==
Inertial confinement
{{Main|Inertial confinement fusion}}
= Laser-driven =
class="wikitable sortable" | ||||||||||
Device name | Status | width=55| Construction | width=55| Operation | Description | Peak laser power | Pulse energy | Fusion yield | width=110| Location | Organisation | Image |
---|---|---|---|---|---|---|---|---|---|---|
4 pi laser | {{no|Shut down}} | 196? | Semiconductor laser | {{val|5|u=GW}} | {{val|12|u=J}} | {{flagicon|USA}} Livermore | LLNL | |||
Long path laser | {{no|Shut down}} | 1972 | 1972 | First ICF laser with neodymium doped glass (Nd:glass) as lasing medium | {{val|5|u=GW}} | {{val|50|u=J}} | {{flagicon|USA}} Livermore | LLNL | ||
Single Beam System (SBS) "67" | {{no|Shut down}} | 1971-1973 | 1973 | Single-beam CO2 laser{{cite web|url=http://library.sciencemadness.org/lanl2_a/lib-www/la-pubs/00322724.pdf|title=Los Alamos Laser Fusion Program|date=July 1967|author=F Skoberne}} | {{val|200|u=GW}} | {{val|1|u=kJ}} | {{flagicon|USA}} Los Alamos | LANL | ||
Double Bounce Illumination System (DBIS) | {{no|Shut down}} | 1972-1974 | 1974-1990 | First private laser fusion effort, YAG laser, neutron yield {{val|e=4}} to {{val|3|e=5}} neutrons | {{val|1|u=kJ}} | data-sort-value="{{val|100|u=nJ}}"| ≈{{val|100|u=nJ}} | {{flagicon|USA}} Ann Arbor, Michigan | KMS Fusion | File:Double Bounce System KMS Fusion 1974.png | |
MERLIN (Medium Energy Rod Laser Incorporating Neodymium), N78 laser | {{no|Shut down}} | 1972-1975 | 1975-? | Nd:glass laser | {{val|100|u=GW}} | {{val|40|u=J}} | {{flagicon|UK}} RAF Aldermaston | AWE | File:MERLIN target chamber.jpg | |
Cyclops laser | {{no|Shut down}} | 1975 | 1975 | Single-beam Nd:glass laser, prototype for Shiva{{cite web|url=https://lasers.llnl.gov/multimedia/publications/pdfs/etr/1976_02_3.pdf|title=Beam-propagation studies on Cyclops|date=February 1976}} | {{val|1|u=TW}} | {{val|270|u=J}} | {{flagicon|USA}} Livermore | LLNL | File:Cyclops laser 1975.jpg | |
Janus laser | {{no|Shut down}} | 1974-1975 | 1975 | Two-beam Nd:glass laser demonstrated laser compression and thermonuclear burn of deuterium–tritium | {{val|1|u=TW}} | {{val|10|u=J}} | {{flagicon|USA}} Livermore | LLNL | File:Janus laser 1975.jpg | |
Gemini laser, Dual-Beam Module (DBM) | {{no|Shut down}} | ≤ 1975 | 1976 | Two-beam CO2 laser, tests for Helios | {{val|5|u=TW}} | {{val|2.5|u=kJ}} | {{flagicon|USA}} Los Alamos | LANL | ||
Argus laser | {{no|Shut down}} | 1976 | 1976-1981 | Two-beam Nd:glass laser, advanced the study of laser-target interaction and paved the way for Shiva | {{val|4|u=TW}} | {{val|2|u=kJ}} | data-sort-value="{{val|3|u=mJ}}"| ≈{{val|3|u=mJ}} | {{flagicon|USA}} Livermore | LLNL | File:Argus_laser_1976.jpg |
Vulcan laser (Versicolor Ultima Lux Coherens pro Academica Nostra){{cite journal | last1 = Danson | first1 = Colin N. | display-authors=etal | title = A history of high-power laser research and development in the United Kingdom | journal = High Power Laser Science and Engineering | date = 2021 | volume = 9 | issn = 2095-4719 | eissn = 2052-3289 | doi = 10.1017/hpl.2021.5 | bibcode = 2021HPLSE...9E..18D | s2cid = 233401354 | doi-access = free | hdl = 10044/1/89337 | hdl-access = free }} | {{active|Operational}} | 1976-1977 | 1977- | 8-beam Nd:glass laser, highest-intensity focussed laser in the world in 2005{{cite web | url=https://www.clf.stfc.ac.uk/Pages/Meet-the-CLF-lasers.aspx | title=CLF Get to know the CLF Lasers }} | {{val|1|u=PW}} | {{val|2.6|u=kJ}} | {{flagicon|UK}} Didcot | RAL | File:Green Lase.JPG | |
{{Anchor|Shiva}}Shiva laser | {{no|Shut down}} | 1977 | 1977-1981 | 20-beam Nd:glass laser; proof-of-concept for Nova; fusion yield of 1011 neutrons; found that its infrared wavelength of 1062 nm was too long to achieve ignition | {{val|30|u=TW}} | {{val|10.2|u=kJ}} | data-sort-value="{{val|0.1|u=J}}"| ≈{{val|0.1|u=J}} | {{flagicon|USA}} Livermore | LLNL | File:Shiva laser target chamber.jpg |
{{Anchor|Helios}}Helios laser, Eight-Beam System (EBS) | {{no|Shut down}} | 1975-1978 | 1978 | 8-beam CO2 laser; Media at Wikimedia Commons | {{val|20|u=TW}} | {{val|10|u=kJ}} | {{flagicon|USA}} Los Alamos | LANL | File:U.S. Department of Energy - Science - 282 005 003 (16388751641).jpg | |
HELEN (High Energy Laser Embodying Neodymium) | {{no|Shut down}} | 1976-1979 | 1979-2009 | Two-beam Nd:glass laser | {{val|1|u=TW}} | {{val|200|u=J}} | {{flagicon|UK}} Didcot | RAL | File:HELEN laser.jpg | |
ISKRA-4 | {{active|Operational}} | -1979 | 1979- | 8-beam iodine gas laser, prototype for ISKRA-5{{Cite web|url=http://www.vniief.ru/science/laserphysics_1_e.html|archive-url=https://web.archive.org/web/20050406140306/http://www.vniief.ru/science/laserphysics_1_e.html|archive-date=2005-04-06|title=RFNC-VNIIEF – Science – Laser physics|date=2005-04-06}} | {{val|10|u=TW}} | {{val|2|u=kJ}} | {{val|6|u=mJ}} | {{flagicon|SOV}} Sarov | RFNC-VNIIEF | |
Sprite laser | {{no|Shut down}} | 1981-1983 | 1983-1995 | First high-power Krypton fluoride laser used for target irradiation, λ={{val|249|u=nm}} | {{val|1|u=TW}} | {{val|7.5|u=J}} | {{flagicon|UK}} Didcot | RAL | File:Sprite e-beam pumped amplifier cell 1982.jpg | |
Gekko XII | {{active|Operational}} | 1983- | 12-beam, Nd:glass laser | {{val|500|u=TW}} | {{val|10|u=kJ}} | {{flagicon|JP}} Osaka | Institute for Laser Engineering | |||
Novette laser | {{no|Shut down}} | 1981-1983 | 1983-1984 | Nd:glass laser to validate the Nova design, first X-ray laser{{cite book | title = Laser Interaction and Related Plasma Phenomena | date = 1984 | publisher = Springer US | doi = 10.1007/978-1-4615-7332-6 | isbn = 978-1-4615-7334-0 | editor-last1 = Hora | editor-last2 = Miley | editor-first1 = Heinrich | editor-first2 = George H }} | {{val|13|u=TW}} | {{val|18|u=kJ}} | {{flagicon|USA}}Livermore | LLNL | File:U.S. Department of Energy - Science - 281 004 001 (16315143010).jpg | |
Antares laser, High Energy Gas Laser Facility (HEGLF) | {{no|Shut down}} | 1983{{cite journal | url=https://physicstoday.scitation.org/doi/10.1063/1.2916397 | doi=10.1063/1.2916397 | title=Fusion experiments have begun at Antares | journal=Physics Today | year=1984 | volume=37 | issue=9 | page=19 | bibcode=1984PhT....37i..19S | last1=Schwarzschild | first1=Bertram M. }} | 24-beam largest CO2 laser ever built. Missed goal of scientific fusion breakeven, because production of hot electrons in target plasma due to long 10.6 μm wavelength of laser resulted in poor laser/plasma energy coupling | {{val|200|u=TW}} | {{val|40|u=kJ}} | {{flagicon|USA}} Los Alamos | LANL | |||
PHAROS laser | {{active|Operational}} | 198? | Two-beam Nd:glass laser | {{val|300|u=GW}} | {{val|1|u=kJ}} | {{flagicon|USA}} Washington D.C. | NRL | |||
{{Anchor|Nova}}Nova laser | {{no|Shut down}} | 1984-1999 | 10-beam NIR and frequency-tripled 351 nm UV laser; fusion yield of 1013 neutrons; attempted ignition, but failed due to fluid instability of targets; led to construction of NIF | {{val|1.3|u=PW}} | {{val|120|u=kJ}} | {{val|30|u=J}} | {{flagicon|USA}}Livermore | LLNL | ||
{{Anchor|ISKRA-5}}ISKRA-5 | {{active|Operational}} | -1989 | 12-beam iodine gas laser, fusion yield 1010 to 1011 neutrons | {{val|100|u=TW}} | {{val|30|u=kJ}} | {{val|0.3|u=J}} | {{flagicon|SOV}} Sarov | RFNC-VNIIEF | ||
Aurora laser | {{no|Shut down}} | ≤ 1988-1989 | 1990 | 96-beam Krypton fluoride laser | data-sort-value="{{val|300|u=GW}}"| ≈{{val|300|u=GW}} | {{val|1.3|u=kJ}} | {{flagicon|USA}} Los Alamos | LANL | ||
Shenguang-I | {{no|Shut down}}
| |1990 |2-beam Nd:glass laser, λ={{val|1053|u=nm}}{{cite conference | last=Peng | first=Hansheng | title=Inertial confinement fusion program at CAEP | publisher=AIP | volume=369 | date=1996 | doi=10.1063/1.50487 | page=61–70}} | |{{val|1.6|u=kJ}} |{{Flag|China}} |Joint Laboratory of High Power Laser and Physics | | |||||||||
PALS, formerly "Asterix IV" | {{active|Operational}} | -1991 | 1991- | Iodine gas laser, λ={{val|1315|u=nm}} | {{val|3|u=TW}} | {{val|1|u=kJ}} | {{flagicon|DEU}} Garching, {{flagicon|CZE}} Prague | MPQ, CAS | File:Prague asterix laser system.jpeg | |
Trident laser | {{active|Operational}} | 198?-1992 | 1992-2017 | 3-beam Nd:glass laser; 2 x 400 J beams, 100 ps – 1 us; 1 beam ~100 J, 600 fs – 2 ns | {{val|200|u=TW}} | {{val|500|u=J}} | {{flagicon|USA}} Los Alamos | LANL | File:Alfoil.jpg | |
Nike laser | {{active|Operational}} | ≤ 1991-1994 | 1994- | 56-beam, most-capable Krypton fluoride laser for laser target interactions{{cite journal | last1 = Lehecka | first1 = T. | last2 = Bodner | first2 = S. | last3 = Deniz | first3 = A. V. | last4 = Mostovych | first4 = A. N. | last5 = Obenschain | first5 = S. P. | last6 = Pawley | first6 = C. J. | last7 = Pronko | first7 = M. S. | title = The NIKE KrF laser fusion facility | journal = Journal of Fusion Energy | date = December 1991 | volume = 10 | issue = 4 | pages = 301–303 | issn = 0164-0313 | eissn = 1572-9591 | doi = 10.1007/BF01052128 | bibcode = 1991JFuE...10..301L | s2cid = 122087249 }}{{cite journal | display-authors=etal | last1 = Obenschain | first1 = Stephen | last2 = Lehmberg | first2 = Robert | last3 = Kehne | first3 = David | last4 = Hegeler | first4 = Frank | last5 = Wolford | first5 = Matthew | last6 = Sethian | first6 = John | last7 = Weaver | first7 = James | last8 = Karasik | first8 = Max | title = High-energy krypton fluoride lasers for inertial fusion | journal = Applied Optics | date = 19 August 2015 | volume = 54 | issue = 31 | pages = F103-22 | issn = 0003-6935 | eissn = 1539-4522 | doi = 10.1364/AO.54.00F103 | pmid = 26560597 | bibcode = 2015ApOpt..54F.103O }} | {{val|2.6|u=TW}} | {{val|3|u=kJ}} | {{flagicon|USA}} Washington, D.C. | NRL | File:Nike_laser_amplifier.jpg | |
OMEGA laser | {{active|Operational}} | ?-1995 | 1995- | 60-beam UV frequency-tripled Nd:glass laser, fusion yield 1014 neutrons | {{val|60|u=TW}} | {{val|40|u=kJ}} | {{val|300|u=J}} | {{flagicon|USA}} Rochester | LLE | |
Electra | {{active|Operational}} | Krypton fluoride laser, 5 Hz operation with 90,000+ shots continuous | {{val|4|u=GW}} | {{val|730|u=J}} | {{flagicon|USA}} Washington D.C. | NRL | File:Electra Laser System NRL 2013.png | |||
LULI2000 | {{active|Operational}} | ? | 2003- | 6-beam Nd:glass laser, λ={{val|1.06|u=μm}}, λ={{val|0.53|u=μm}}, λ={{val|0.26|u=μm}} | {{val|500|u=GW}} | {{val|600|u=J}} | {{flagicon|FRA}} Palaiseau | École polytechnique | ||
OMEGA EP | {{active|Operational}} | 2008- | 60-beam UV | {{val|1.4|u=PW}} | {{val|5|u=kJ}} | {{flagicon|USA}} Rochester | LLE | |||
{{Anchor|NIF}}National Ignition Facility (NIF) | {{active|Operational}} | 1997-2009 | 2010- | 192-beam Nd:glass laser, achieved scientific breakeven with fusion gain of 1.5 and {{val|1.2|e=18}} neutrons{{Cite web |last=CLERY |first=DANIEL |date=13 December 2022 |title=With historic explosion, a long sought fusion breakthrough |url=https://www.science.org/content/article/historic-explosion-long-sought-fusion-breakthrough |access-date=2022-12-14 |website=www.science.org |language=en}} | {{val|500|u=TW}} | {{val|2.05|u=MJ}} | {{val|3.15|u=MJ}} | {{flagicon|USA}} Livermore | LLNL | File:NIF target chamber construction.jpg |
Orion | {{active|Operational}} | 2006-2010 | 2010- | 10-beams, λ={{val|351|u=nm}} | {{val|200|u=TW}} | {{val|5|u=kJ}} | {{flagicon|UK}} RAF Aldermaston | AWE | File:Orion target chamber.jpg | |
Laser Mégajoule (LMJ) | {{active|Operational}} | 1999-2014 | 2014- | Second-largest laser fusion facility, 10 out of 22 beam lines operational in 2022{{Cite web|url=http://www-lmj.cea.fr/|title=CEA – Laser Mégajoule|website=www-lmj.cea.fr}} | {{val|800|u=TW}} | {{val|1|u=MJ}} | {{flagicon|FRA}} Bordeaux | CEA | [https://www.asso-alp.fr/wp-content/uploads/2020/09/LMJ_3.jpg] | |
Laser for Fast Ignition Experiments (LFEX) | {{active|Operational}} | 2003-2015 | 2015- | High-contrast heating laser for FIREX, λ={{val|1053|u=nm}} | {{val|2|u=PW}} | {{val|10|u=kJ}} | {{val|100|u=µJ}} | {{flagicon|JP}} Osaka | Institute for Laser Engineering | |
HiPER (High Power Laser Energy Research Facility) | {{BLACK|Cancelled}} | 2007-2015 | - | Pan-European project to demonstrate the technical and economic viability of laser fusion for the production of energy{{cite web| url=https://www.hiper-laser.org/ |title=The HiPER Project |archive-url=https://web.archive.org/web/20221223061920/https://www.hiper-laser.org/|archive-date=2022-12-23}} | data-sort-value="{{val|4|u=PW}}"| ({{val|4|u=PW}}) | data-sort-value="{{val|270|u=kJ}}"|({{val|270|u=kJ}}) | data-sort-value="{{val|25|u=MJ}}"|({{val|25|u=MJ}}) | {{flagicon|EU}} | File:High Power Laser Energy Research Facility drawing.jpg | |
Laser Inertial Fusion Energy (LIFE) | {{BLACK|Cancelled}} | 2008-2013 | - | Effort to develop a fusion power plant succeeding NIF | data-sort-value="{{val|2.2|u=MJ}}"| ({{val|2.2|u=MJ}}) | data-sort-value="{{val|40|u=MJ}}"| ({{val|40|u=MJ}}) | {{flagicon|USA}} Livermore | LLNL | File:LIFE_fusion_chamber.jpg | |
ISKRA-6 | {{planned|Planned}} | ? | ? | 128 beam Nd:glass laser | {{val|300|u=TW}}? | {{val|300|u=kJ}}? | {{flagicon|RUS}} Sarov | RFNC-VNIIEF |
= Z-pinch =
{{Main|Z-pinch}}
- Z Pulsed Power Facility
- ZEBRA device at the University of Nevada's Nevada Terawatt Facility{{Cite news|url=http://physics.unr.edu/facility/ntf/index.html|archive-url=https://archive.today/20000919130352/http://physics.unr.edu/facility/ntf/index.html|archive-date=2000-09-19|title=University of Nevada, Reno. Nevada Terawatt Facility|date=2000-09-19|work=archive.is}}
- Saturn accelerator at Sandia National Laboratory{{Cite web|url=http://www.sandia.gov/capabilities/pulsed-power/facilities/saturn.html|title=Sandia National Laboratories: National Security Programs|website=sandia.gov|language=en}}
- MAGPIE at Imperial College London
- COBRA at Cornell University
- PULSOTRON{{Cite web|url=http://pulsotron.org|title=PULSOTRON|website=pulsotron.org|access-date=2020-03-09|archive-url=https://web.archive.org/web/20190401022923/http://www.pulsotron.org/|archive-date=2019-04-01}}
- Z-FFR (Z(-pinch)-Fission-Fusion Reactor), a nuclear fusion–fission hybrid machine to be built in Chengdu, China by 2025 and generate power as early as 2028
Inertial electrostatic confinement
{{Main|Inertial electrostatic confinement}}
Magnetized target fusion
{{Main|Magnetized target fusion}}
- FRX-L
- FRCHX
- General Fusion – under development
- LINUS project
References
{{Reflist}}