class="wikitable sortable" style="border:1px solid #aaa;" |
Organism strain | Family | Relevance | Genome size | Number of genes predicted
!No of chromosomes | Organization | Year of completion | Assembly status |
---|
Bretschneidera sinensis
|Akaniaceae
|endangered relic tree species
|1.21 Gb
|45,839
|
|
|2022[{{cite journal |vauthors=Zhang H, Du X, Dong C, Zheng Z, Mu W, Zhu M, Yang Y, Li X, Hu H, Shrestha N, Li M, Yang Y |title=Genomes and demographic histories of the endangered Bretschneidera sinensis (Akaniaceae) |journal=GigaScience |volume=11 |date=June 2022 |pmid=35701375 |pmc=9197684 |doi=10.1093/gigascience/giac050}}]
| |
Sclerocarya birrea
(Marula)
|Anacardiaceae
|Used for food
|
|18,397
|
|
|2018[{{cite journal | vauthors = Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, Song B, Cheng S, Kariba R, Muthemba S, Hendre PS, Mayes S, Ho WK, Yssel AE, Kendabie P, Wang S, Li L, Muchugi A, Jamnadass R, Lu H, Peng S, Van Deynze A, Simons A, Yana-Shapiro H, Van de Peer Y, Xu X, Yang H, Wang J, Liu X | title = The draft genomes of five agriculturally important African orphan crops | journal = GigaScience | volume = 8 | issue = 3 | date = March 2019 | pmid = 30535374 | pmc = 6405277 | doi = 10.1093/gigascience/giy152 }}][{{cite book |title=GigaDB Dataset |chapter=Genomic data of Marula (Sclerocarya birrea) |doi=10.5524/101057 |year=2018 |vauthors=Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, Song B, Cheng S, Kariba R, Muthemba S, Hendre PS, Mayes S, Ho WK, Kendabie P, Wang S, Li L, Muchugi A, Jamnadass R, Lu H, Peng S, Deynze AV, Simons A, Yana-Shapiro H, Xu X, Yang H, Wang J, Liu X |publisher=GigaScience Database}}]
| |
Begonia masoniana (Iron cross begonia)
|Begoniaceae
|Flower
|799.83 Mb
|
|
|
|2022[{{cite journal | vauthors = Li L, Chen X, Fang D, Dong S, Guo X, Li N, Campos-Dominguez L, Wang W, Liu Y, Lang X, Peng Y, Tian D, Thomas DC, Mu W, Liu M, Wu C, Yang T, Zhang S, Yang L, Yang J, Liu ZJ, Zhang L, Zhang X, Chen F, Jiao Y, Guo Y, Hughes M, Wang W, Liu X, Zhong C, Li A, Sahu SK, Yang H, Wu E, Sharbrough J, Lisby M, Liu X, Xu X, Soltis DE, Van de Peer Y, Kidner C, Zhang S, Liu H | title = Genomes shed light on the evolution of Begonia, a mega-diverse genus | journal = The New Phytologist | volume = 234 | issue = 1 | pages = 295–310 | date = April 2022 | pmid = 34997964 | pmc = 7612470 | doi = 10.1111/nph.17949 | bibcode = 2022NewPh.234..295L }}]
| |
Begonia peltatifolia (Rex begonia)
|Begoniaceae
|Flower
|331.75 Mb
|
|
|
|2022
| |
Betula pendula (silver birch) | Betulaceae | Boreal forest tree, model for forest biotechnology | 435 Mbp | 28,399
|14
| University of Helsinki | 2017[{{cite journal |vauthors=Salojärvi J, Smolander OP, Nieminen K, Rajaraman S, Safronov O, Safdari P, Lamminmäki A, Immanen J, Lan T, Tanskanen J, Rastas P, Amiryousefi A, Jayaprakash B, Kammonen JI, Hagqvist R, Eswaran G, Ahonen VH, Serra JA, Asiegbu FO, de Dios Barajas-Lopez J, Blande D, Blokhina O, Blomster T, Broholm S, Brosché M, Cui F, Dardick C, Ehonen SE, Elomaa P, Escamez S, Fagerstedt KV, Fujii H, Gauthier A, Gollan PJ, Halimaa P, Heino PI, Himanen K, Hollender C, Kangasjärvi S, Kauppinen L, Kelleher CT, Kontunen-Soppela S, Koskinen JP, Kovalchuk A, Kärenlampi SO, Kärkönen AK, Lim KJ, Leppälä J, Macpherson L, Mikola J, Mouhu K, Mähönen AP, Niinemets Ü, Oksanen E, Overmyer K, Palva ET, Pazouki L, Pennanen V, Puhakainen T, Poczai P, Possen BJ, Punkkinen M, Rahikainen MM, Rousi M, Ruonala R, van der Schoot C, Shapiguzov A, Sierla M, Sipilä TP, Sutela S, Teeri TH, Tervahauta AI, Vaattovaara A, Vahala J, Vetchinnikova L, Welling A, Wrzaczek M, Xu E, Paulin LG, Schulman AH, Lascoux M, Albert VA, Auvinen P, Helariutta Y, Kangasjärvi J |title=Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch |journal=Nature Genetics |volume=49 |issue=6 |pages=904–912 |date=May 2017 |pmid=28481341 |doi=10.1038/ng.3862 |doi-access=free}}] | 454/Illumina/PacBio. Assembly size 435 Mbp. Contig N50: 48,209 bp, scaffold N50: 239,796 bp. 89% of the assembly mapped to 14 pseudomolecules. Additionally 150 birch individuals sequenced. |
Betula platyphylla (Japanese white birch)
|Betulaceae
|Pioneer hardwood tree species
|430 Mbp
|
|
|
|2021[{{cite journal |vauthors=Chen S, Wang Y, Yu L, Zheng T, Wang S, Yue Z, Jiang J, Kumari S, Zheng C, Tang H, Li J, Li Y, Chen J, Zhang W, Kuang H, Robertson JS, Zhao PX, Li H, Shu S, Yordanov YS, Huang H, Goodstein DM, Gai Y, Qi Q, Min J, Xu C, Wang S, Qu GZ, Paterson AH, Sankoff D, Wei H, Liu G, Yang C |title=Genome sequence and evolution of Betula platyphylla |journal=Horticulture Research |volume=8 |issue=1 |pages=37 |date=February 2021 |pmid=33574224 |doi=10.1038/s41438-021-00481-7 |pmc=7878895 |doi-access=free|bibcode=2021HorR....8...37C }}]
|contig N50 = 751 kbp |
Betula nana (dwarf birch) | Betulaceae | Arctic shrub | 450 Mbp | | | [https://web.archive.org/web/20180828211003/http://www.birchgenome.org/ QMUL/SBCS] | 2013[{{cite journal |vauthors=Wang N, Thomson M, Bodles WJ, Crawford RM, Hunt HV, Featherstone AW, Pellicer J, Buggs RJ |title=Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers |journal=Molecular Ecology |volume=22 |issue=11 |pages=3098–111 |date=June 2013 |pmid=23167599 |doi=10.1111/mec.12131 |bibcode=2013MolEc..22.3098W |s2cid=206179485}}] | |
Corylus heterophylla Fisch (Asian hazel)
|Betulaceae
|Nut tree used for food
|370.75 Mbp
|27,591
|11
|
|2021[{{cite journal |vauthors=Zhao T, Ma W, Yang Z, Liang L, Chen X, Wang G, Ma Q, Wang L |title=A chromosome-level reference genome of the hazelnut, Corylus heterophylla Fisch |journal=GigaScience |volume=10 |issue=4 |date=April 2021 |pmid=33871007 |pmc=8054262 |doi=10.1093/gigascience/giab027}}]
|Nanopore/Hi-C chromosome scale. Contig N50 and scaffold N50 sizes of 2.07 and 31.33 Mb, respectively |
Corylus mandshurica
|Betulaceae
|Hazel used for breeding
|367.67 Mb
|28,409
|11
|
|2021[{{cite journal |vauthors=Li Y, Sun P, Lu Z, Chen J, Wang Z, Du X, Zheng Z, Wu Y, Hu H, Yang J, Ma J, Liu J, Yang Y |title=The Corylus mandshurica genome provides insights into the evolution of Betulaceae genomes and hazelnut breeding |journal=Horticulture Research |volume=8 |issue=1 |pages=54 |date=March 2021 |pmid=33642584 |doi=10.1038/s41438-021-00495-1 |pmc=7917096 |doi-access=free|bibcode=2021HorR....8...54L }}]
| |
Aethionema arabicum | Brassicaceae | Comparative analysis of crucifer genomes | | | | | 2013[{{cite journal |vauthors=Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ, Forczek E, Joly-Lopez Z, Steffen JG, Hazzouri KM, Dewar K, Stinchcombe JR, Schoen DJ, Wang X, Schmutz J, Town CD, Edger PP, Pires JC, Schumaker KS, Jarvis DE, Mandáková T, Lysak MA, van den Bergh E, Schranz ME, Harrison PM, Moses AM, Bureau TE, Wright SI, Blanchette M |title=An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions |journal=Nature Genetics |volume=45 |issue=8 |pages=891–8 |date=August 2013 |pmid=23817568 |doi=10.1038/ng.2684 |doi-access=free}}] | |
Arabidopsis lyrata ssp. lyrata strain MN47 | Brassicaceae | Model plant | 206.7 Mbp
|32,670
|8 | | 2011[{{cite journal |vauthors=Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov AA, Schneeberger K, Spannagl M, Wang X, Yang L, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KF, Van de Peer Y, Grigoriev IV, Nordborg M, Weigel D, Guo YL |title=The Arabidopsis lyrata genome sequence and the basis of rapid genome size change |journal=Nature Genetics |volume=43 |issue=5 |pages=476–81 |date=May 2011 |pmid=21478890 |pmc=3083492 |doi=10.1038/ng.807}}] | 8.3X sequence coverage, analyzed on ABI 3730XL capillary sequencers |
Arabidopsis thaliana Ecotype:Columbia | Brassicaceae | Model plant | 135 Mbp | 27,655[{{Cite web |url=https://www.araport.org/data/araport11 |title=Updated Col-0 Genome Annotation (Araport11 Official Release) Updated Jun 2016 {{!}} Araport |website=www.araport.org |access-date=2019-03-18 |archive-date=2019-07-19 |archive-url=https://web.archive.org/web/20190719070344/https://www.araport.org/data/araport11 |url-status=dead}}]
|5
|AGI
| 2000[{{cite journal |title=Analysis of the genome sequence of the flowering plant Arabidopsis thaliana |journal=Nature |volume=408 |issue=6814 |pages=796–815 |date=December 2000 |pmid=11130711 |doi=10.1038/35048692 |bibcode=2000Natur.408..796T |author=((The Arabidopsis Genome Initiative)) |doi-access=free}}] | |
Barbarea vulgaris
G-type
|Brassicaceae
|Model plant for specialised metabolites and plant defenses
|167.7 Mbp
|25,350
|8
|
|2017[{{cite journal |vauthors=Byrne SL, Erthmann PØ, Agerbirk N, Bak S, Hauser TP, Nagy I, Paina C, Asp T |title=The genome sequence of Barbarea vulgaris facilitates the study of ecological biochemistry |journal=Scientific Reports |volume=7 |pages=40728 |date=January 2017 |pmid=28094805 |pmc=5240624 |doi=10.1038/srep40728 |bibcode=2017NatSR...740728B}}]
|66.5 X coverage with Illumina GA II technology |
Brassica rapa ssp. pekinensis (Chinese cabbage) accession Chiifu-401-42 | Brassicaceae | Assorted crops and model organism | 485 Mbp
|41,174 (has undergone genome triplication)
|10
|The Brassica rapa Genome Sequencing Project Consortium
| 2011[{{cite journal |vauthors=Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IA, Batley J, Kim JS, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon SJ, Choi SR, Lee TH, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z |title=The genome of the mesopolyploid crop species Brassica rapa |journal=Nature Genetics |volume=43 |issue=10 |pages=1035–9 |date=August 2011 |pmid=21873998 |doi=10.1038/ng.919 |s2cid=205358099 |url=https://nrc-publications.canada.ca/eng/view/accepted/?id=8fdc0510-af47-4bba-bdf8-7c81bd2b18ec}}] | 72X coverage of paired short read sequences generated by Illumina GA II technology |
Brassica napus (Oilseed rape or rapeseed) European winter oilseed cultivar 'Darmor-bzh'
|Brassicaceae
|Crops
|1130 Mbp
|101,040
|19
|Institutional Collaboration
|2014[{{cite journal |vauthors=Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VH, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CH, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P |date=August 2014 |title=Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome |journal=Science |volume=345 |issue=6199 |pages=950–3 |bibcode=2014Sci...345..950C |doi=10.1126/science.1253435 |pmid=25146293 |doi-access=|s2cid=206556986 }}]
- {{cite press release |title=Oilseed rape genome sequenced |website=L'Institut national de la recherche agronomique |url=http://presse.inra.fr/en/Press-releases/Oilseed-rape-genome-sequenced |archive-url=https://web.archive.org/web/20170719211924/http://presse.inra.fr/en/Press-releases/Oilseed-rape-genome-sequenced |archive-date=2017-07-19}}
|454 GS-FLX+ Titanium (Roche, Basel, Switzerland) and Sanger sequencing. Correction and gap filling used 79 Gb of Illumina (San Diego, CA) HiSeq sequence. |
Capsella rubella | Brassicaceae | Close relative of Arabidopsis thaliana | 130 Mbp | 26,521
| | JGI | 2013?[{{cite web |url=http://www.phytozome.net/capsella.php |work=Phytozome v9.1 |title=Capsella rubella |access-date=2013-07-09 |archive-url=https://web.archive.org/web/20150426030222/http://www.phytozome.net/capsella.php |archive-date=2015-04-26 |url-status=dead}}] 2013[{{cite journal |vauthors=Slotte T, Hazzouri KM, Ågren JA, Koenig D, Maumus F, Guo YL, Steige K, Platts AE, Escobar JS, Newman LK, Wang W, Mandáková T, Vello E, Smith LM, Henz SR, Steffen J, Takuno S, Brandvain Y, Coop G, Andolfatto P, Hu TT, Blanchette M, Clark RM, Quesneville H, Nordborg M, Gaut BS, Lysak MA, Jenkins J, Grimwood J, Chapman J, Prochnik S, Shu S, Rokhsar D, Schmutz J, Weigel D, Wright SI |title=The Capsella rubella genome and the genomic consequences of rapid mating system evolution |journal=Nature Genetics |volume=45 |issue=7 |pages=831–5 |date=July 2013 |pmid=23749190 |doi=10.1038/ng.2669 |doi-access=free}}] | |
Cardamine hirsuta (hairy bittercress) strain 'Oxford'
|Brassicaceae
|A model system for studies in evolution of plant development
|198 Mbp
|29,458
|8
|Max Planck Institute for Plant Breeding Research, Köln, Germany
|2016[{{cite journal |vauthors=Gan X, Hay A, Kwantes M, Haberer G, Hallab A, Ioio RD, Hofhuis H, Pieper B, Cartolano M, Neumann U, Nikolov LA, Song B, Hajheidari M, Briskine R, Kougioumoutzi E, Vlad D, Broholm S, Hein J, Meksem K, Lightfoot D, Shimizu KK, Shimizu-Inatsugi R, Imprialou M, Kudrna D, Wing R, Sato S, Huijser P, Filatov D, Mayer KF, Mott R, Tsiantis M |title=The Cardamine hirsuta genome offers insight into the evolution of morphological diversity |journal=Nature Plants |volume=2 |issue=11 |pages=16167 |date=October 2016 |pmid=27797353 |doi=10.1038/nplants.2016.167 |pmc=8826541 |doi-access=free|bibcode=2016NatPl...216167G }}]
|Shotgun sequencing strategy, combining paired end reads (197× assembled sequence coverage) and mate pair reads (66× assembled) from Illumina HiSeq (a total of 52 Gbp raw reads).
|
Eruca sativa (salad rocket)
|Brassicaceae
|Used for food
|851 Mbp
|45,438
|
|University of Reading
|2020[{{cite journal |vauthors=Bell L, Chadwick M, Puranik M, Tudor R, Methven L, Kennedy S, Wagstaff C |title=The Eruca sativa Genome and Transcriptome: A Targeted Analysis of Sulfur Metabolism and Glucosinolate Biosynthesis Pre and Postharvest |journal=Frontiers in Plant Science |volume=11 |pages=525102 |date=2020 |pmid=33193472 |pmc=7652772 |doi=10.3389/fpls.2020.525102 |doi-access=free}}]
|Illumina MiSeq and HiSeq2500. PCR free paired end and long mate pair sequencing and assembly. Illumina HiSeq transcriptome sequencing (125/150 bp paired end reads). |
Erysimum cheiranthoides (wormseed wallflower) strain 'Elbtalaue'
|Brassicaceae
|Model plant for studying defensive chemistry, including cardiac glycosides
|175 Mbp
|29,947
|8
|Boyce Thompson Institute, Ithaca, NY
|2020[{{Cite web |date=September 17, 2019 |title=Erysimum Genome Site |url=https://www.erysimum.org/ |website=www.erysimum.org}}][{{cite journal |vauthors=Züst T, Strickler SR, Powell AF, Mabry ME, An H, Mirzaei M, York T, Holland CK, Kumar P, Erb M, Petschenka G, Gómez JM, Perfectti F, Müller C, Pires JC, Mueller LA, Jander G |title=Independent evolution of ancestral and novel defenses in a genus of toxic plants (Erysimum, Brassicaceae) |journal=eLife |volume=9 |pages=e51712 |date=April 2020 |pmid=32252891 |pmc=7180059 |doi=10.7554/eLife.51712 |doi-access=free}}]
|39.5 Gb PacBio sequences (average length 10,603 bp), one lane Illumina MiSeq sequencing (2 x 250 bp paired end), Phase Genomics Hi-C scaffolding, PacBio and Illumina transcriptome sequencing |
Eutrema salsugineum | Brassicaceae | A relative of arabidopsis with high salt tolerance | 240 Mbp | 26,351
| | JGI | 2013[{{cite journal |vauthors=Yang R, Jarvis DE, Chen H, Beilstein MA, Grimwood J, Jenkins J, Shu S, Prochnik S, Xin M, Ma C, Schmutz J, Wing RA, Mitchell-Olds T, Schumaker KS, Wang X |title=The Reference Genome of the Halophytic Plant Eutrema salsugineum |journal=Frontiers in Plant Science |volume=4 |pages=46 |year=2013 |pmid=23518688 |pmc=3604812 |doi=10.3389/fpls.2013.00046 |doi-access=free}}] | |
Eutrema parvulum | Brassicaceae | Comparative analysis of crucifer genomes | | | | | 2013 | |
Leavenworthia alabamica | Brassicaceae | Comparative analysis of crucifer genomes | | | | | 2013 | |
Sisymbrium irio | Brassicaceae | Comparative analysis of crucifer genomes | | | | | 2013 | |
Thellungiella parvula | Brassicaceae | A relative of arabidopsis with high salt tolerance | | | | | 2011[{{cite journal |vauthors=Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S, Yun DJ, Bressan RA, Zhu JK, Bohnert HJ, Cheeseman JM |title=The genome of the extremophile crucifer Thellungiella parvula |journal=Nature Genetics |volume=43 |issue=9 |pages=913–8 |date=August 2011 |pmid=21822265 |pmc=3586812 |doi=10.1038/ng.889}}] | |
Cannabis sativa (hemp) | Cannabaceae | Hemp and marijuana production | ca 820 Mbp | 30,074 based on transcriptome assembly and clustering
| | | 2011[{{cite journal |vauthors=van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, Page JE |title=The draft genome and transcriptome of Cannabis sativa |journal=Genome Biology |volume=12 |issue=10 |pages=R102 |date=October 2011 |pmid=22014239 |pmc=3359589 |doi=10.1186/gb-2011-12-10-r102 |doi-access=free}}] | Illumina/454
scaffold N50 16.2 Kbp |
Capparis spinosa var. herbacea (Caper)
|Capparaceae
|Crop
|274.53 Mb
|21,577
|
|
|2022[{{cite journal |vauthors=Wang L, Fan L, Zhao Z, Zhang Z, Jiang L, Chai M, Tian C |title=The Capparis spinosa var. herbacea genome provides the first genomic instrument for a diversity and evolution study of the Capparaceae family |journal=GigaScience |volume=11 |date=October 2022 |pmid=36310248 |pmc=9618406 |doi=10.1093/gigascience/giac106}}]
|contig N50 9.36 Mb |
Carica papaya (papaya) | Caricaceae | Fruit crop | 372 Mbp | 28,629
| | | 2008[{{cite journal |vauthors=Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen C, Qian W, Shen J, Du P, Eustice M, Tong E, Tang H, Lyons E, Paull RE, Michael TP, Wall K, Rice DW, Albert H, Wang ML, Zhu YJ, Schatz M, Nagarajan N, Acob RA, Guan P, Blas A, Wai CM, Ackerman CM, Ren Y, Liu C, Wang J, Wang J, Na JK, Shakirov EV, Haas B, Thimmapuram J, Nelson D, Wang X, Bowers JE, Gschwend AR, Delcher AL, Singh R, Suzuki JY, Tripathi S, Neupane K, Wei H, Irikura B, Paidi M, Jiang N, Zhang W, Presting G, Windsor A, Navajas-Pérez R, Torres MJ, Feltus FA, Porter B, Li Y, Burroughs AM, Luo MC, Liu L, Christopher DA, Mount SM, Moore PH, Sugimura T, Jiang J, Schuler MA, Friedman V, Mitchell-Olds T, Shippen DE, dePamphilis CW, Palmer JD, Freeling M, Paterson AH, Gonsalves D, Wang L, Alam M |title=The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus) |journal=Nature |volume=452 |issue=7190 |pages=991–6 |date=April 2008 |pmid=18432245 |pmc=2836516 |doi=10.1038/nature06856 |bibcode=2008Natur.452..991M}}] | contig N50 11kbp
scaffold N50
1Mbp
total coverage ~3x (Sanger)
92.1% unigenes mapped
235Mbp anchored (of this 161Mbp also oriented) |
Casuarina equisetifolia
(Australian Pine)
|Casuarinaceae
|bonsai subject
|300 Mbp
|29,827
|
|
|2018[{{cite journal |vauthors=Ye G, Zhang H, Chen B, Nie S, Liu H, Gao W, Wang H, Gao Y, Gu L |title=De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth |journal=The Plant Journal |volume=97 |issue=4 |pages=779–794 |date=February 2019 |pmid=30427081 |doi=10.1111/tpj.14159 |doi-access=free}}]
| |
Tripterygium wilfordii (Lei gong teng)
|Celastraceae
|Chinese medicine crop
|340.12 Mbp
|31,593
|
|
|2021[{{Cite journal |vauthors=Pei T, Yan M, Kong Y, Fan H, Liu J, Cui M, Fang Y, Ge B, Yang J, Zhao Q |title=The genome of Tripterygium wilfordii and characterization of the celastrol biosynthesis pathway |journal=Gigabyte |year=2021 |volume=2021 |pages=1–30 |language=en |doi=10.46471/gigabyte.14 |pmid=36967728 |pmc=10038137 |doi-access=free}}]
|Contig N50 3.09 Mbp |
Cleome gynandra
(African cabbage)
|Cleomaceae
|C4 leafy vegetable and medicinal plant
|740 Mb
|30,933
|
|
|2023[{{cite journal |vauthors=Hoang NV, Sogbohossou EO, Xiong W, Simpson CJ, Singh P, Walden N, van den Bergh E, Becker FF, Li Z, Zhu XG, Brautigam A, Weber AP, van Haarst JC, Schijlen EG, Hendre PS, Van Deynze A, Achigan-Dako EG, Hibberd JM, Schranz ME |title=The Gynandropsis gynandra genome provides insights into whole-genome duplications and the evolution of C4 photosynthesis in Cleomaceae |journal=The Plant Cell |volume=35 |issue=5 |pages=1334–1359 |date=April 2023 |pmid=36691724 |pmc=10118270 |doi=10.1093/plcell/koad018}}]
|N50 of 42 Mb |
Kalanchoë fedtschenkoi Raym.-Hamet & H. PerrierKalanchoe | Crassulaceae | Molecular genetic model for obligate CAM species in the eudicots
|256 Mbp
|30,964
|34
| | 2017[{{cite journal |vauthors=Yang X, Hu R, Yin H, Jenkins J, Shu S, Tang H, Liu D, Weighill DA, Cheol Yim W, Ha J, Heyduk K, Goodstein DM, Guo HB, Moseley RC, Fitzek E, Jawdy S, Zhang Z, Xie M, Hartwell J, Grimwood J, Abraham PE, Mewalal R, Beltrán JD, Boxall SF, Dever LV, Palla KJ, Albion R, Garcia T, Mayer JA, Don Lim S, Man Wai C, Peluso P, Van Buren R, De Paoli HC, Borland AM, Guo H, Chen JG, Muchero W, Yin Y, Jacobson DA, Tschaplinski TJ, Hettich RL, Ming R, Winter K, Leebens-Mack JH, Smith JA, Cushman JC, Schmutz J, Tuskan GA |title=The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism |journal=Nature Communications |volume=8 |issue=1 |pages=1899 |date=December 2017 |pmid=29196618 |pmc=5711932 |doi=10.1038/s41467-017-01491-7 |bibcode=2017NatCo...8.1899Y}}] | ~70× paired-end reads and ~37× mate-pair reads generated using an Illumina MiSeq platform. |
Rhodiola crenulata (Tibetan medicinal herb)
|Crassulaceae
|Uses for medicine and food
|344.5 Mb
|35,517
|
|
|2017[{{cite journal |vauthors=Fu Y, Li L, Hao S, Guan R, Fan G, Shi C, Wan H, Chen W, Zhang H, Liu G, Wang J, Ma L, You J, Ni X, Yue Z, Xu X, Sun X, Liu X, Lee SM |title=Draft genome sequence of the Tibetan medicinal herb Rhodiola crenulata |journal=GigaScience |volume=6 |issue=6 |pages=1–5 |date=June 2017 |pmid=28475810 |pmc=5530320 |doi=10.1093/gigascience/gix033}}]
| |
Citrullus lanatus (watermelon) | Cucurbitaceae | Vegetable crop | ca 425 Mbp | 23,440
| | BGI | 2012[{{cite journal |vauthors=Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham BK, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, Mueller LA, Zhao H, He H, Zhang Y, Zhang Z, Huang S, Tan T, Pang E, Lin K, Hu Q, Kuang H, Ni P, Wang B, Liu J, Kou Q, Hou W, Zou X, Jiang J, Gong G, Klee K, Schoof H, Huang Y, Hu X, Dong S, Liang D, Wang J, Wu K, Xia Y, Zhao X, Zheng Z, Xing M, Liang X, Huang B, Lv T, Wang J, Yin Y, Yi H, Li R, Wu M, Levi A, Zhang X, Giovannoni JJ, Wang J, Li Y, Fei Z, Xu Y |title=The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions |journal=Nature Genetics |volume=45 |issue=1 |pages=51–8 |date=January 2013 |pmid=23179023 |doi=10.1038/ng.2470 |hdl=2434/619399 |doi-access=free |hdl-access=free}}] | Illumina
coverage 108.6x
contig N50 26.38 kbp
Scaffold N50 2.38 Mbp
genome covered 83.2%
~97% ESTs mapped |
Cucumis melo (Muskmelon) DHL92 | Cucurbitaceae | Vegetable crop | 450 Mbp | 27,427
| | | 2012[{{cite journal |vauthors=Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, Hénaff E, Câmara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutiérrez S, Blanca J, Cañizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodríguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdos B, Melé M, Yang L, Weng Y, Navarro A, Marques-Bonet T, Aranda MA, Nuez F, Picó B, Gabaldón T, Roma G, Guigó R, Casacuberta JM, Arús P, Puigdomènech P |title=The genome of melon (Cucumis melo L.) |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=109 |issue=29 |pages=11872–7 |date=July 2012 |pmid=22753475 |pmc=3406823 |doi=10.1073/pnas.1205415109 |bibcode=2012PNAS..10911872G |doi-access=free}}] | 454
13.5x coverage
contig N50: 18.1kbp
scaffold N50: 4.677 Mbp
WGS |
Cucumis sativus (cucumber) 'Chinese long' inbred line 9930 | Cucurbitaceae | Vegetable crop | 350 Mbp (Kmer depth) 367 Mbp (flow cytometry) | 26,682
| | | 2009[{{cite journal |vauthors=Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EA, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Wu Z, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S |title=The genome of the cucumber, Cucumis sativus L |journal=Nature Genetics |volume=41 |issue=12 |pages=1275–81 |date=December 2009 |pmid=19881527 |doi=10.1038/ng.475 |doi-access=free}}] | contig N50 19.8kbp
scaffold N50 1,140kbp
total coverage ~72.2 (Sanger + Ilumina)
96.8% unigenes mapped
72.8% of the genome anchored |
Cucurbita argyrosperma subsp. argyrosperma
(Silver-seed gourd)
|Cucurbitaceae
|Seed and fruit crop
|228.8 Mbp
|27,998
|20
|National Autonomous University of Mexico
|2019,[{{cite journal |vauthors=Barrera-Redondo J, Ibarra-Laclette E, Vázquez-Lobo A, Gutiérrez-Guerrero YT, Sánchez de la Vega G, Piñero D, Montes-Hernández S, Lira-Saade R, Eguiarte LE |title=The Genome of Cucurbita argyrosperma (Silver-Seed Gourd) Reveals Faster Rates of Protein-Coding Gene and Long Noncoding RNA Turnover and Neofunctionalization within Cucurbita |language=en |journal=Molecular Plant |volume=12 |issue=4 |pages=506–520 |date=April 2019 |pmid=30630074 |doi=10.1016/j.molp.2018.12.023 |doi-access=free|bibcode=2019MPlan..12..506B }}] updated in 2021
|contig N50 447 kbp
scaffold N50 11.6 Mbp
total coverage: 120x Illumina (HiSeq2000 and MiSeq) + 31x PacBio RSII |
Cucurbita argyrosperma subsp. sororia
(wild gourd)
|Cucurbitaceae
|Wild relative of the silver-seed gourd
|255.2 Mbp
|30,592
|20
|National Autonomous University of Mexico
|2021[{{cite journal |vauthors=Barrera-Redondo J, Sánchez-de la Vega G, Aguirre-Liguori JA, Castellanos-Morales G, Gutiérrez-Guerrero YT, Aguirre-Dugua X, Aguirre-Planter E, Tenaillon MI, Lira-Saade R, Eguiarte LE |title=The domestication of Cucurbita argyrosperma as revealed by the genome of its wild relative |journal=Horticulture Research |volume=8 |issue=1 |pages=109 |date=May 2021 |pmid=33931618 |pmc=8087764 |doi=10.1038/s41438-021-00544-9 |doi-access=free|bibcode=2021HorR....8..109B }}]
|contig N50 1.2 Mbp
scaffold N50 12.1 Mbp
total coverage: 213x Illumina HiSeq4000 + 75.4x PacBio Sequel |
Siraitia grosvenorii
(Monk fruit)
|Cucurbitaceae
|Chinese medicine/sweetener
|456.5 Mbp
|30,565
|
|Anhui Agricultural University
|2018[{{cite journal |vauthors=Xia M, Han X, He H, Yu R, Zhen G, Jia X, Cheng B, Deng XW |title=Improved de novo genome assembly and analysis of the Chinese cucurbit Siraitia grosvenorii, also known as monk fruit or luo-han-guo |journal=GigaScience |volume=7 |issue=6 |date=June 2018 |pmid=29893829 |pmc=6007378 |doi=10.1093/gigascience/giy067}}]
| |
Hippophae rhamnoides (sea-buckthorn)
|Elaeagnaceae
|used in food and cosmetics
|730 Mbp
|30,812
|
|
|2022[{{cite journal |vauthors=Wu Z, Chen H, Pan Y, Feng H, Fang D, Yang J, Wang Y, Yang J, Sahu SK, Liu J, Xing Y, Wang X, Liu M, Luo X, Gao P, Li L, Liu Z, Yang H, Liu X, Xu X, Liu H, Wang E |title=Genome of Hippophae rhamnoides provides insights into a conserved molecular mechanism in actinorhizal and rhizobial symbioses |journal=The New Phytologist |volume=235 |issue=1 |pages=276–291 |date=July 2022 |pmid=35118662 |doi=10.1111/nph.18017 |bibcode=2022NewPh.235..276W |s2cid=246529299}}]
| |
Hevea brasiliensis (rubber tree) | Euphorbiaceae | the most economically important member of the genus Hevea | | | | | 2013[{{cite journal |vauthors=Rahman AY, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K, Feng Y, Hou S, Ong SY, Ng FL, Lee LS, Tan HS, Sakaff MK, Teh BS, Khoo BF, Badai SS, Aziz NA, Yuryev A, Knudsen B, Dionne-Laporte A, Mchunu NP, Yu Q, Langston BJ, Freitas TA, Young AG, Chen R, Wang L, Najimudin N, Saito JA, Alam M |title=Draft genome sequence of the rubber tree Hevea brasiliensis |journal=BMC Genomics |volume=14 |pages=75 |date=February 2013 |pmid=23375136 |pmc=3575267 |doi=10.1186/1471-2164-14-75 |doi-access=free}}] | |
Jatropha curcas Palawan | Euphorbiaceae | bio-diesel crop | | | | | 2011[{{cite journal |vauthors=Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu T, Toyoda A, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena JA, Wada N, Kohinata T, Atefeh A, Yuasa S, Matsunaga S, Fukui K |title=Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L |journal=DNA Research |volume=18 |issue=1 |pages=65–76 |date=February 2011 |pmid=21149391 |pmc=3041505 |doi=10.1093/dnares/dsq030}}] | |
Manihot esculenta (Cassava) | Euphorbiaceae | Humanitarian importance | ~760 Mb | 30,666
| | JGI | 2012[Prochnik et al. (2012), J. Tropical Plant Biology] | |
Ricinus communis (Castor bean) | Euphorbiaceae | Oilseed crop | 320 Mbp | 31,237
| | JCVI | 2010[{{cite journal |vauthors=Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G, Cahoon EB, Gedil M, Stanke M, Haas BJ, Wortman JR, Fraser-Liggett CM, Ravel J, Rabinowicz PD |title=Draft genome sequence of the oilseed species Ricinus communis |journal=Nature Biotechnology |volume=28 |issue=9 |pages=951–6 |date=September 2010 |pmid=20729833 |pmc=2945230 |doi=10.1038/nbt.1674}}] | Sanger coverage~4.6x contig N50 21.1 kbp scaffold N50 496.5kbp |
Ricinus communis L. (Wild Castor) | Euphorbiaceae | one of the most important oil crops worldwide | ~318.13 Mb | 30,066
| | National Key R&D Program of China, the National Natural Science Foundation of China, the Guangdong Basic and Applied Basic Research Foundation, China, and the Shenzhen Science and Technology Program, China | 2021[{{cite journal |vauthors=Lu J, Pan C, Fan W, Liu W, Zhao H, Li D, Wang S, Hu L, He B, Qian K, Qin R, Ruan J, Lin Q, Lü S, Cui P |title=A Chromosome-level Assembly of A Wild Castor Genome Provides New Insights into the Adaptive Evolution in A Tropical Desert |journal=Genomics Proteomics Bioinformatics |volume=S1672-0229 |issue=21 |pages=00162–5 |date=July 2021 |pmid=34339842 |doi=10.1016/j.gpb.2021.04.003 |pmc=9510866 |s2cid=236885144 |doi-access=free}}] | genome size of 316 Mb, a scaffold N50 of 31.93 Mb, and a contig N50 of 8.96 Mb |
Ammopiptanthus nanus
|Fabaceae
|Only genus of evergreen broadleaf shrub
|889 Mb
|37,188
|
|
|2018[{{cite journal |vauthors=Gao F, Wang X, Li X, Xu M, Li H, Abla M, Sun H, Wei S, Feng J, Zhou Y |title=Long-read sequencing and de novo genome assembly of Ammopiptanthus nanus, a desert shrub |journal=GigaScience |volume=7 |issue=7 |date=July 2018 |pmid=29917074 |pmc=6048559 |doi=10.1093/gigascience/giy074}}]
| |
Cajanus cajan (Pigeon pea) var. Asha | Fabaceae | Model legume | | | | | 2012[{{cite journal |vauthors=Singh NK, Gupta DK, Jayaswal PK, Mahato AK, Dutta S, Singh S, Bhutani S, Dogra V, Singh BP, Kumawat G, Pal JK, Pandit A, Singh A, Rawal H, Kumar A, Rama Prashat G, Khare A, Yadav R, Raje RS, Singh MN, Datta S, Fakrudin B, Wanjari KB, Kansal R, Dash PK, Jain PK, Bhattacharya R, Gaikwad K, Mohapatra T, Srinivasan R, Sharma TR |title=The first draft of the pigeonpea genome sequence |journal=Journal of Plant Biochemistry and Biotechnology |volume=21 |issue=1 |pages=98–112 |year=2012 |pmid=24431589 |pmc=3886394 |doi=10.1007/s13562-011-0088-8|bibcode=2012JPBB...21...98S }}][{{cite journal |vauthors=Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM, Farmer AD, Sheridan J, Iwata A, Tuteja R, Penmetsa RV, Wu W, Upadhyaya HD, Yang SP, Shah T, Saxena KB, Michael T, McCombie WR, Yang B, Zhang G, Yang H, Wang J, Spillane C, Cook DR, May GD, Xu X, Jackson SA |title=Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers |journal=Nature Biotechnology |volume=30 |issue=1 |pages=83–9 |date=November 2011 |pmid=22057054 |doi=10.1038/nbt.2022 |doi-access=free}}] | |
Arachis duranensis (A genome diploid wild peanut) accession V14167 | Fabaceae | Wild ancestor of peanut, an oilseed and grain legume crop | | | | | 2016[{{cite journal |vauthors=Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araújo AC, Kozik A, Kim KD, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimarães PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SC, Xun X, Jackson SA, Michelmore R, Ozias-Akins P |title=The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut |journal=Nature Genetics |volume=48 |issue=4 |pages=438–46 |date=April 2016 |pmid=26901068 |doi=10.1038/ng.3517 |doi-access=free |hdl=2346/93664 |hdl-access=free}}] | Illumina 154x coverage, contig N50 22 kbp, scaffold N50 948 kbp |
Amphicarpaea edgeworthii (Chinese hog-peanut) | Fabaceae | produces both aerial and subterranean fruits | 299-Mb | 27 899
| | Taishan Scholar Program, National Natural Science Foundation of China, the Innovation Program of SAAS | 2021[{{cite journal |vauthors=Liu Y, Zhang X, Han K, Li R, Xu G, Han Y, Cui F, Fan S, Seim I, Fan G, Li G, Wan S |title=Insights into amphicarpy from the compact genome of the legume Amphicarpaea edgeworthii |journal=Plant Biotechnology Journal |volume=19 |issue=5 |pages=952–965 |date=2020 |pmid=33236503 |pmc=8131047 |doi=10.1111/pbi.13520}}] | |
Arachis ipaensis (B genome diploid wild peanut) accession K30076
|Fabaceae
|Wild ancestor of peanut, an oilseed and grain legume crop
|
|
|
|
|2016
|Illumina 163x coverage, contig N50 23 kbp, scaffold N50 5,343 kbp |
Cicer arietinum (chickpea) | Fabaceae | filling | | | | | 2013[{{cite journal |vauthors=Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar'an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Luo MC, Thudi M, Gowda CL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR |title=Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement |journal=Nature Biotechnology |volume=31 |issue=3 |pages=240–6 |date=March 2013 |pmid=23354103 |doi=10.1038/nbt.2491 |s2cid=6649873 |url=http://oar.icrisat.org/6444/1/NB_Draftgenome_2013.pdf |doi-access=free}}] | |
Cicer arietinum L. (chickpea) | Fabaceae | | | | | | 2013[{{cite journal |vauthors=Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D |title=A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.) |journal=The Plant Journal |volume=74 |issue=5 |pages=715–29 |date=June 2013 |pmid=23489434 |doi=10.1111/tpj.12173 |doi-access=free}}] | |
Dalbergia odorifera (fragrant rosewood)
|Fabaceae
|Wood product (heartwood) and folk medicine
|653 Mb
|30,310
|10
|Chinese Academy of Forestry
|2020[{{cite journal |vauthors=Hong Z, Li J, Liu X, Lian J, Zhang N, Yang Z, Niu Y, Cui Z, Xu D |title=The chromosome-level draft genome of Dalbergia odorifera |journal=GigaScience |volume=9 |issue=8 |date=August 2020 |pmid=32808664 |pmc=7433187 |doi=10.1093/gigascience/giaa084}}]
|Contig N50: 5.92Mb
Scaffold N50: 56.1 6Mb |
Faidherbia albida
(Apple-Ring Acacia)
|Fabaceae
|Importante in the Sahel for raising bees
|
|28,979
|
|
|2018[{{Cite book |url=http://gigadb.org/dataset/101054 |title=GigaDB Dataset | chapter = Genomic data of the Apple-Ring Acacia (Faidherbia albida) |date=2018 |doi=10.5524/101054 |access-date=2019-06-19 | vauthors = Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, Song B, Cheng S, Kariba R, Muthemba S, Hendre PS, Mayes S, Ho WK, Kendabie P, Wang S, Li L, Muchugi A, Jamnadass R, Lu H, Peng S, Deynze AV, Simons A, Yana-Shapiro H, Xu X, Yang H, Wang J, Liu X |publisher=GigaScience Database }}]
| |
Glycine max (soybean) var. Williams 82 | Fabaceae | Protein and oil crop | 1115 Mbp | 46,430
| | | 2010[{{cite journal |vauthors=Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA |title=Genome sequence of the palaeopolyploid soybean |journal=Nature |volume=463 |issue=7278 |pages=178–83 |date=January 2010 |pmid=20075913 |doi=10.1038/nature08670 |bibcode=2010Natur.463..178S |url=https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1366&context=agronomyfacpub |doi-access=free}}] | Contig N50:189.4kbp
Scaffold N50:47.8Mbp
Sanger coverage ~8x
WGS
955.1 Mbp assembled |
Lablab purpureus
(Hyacinth Bean)
|Fabaceae
|Crop for human consumption
|
|20,946
|
|
|2018[{{Cite book |title=GigaDB Dataset |chapter=Genomic data of the Hyacinth Bean (Lablab purpureus) |doi=10.5524/101056 |year=2018 |vauthors=Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, Song B, Cheng S, Kariba R, Muthemba S, Hendre PS, Mayes S, Ho WK, Kendabie P, Wang S, Li L, Muchugi A, Jamnadass R, Lu H, Peng S, Deynze AV, Simons A, Yana-Shapiro H, Xu X, Yang H, Wang J, Liu X |publisher=GigaScience Database}}]
| |
Lotus japonicus (Bird's-foot Trefoil) | Fabaceae | Model legume | | | | | 2008[{{cite journal |vauthors=Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S |title=Genome structure of the legume, Lotus japonicus |journal=DNA Research |volume=15 |issue=4 |pages=227–39 |date=August 2008 |pmid=18511435 |pmc=2575887 |doi=10.1093/dnares/dsn008}}] | |
Medicago truncatula (Barrel Medic) | Fabaceae | Model legume | | | | | 2011[{{cite journal |vauthors=Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KF, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KA, Tang H, Rombauts S, Zhao PX, Zhou P, Barbe V, Bardou P, Bechner M, Bellec A, Berger A, Bergès H, Bidwell S, Bisseling T, Choisne N, Couloux A, Denny R, Deshpande S, Dai X, Doyle JJ, Dudez AM, Farmer AD, Fouteau S, Franken C, Gibelin C, Gish J, Goldstein S, González AJ, Green PJ, Hallab A, Hartog M, Hua A, Humphray SJ, Jeong DH, Jing Y, Jöcker A, Kenton SM, Kim DJ, Klee K, Lai H, Lang C, Lin S, Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun JH, Najar FZ, Nicholson C, Noirot C, O'Bleness M, Paule CR, Poulain J, Prion F, Qin B, Qu C, Retzel EF, Riddle C, Sallet E, Samain S, Samson N, Sanders I, Saurat O, Scarpelli C, Schiex T, Segurens B, Severin AJ, Sherrier DJ, Shi R, Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang BB, Wang K, Wang M, Wang X, Warfsmann J, Weissenbach J, White DD, White JD, Wiley GB, Wincker P, Xing Y, Yang L, Yao Z, Ying F, Zhai J, Zhou L, Zuber A, Dénarié J, Dixon RA, May GD, Schwartz DC, Rogers J, Quétier F, Town CD, Roe BA |title=The Medicago genome provides insight into the evolution of rhizobial symbioses |journal=Nature |volume=480 |issue=7378 |pages=520–4 |date=November 2011 |pmid=22089132 |pmc=3272368 |doi=10.1038/nature10625 |bibcode=2011Natur.480..520Y}}] | |
Melilotus officinalis (sweet yellow clover)
|Fabaceae
|Forage and Chinese medicine
|976.27 Mbp
|50,022
|
|
|2023[{{cite journal | vauthors = He Q, Li Z, Liu Y, Yang H, Liu L, Ren Y, Zheng J, Xu R, Wang S, Zhan Q | title = Chromosome-scale assembly and analysis of Melilotus officinalis genome for SSR development and nodulation genes analysis | journal = The Plant Genome | volume = 16 | issue = 3 | pages = e20345 | date = September 2023 | pmid = 37259688 | doi = 10.1002/tpg2.20345 | doi-access = free }}]
| |
Phaseolus vulgaris (common bean) | Fabaceae | Model bean | 520 Mbp | 31,638
| | JGI | 2013?[{{cite web |url=http://www.phytozome.net/commonbean.php |work=Phytozome v9.1 |title=Phaseolus vulgaris v1.0 |access-date=2013-07-09 |archive-url=https://web.archive.org/web/20150415030702/http://www.phytozome.net/commonbean.php |archive-date=2015-04-15 |url-status=dead}}] | |
Prosopis cineraria (Ghaf)
|Fabaceae
|Desert mimosoid legume
|691 Mbp
|55,325
|
|
|2023[{{cite journal | vauthors = Sudalaimuthuasari N, Ali R, Kottackal M, Rafi M, Al Nuaimi M, Kundu B, Al-Maskari RS, Wang X, Mishra AK, Balan J, Chaluvadi SR, Al Ansari F, Bennetzen JL, Purugganan MD, Hazzouri KM, Amiri KM | title = The Genome of the Mimosoid Legume Prosopis cineraria, a Desert Tree | journal = International Journal of Molecular Sciences | volume = 23 | issue = 15 | pages = 8503 | date = July 2022 | pmid = 35955640 | pmc = 9369113 | doi = 10.3390/ijms23158503 | doi-access = free }}]
| |
Vicia faba L. (Faba bean)
|Fabaceae
|
|
|
|
|Nature (journal)
|2023
:{{cite journal |vauthors=Ugalde JM, Straube H |title=New genes on the block: Neofunctionalization of tandem duplicate genes with putative new functions in Arabidopsis |journal=Plant Physiology |volume=192 |issue=4 |pages=2574–2576 |date=August 2023 |pmid=37158166 |pmc=10400027 |doi=10.1093/plphys/kiad271 |publisher=Oxford University Press |s2cid=258566187}}
:
:This review cites this research.
:
:{{cite journal |vauthors=Jayakodi M, Golicz AA, Kreplak J, Fechete LI, Angra D, Bednář P, Bornhofen E, Zhang H, Boussageon R, Kaur S, Cheung K, Čížková J, Gundlach H, Hallab A, Imbert B, Keeble-Gagnère G, Koblížková A, Kobrlová L, Krejčí P, Mouritzen TW, Neumann P, Nadzieja M, Nielsen LK, Novák P, Orabi J, Padmarasu S, Robertson-Shersby-Harvie T, Robledillo LÁ, Schiemann A, Tanskanen J, Törönen P, Warsame AO, Wittenberg AH, Himmelbach A, Aubert G, Courty PE, Doležel J, Holm LU, Janss LL, Khazaei H, Macas J, Mascher M, Smýkal P, Snowdon RJ, Stein N, Stoddard FL, Stougaard J, Tayeh N, Torres AM, Usadel B, Schubert I, O'Sullivan DM, Schulman AH, Andersen SU |title=The giant diploid faba genome unlocks variation in a global protein crop |journal=Nature |volume=615 |issue=7953 |pages=652–659 |date=March 2023 |pmid=36890232 |pmc=10033403 |doi=10.1038/s41586-023-05791-5 |bibcode=2023Natur.615..652J}}
| |
Vicia villosa (hairy vetch)
|Fabaceae
|Forage and cover crop
|2.03 Gbp
|
|
|
|2023[{{cite journal | vauthors = Fuller T, Bickhart DM, Koch LM, Kucek LK, Ali S, Mangelson H, Monteros MJ, Hernandez T, Smith TP, Riday H, Sullivan ML | title = A reference assembly for the legume cover crop hairy vetch (Vicia villosa) | journal = GigaByte | volume = 2023 | pages = 1–20 | date = 2023-11-13 | pmid = 38023065 | pmc = 10659084 | doi = 10.46471/gigabyte.98 | doi-access = free }}]
| |
Vigna hirtella (Wild vigna)
|Fabaceae
|Wild legume
|474.1 Mbp
|
|
|
|2023[{{Cite book | title = GigaDB Dataset | chapter = Supporting data for "Genomic data of Vigna hirtella" |date=2023 |url=http://dx.doi.org/10.5524/102399 |language=en |doi=10.5524/102399 | vauthors = Pootakham W, Sonthirod C, Naktang C, Yundaeng C, Yoocha T, Kongkachana W, Sangsrakru D, Somta P, Tangphatsornruang S | publisher = GigaScience Database }}]
| |
Vigna reflexo-pilosa (Créole bean)
|Fabaceae
|Tetraploid wild legume
|998.7 Mbp
|
|
|
|2023[{{cite journal | vauthors = Pootakham W, Sonthirod C, Naktang C, Yundaeng C, Yoocha T, Kongkachana W, Sangsrakru D, Somta P, Tangphatsornruang S | title = Genome assemblies of Vigna reflexo-pilosa (créole bean) and its progenitors, Vigna hirtella and Vigna trinervia, revealed homoeolog expression bias and expression-level dominance in the allotetraploid | journal = GigaScience | volume = 12 | date = December 2022 | pmid = 37470496 | pmc = 10357499 | doi = 10.1093/gigascience/giad050 }}][{{Cite book |title=GigaDB Dataset | chapter = Supporting data for "Genomic data of créole bean, Vigna reflexopilosa" |date=2023 |language=en |doi=10.5524/102398 | vauthors = Pootakham W, Sonthirod C, Naktang C, Yundaeng C, Yoocha T, Kongkachana W, Sangsrakru D, Somta P, Tangphatsornruang |publisher=GigaScience Database}}]
| |
Vigna subterranea
(Bambara Groundnut)
|Fabaceae
|similar to peanuts
|
|31,707
|
|
|2018[{{Cite book | chapter-url=http://gigadb.org/dataset/101055 | title = GigaDB Dataset | chapter = Genomic data of the Bambara Groundnut (Vigna subterranea) |date=2018 |doi=10.5524/101055 |access-date=2019-06-19 | vauthors = Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, Song B, Cheng S, Kariba R, Muthemba S, Hendre PS, Mayes S, Ho WK, Kendabie P, Wang S, Li L, Muchugi A, Jamnadass R, Lu H, Peng S, Deynze AV, Simons A, Yana-Shapiro H, Xu X, Yang H, Wang J, Liu X | publisher = GigaScience Database }}]
| |
Vigna trinervia
|Fabaceae
|
|498,7 Mbp
|
|
|
|2023
| |
Trifolium pratense L. (Red clover)
|Fabaceae
|often used to relieve symptoms of menopause, high cholesterol, and osteoporosis.[{{cite book |vauthors=Nieves JW |chapter=Alternative Therapy through Nutrients and Nutraceuticals |title=Osteoporosis |date=2013 |pages=1739–1749 |doi=10.1016/B978-0-12-415853-5.00074-1 |isbn=9780124158535 |quote=Red clover is a wild plant belonging to the legume family and is often used to relieve symptoms of menopause, high cholesterol, and osteoporosis.}}]
|
|
|
|
|2022[{{Cite journal |vauthors=Bickhart DM, Koch LM, Smith TP, Riday H, Sullivan ML |date=2022-02-18 |title=Chromosome-scale assembly of the highly heterozygous genome of red clover (Trifolium pratense L.), an allogamous forage crop species |journal=Gigabyte |language=en |volume=2022 |pages=1–13 |doi=10.46471/gigabyte.42 |pmid=36824517 |pmc=9650271 |s2cid=246987248 |doi-access=free}}]
| |
Vicia sativa L. (Common vetch)
|Fabaceae
|grain to livestock
|
|
|
|
|2022[{{Cite journal |vauthors=Xi H, Nguyen V, Ward C, Liu Z, Searle IR |date=2022-01-31 |title=Chromosome-level assembly of the common vetch (Vicia sativa) reference genome |journal=Gigabyte |language=en |volume=2022 |pages=1–20 |doi=10.46471/gigabyte.38 |pmid=36824524 |pmc=9650280 |s2cid=246453086 |doi-access=free}}]
| |
Macrotyloma uniflorum (Horse gram)
|Fabaceae
|horsefeed
|
|
|
|
|2021[{{Cite journal |vauthors=Shirasawa K, Chahota R, Hirakawa H, Nagano S, Nagasaki H, Sharma T, Isobe S |date=2021-10-08 |title=A chromosome-scale draft genome sequence of horsegram (Macrotyloma uniflorum) |journal=Gigabyte |language=en |volume=2021 |pages=1–23 |doi=10.46471/gigabyte.30 |pmid=36824333 |pmc=9650294 |doi-access=free}}]
| |
Castanea mollissima (Chinese chestnut)
|Fagaceae
|cultivated nut
|785.53 Mb
|36,479
|
|Beijing University of Agriculture
|2019[{{cite journal |vauthors=Xing Y, Liu Y, Zhang Q, Nie X, Sun Y, Zhang Z, Li H, Fang K, Wang G, Huang H, Bisseling T, Cao Q, Qin L |title=Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima) |journal=GigaScience |volume=8 |issue=9 |date=September 2019 |pmid=31513707 |pmc=6741814 |doi=10.1093/gigascience/giz112 |url=}}]
|Illumina: ~42.7×
PacBio: ~87×
contig N50: 944,000bp |
Quercus robur (European oak)
|Fagaceae
|Pedunculate oak,
large diversity,
somatic mutation studies
|736 Mb
|25,808
|12
|[https://www6.bordeaux-aquitaine.inrae.fr/biogeco Biogeco lab, Inrae, University of Bordeaux]
|2018[{{cite journal |vauthors=Plomion C, Aury JM, Amselem J, Leroy T, Murat F, Duplessis S, Faye S, Francillonne N, Labadie K, Le Provost G, Lesur I, Bartholomé J, Faivre-Rampant P, Kohler A, Leplé JC, Chantret N, Chen J, Diévart A, Alaeitabar T, Barbe V, Belser C, Bergès H, Bodénès C, Bogeat-Triboulot MB, Bouffaud ML, Brachi B, Chancerel E, Cohen D, Couloux A, Da Silva C, Dossat C, Ehrenmann F, Gaspin C, Grima-Pettenati J, Guichoux E, Hecker A, Herrmann S, Hugueney P, Hummel I, Klopp C, Lalanne C, Lascoux M, Lasserre E, Lemainque A, Desprez-Loustau ML, Luyten I, Madoui MA, Mangenot S, Marchal C, Maumus F, Mercier J, Michotey C, Panaud O, Picault N, Rouhier N, Rué O, Rustenholz C, Salin F, Soler M, Tarkka M, Velt A, Zanne AE, Martin F, Wincker P, Quesneville H, Kremer A, Salse J |title=Oak genome reveals facets of long lifespan |journal=Nature Plants |volume=4 |issue=7 |date=July 2018 |pages=440–452 |pmid=29915331 |pmc=6086335 |doi=10.1038/s41477-018-0172-3 |bibcode=2018NatPl...4..440P |url=}}]
|https://www.oakgenome.fr/?page_id=587 |
Carya illinoinensis
Pecan
|Junglandaceae
|snacks in various recipes
|651.31 Mb
|
|
|
|2019[{{cite journal |vauthors=Huang Y, Xiao L, Zhang Z, Zhang R, Wang Z, Huang C, Huang R, Luan Y, Fan T, Wang J, Shen C, Zhang S, Wang X, Randall J, Zheng B, Wu J, Zhang Q, Xia G, Xu C, Chen M, Zhang L, Jiang W, Gao L, Chen Z, Leslie CA, Grauke LJ, Huang J |title=The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition |journal=GigaScience |volume=8 |issue=5 |date=May 2019 |pmid=31049561 |pmc=6497033 |doi=10.1093/gigascience/giz036}}]
| |
Juglans mandshurica Maxim. (Manchurian walnut)
|Junglandaceae
|cultivated nut
|548.7 Mb
|
|
|
|2022[{{cite journal |vauthors=Li X, Cai K, Zhang Q, Pei X, Chen S, Jiang L, Han Z, Zhao M, Li Y, Zhang X, Li Y, Zhang S, Chen S, Qu G, Tigabu M, Chiang VL, Sederoff R, Zhao X |title=The Manchurian Walnut Genome: Insights into Juglone and Lipid Biosynthesis |journal=GigaScience |volume=11 |date=June 2022 |pmid=35764602 |pmc=9239856 |doi=10.1093/gigascience/giac057}}]
| |
Juglans regia (Persian walnut)
|Junglandaceae
|cultivated nut
|540 Mb
|
|
|Chinese Academy of Forestry
|2020[{{cite journal |vauthors=Zhang J, Zhang W, Ji F, Qiu J, Song X, Bu D, Pan G, Ma Q, Chen J, Huang R, Chang Y, Pei D |title=A high-quality walnut genome assembly reveals extensive gene expression divergences after whole-genome duplication |journal=Plant Biotechnology Journal |date=January 2020 |volume=18 |issue=9 |pages=1848–1850 |pmid=32004401 |doi=10.1111/pbi.13350 |pmc=7415773 |doi-access=free}}]
| |
Juglans sigillata (Iron walnut)
|Junglandaceae
|cultivated nut
|536.50 Mb
|
|
|Nanjing Forestry University
|2020[{{cite journal |vauthors=Ning DL, Wu T, Xiao LJ, Ma T, Fang WL, Dong RQ, Cao FL |title=Chromosomal-level assembly of Juglans sigillata genome using Nanopore, BioNano, and Hi-C analysis |journal=GigaScience |volume=9 |issue=2 |date=February 2020 |pmid=32101299 |pmc=7043058 |doi=10.1093/gigascience/giaa006}}]
|Illumina+Nanopore+bionano
scaffold N50: 16.43 Mb, contig N50: 4.34 Mb |
Linum usitatissimum (flax) | Linaceae | Crop | ~350 Mbp | 43,384
| | BGI et al. | 2012[{{cite journal |vauthors=Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith DW, Grassa CJ, Geraldes A, Cronk QC, Cullis C, Dash PK, Kumar PA, Cloutier S, Sharpe AG, Wong GK, Wang J, Deyholos MK |title=The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads |journal=The Plant Journal |volume=72 |issue=3 |pages=461–73 |date=November 2012 |pmid=22757964 |doi=10.1111/j.1365-313X.2012.05093.x |url=https://zenodo.org/record/897213 |doi-access=free}}] | |
Bombax ceiba
(red silk cotton tree)
|Malvaceae
|capsules with white fibre like cotton
|895 Mb
|
|
|
|2018[{{cite journal |vauthors=Gao Y, Wang H, Liu C, Chu H, Dai D, Song S, Yu L, Han L, Fu Y, Tian B, Tang L |title=De novo genome assembly of the red silk cotton tree (Bombax ceiba) |journal=GigaScience |volume=7 |issue=5 |date=May 2018 |pmid=29757382 |pmc=5967522 |doi=10.1093/gigascience/giy051}}]
| |
Durio zibethinus (Durian) | Malvaceae | Tropical fruit tree | ~738 Mbp | | | | 2017[{{cite journal |vauthors=Teh BT, Lim K, Yong CH, Ng CC, Rao SR, Rajasegaran V, Lim WK, Ong CK, Chan K, Cheng VK, Soh PS, Swarup S, Rozen SG, Nagarajan N, Tan P |title=The draft genome of tropical fruit durian (Durio zibethinus) |journal=Nature Genetics |volume=49 |issue=11 |pages=1633–1641 |date=November 2017 |pmid=28991254 |doi=10.1038/ng.3972 |doi-access=free}}] | |
Gossypium raimondii | Malvaceae | One of the putative progenitor species of tetraploid cotton | | | | | 2013?[{{cite web |url=http://www.phytozome.net/cotton.php |work=Phytozome v9.1 |title=Gossypium raimondii v2.1 |access-date=2013-07-10 |archive-url=https://web.archive.org/web/20150218034143/http://www.phytozome.net/cotton.php |archive-date=2015-02-18 |url-status=dead}}] | |
Theobroma cacao (cocoa tree) | Malvaceae | Flavouring crop | | | | | 2010[{{cite journal |vauthors=Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN, Abrouk M, Murat F, Fouet O, Poulain J, Ruiz M, Roguet Y, Rodier-Goud M, Barbosa-Neto JF, Sabot F, Kudrna D, Ammiraju JS, Schuster SC, Carlson JE, Sallet E, Schiex T, Dievart A, Kramer M, Gelley L, Shi Z, Bérard A, Viot C, Boccara M, Risterucci AM, Guignon V, Sabau X, Axtell MJ, Ma Z, Zhang Y, Brown S, Bourge M, Golser W, Song X, Clement D, Rivallan R, Tahi M, Akaza JM, Pitollat B, Gramacho K, D'Hont A, Brunel D, Infante D, Kebe I, Costet P, Wing R, McCombie WR, Guiderdoni E, Quetier F, Panaud O, Wincker P, Bocs S, Lanaud C |title=The genome of Theobroma cacao |journal=Nature Genetics |volume=43 |issue=2 |pages=101–8 |date=February 2011 |pmid=21186351 |doi=10.1038/ng.736 |s2cid=4685532 |doi-access=free}}][{{cite journal |vauthors=Pennisi E |author-link=Elizabeth Pennisi |title=Scientific publishing. Genomics researchers upset by rivals' publicity |journal=Science |volume=329 |issue=5999 |pages=1585 |date=September 2010 |pmid=20929817 |doi=10.1126/science.329.5999.1585 |bibcode=2010Sci...329.1585P |doi-access=free}}] | |
Theobroma cacao (cocoa tree) cv. Matina 1-6 | Malvaceae | Most widely cultivated cacao type | | | | | 2013[{{cite journal |vauthors=Motamayor JC, Mockaitis K, Schmutz J, Haiminen N, Livingstone D, Cornejo O, Findley SD, Zheng P, Utro F, Royaert S, Saski C, Jenkins J, Podicheti R, Zhao M, Scheffler BE, Stack JC, Feltus FA, Mustiga GM, Amores F, Phillips W, Marelli JP, May GD, Shapiro H, Ma J, Bustamante CD, Schnell RJ, Main D, Gilbert D, Parida L, Kuhn DN |title=The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color |journal=Genome Biology |volume=14 |issue=6 |pages=r53 |date=June 2013 |pmid=23731509 |pmc=4053823 |doi=10.1186/gb-2013-14-6-r53 |doi-access=free}}] | |
Theobroma cacao (200 accessions)
|Malvaceae
|domestication history of cacao
|
|
|
|
|2018[{{cite journal |vauthors=Cornejo OE, Yee MC, Dominguez V, Andrews M, Sockell A, Strandberg E, Livingstone D, Stack C, Romero A, Umaharan P, Royaert S, Tawari NR, Ng P, Gutierrez O, Phillips W, Mockaitis K, Bustamante CD, Motamayor JC |title=Theobroma cacao L., provide insights into its domestication process |journal=Communications Biology |volume=1 |issue=1 |pages=167 |date=2018-10-16 |pmid=30345393 |pmc=6191438 |doi=10.1038/s42003-018-0168-6}}]
| |
Theobroma grandiflorum (cupuaçu)
|Malvaceae
|Cacao family tropical fruit
|423 Mbp
|31,381
|
|
|2024[{{Cite journal |last1=Alves |first1=Rafael Moysés |last2=de Abreu |first2=Vinicius A C |last3=Oliveira |first3=Rafaely Pantoja |last4=Almeida |first4=João Victor dos Anjos |last5=de Oliveira |first5=Mauro de Medeiros |last6=Silva |first6=Saura R |last7=Paschoal |first7=Alexandre R |last8=de Almeida |first8=Sintia S |last9=de Souza |first9=Pedro A F |last10=Ferro |first10=Jesus A |last11=Miranda |first11=Vitor F O |last12=Figueira |first12=Antonio |last13=Domingues |first13=Douglas S |last14=Varani |first14=Alessandro M |date=2024-01-01 |title=Genomic decoding of Theobroma grandiflorum (cupuassu) at chromosomal scale: evolutionary insights for horticultural innovation |journal=GigaScience |volume=13 |pages=giae027 |doi=10.1093/gigascience/giae027 |issn=2047-217X |pmc=11152179 |pmid=38837946}}]
| |
Azadirachta indica (neem) | Meliaceae | Source of number of Terpenoids, including biopesticide azadirachtin, Used in Traditional Medicine | 364 Mbp | ~20000
| | [http://www.ganitlabs.in GANIT Labs] {{Webarchive|url=https://web.archive.org/web/20140108082627/http://ganitlabs.in/ |date=2014-01-08 }} | 2012[{{cite journal |vauthors=Krishnan NM, Pattnaik S, Jain P, Gaur P, Choudhary R, Vaidyanathan S, Deepak S, Hariharan AK, Krishna PB, Nair J, Varghese L, Valivarthi NK, Dhas K, Ramaswamy K, Panda B |title=A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica |journal=BMC Genomics |volume=13 |pages=464 |date=September 2012 |pmid=22958331 |pmc=3507787 |doi=10.1186/1471-2164-13-464 |doi-access=free}}] and 2011[{{cite journal |title=De novo sequencing and assembly ofAzadirachta indica fruit transcriptome |vauthors=Krishnan NM, Pattnaik S, Deepak SA, Hariharan AK, Gaur P, Chaudhary R, Jain P, Vaidyanathan S, Bharath Krishna PG, Panda B |journal=Current Science |volume=101 |issue=12 |pages=1553–61 |date=25 December 2011 |url=http://www.currentscience.ac.in/Volumes/101/12/1553.pdf}}] | Illumina GAIIx, scaffold N50 of 452028bp, Transcriptome data from Shoot, Root, Leaf, Flower and Seed |
Artocarpus nanchuanensis (Bayberry)
|Moraceae
|Extremely endangered fruit tree
|769.44 Mbp
|39,596
|28
|
|2022[{{cite journal |vauthors=He J, Bao S, Deng J, Li Q, Ma S, Liu Y, Cui Y, Zhu Y, Wei X, Ding X, Ke K, Chen C |title=A chromosome-level genome assembly of Artocarpus nanchuanensis (Moraceae), an extremely endangered fruit tree |journal=GigaScience |volume=11 |date=June 2022 |pmid=35701376 |pmc=9197682 |doi=10.1093/gigascience/giac042}}]
| |
Moringa oleifera
(Horseradish Tree)
|Moringaceae
|traditional herbal medicine
|
|18,451
|
|
|2018[{{Cite book |title=GigaDB Dataset |chapter=Genomic data of the Horseradish Tree (Moringa oleifera) |doi=10.5524/101058 |year=2018 |vauthors=Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, Song B, Cheng S, Kariba R, Muthemba S, Hendre PS, Mayes S, Ho WK, Kendabie P, Wang S, Li L, Muchugi A, Jamnadass R, Lu H, Peng S, Deynze AV, Simons A, Yana-Shapiro H, Xu X, Yang H, Wang J, Liu X |publisher=GigaScience Database}}]
| |
Eucalyptus caleyi (Caley's ironbark)
|Myrtaceae
|
|589.32 Mb
|
|
|
|2024[{{cite journal | vauthors = Ferguson S, Jones A, Murray K, Andrew R, Schwessinger B, Borevitz J | title = Plant genome evolution in the genus Eucalyptus is driven by structural rearrangements that promote sequence divergence | journal = Genome Research | volume = 34 | issue = 4 | pages = 606–619 | date = May 2024 | pmid = 38589251 | pmc = 11146599 | doi = 10.1101/gr.277999.123 }}]
| |
Eucalyptus urophylla (Timor white gum)
|Myrtaceae
|Fibre and timber crop
|544.5 Mb
|
|
|
|2023[{{cite journal | vauthors = Lötter A, Duong TA, Candotti J, Mizrachi E, Wegrzyn JL, Myburg AA | title = Haplogenome assembly reveals structural variation in Eucalyptus interspecific hybrids | journal = GigaScience | volume = 12 | date = December 2022 | pmid = 37632754 | pmc = 10460159 | doi = 10.1093/gigascience/giad064 }}]
| |
Eucalyptus grandis (Rose gum) | Myrtaceae | Fibre and timber crop | 691.43 Mb
|
| | | 2011[{{cite journal |vauthors=Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan AR, Hussey SG, Pinard D, van der Merwe K, Singh P, van Jaarsveld I, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang X, Ranjan P, Tschaplinski TJ, Ye CY, Li T, Sterck L, Vanneste K, Murat F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Külheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Van de Peer Y, Rokhsar DS, Schmutz J |title=The genome of Eucalyptus grandis |journal=Nature |volume=510 |issue=7505 |pages=356–62 |date=June 2014 |pmid=24919147 |doi=10.1038/nature13308 |bibcode=2014Natur.510..356M |doi-access=free |hdl=1854/LU-5655667 |hdl-access=free}}] | |
Eucalyptus lansdowneana (crimson mallee)
|Myrtaceae
|
|633.52 Mb
|
|
|
|2024
| |
Eucalyptus marginata (Jarrah)
|Myrtaceae
|
|512.89 Mb
|
|
|
|2024
| |
Eucalyptus pauciflora (Snow gum)
|Myrtaceae
|Fibre and timber crop
|594.87 Mb
|
|
|ANU
|2020[{{cite journal |vauthors=Wang W, Das A, Kainer D, Schalamun M, Morales-Suarez A, Schwessinger B, Lanfear R |title=The draft nuclear genome assembly of Eucalyptus pauciflora: a pipeline for comparing de novo assemblies |journal=GigaScience |volume=9 |issue=1 |date=January 2020 |pmid=31895413 |pmc=6939829 |doi=10.1093/gigascience/giz160}}]
|Nanopore + Illumina; contig N50: 3.23 Mb |
Melaleuca alternifolia (tea tree) | Myrtaceae | terpene-rich essential oil with therapeutic and cosmetic uses around the world | 362 Mb | 37,226
| | Gigabyte, NCBI GenBank, GigaScience | 2021[{{cite journal |vauthors=Voelker J, Shepherd M, Mauleon R |title=A high-quality draft genome for Melaleuca alternifolia (tea tree): a new platform for evolutionary genomics of myrtaceous terpene-rich species |journal=Gigabyte |volume=1 |date=2021 |pages=1–15 |doi=10.46471/gigabyte.28 |pmid=36824337 |pmc=9650293 |s2cid=238720658 |doi-access=free}}] | 3128 scaffolds with a total length of 362 Mb (N50 = 1.9 Mb) |
Averrhoa carambola (Star Fruit)
|Oxalidales
|fruit crop
|335.49 Mb
|
|
|
|2020[{{cite journal | vauthors = Wu S, Sun W, Xu Z, Zhai J, Li X, Li C, Zhang D, Wu X, Shen L, Chen J, Ren H, Dai X, Dai Z, Zhao Y, Chen L, Cao M, Xie X, Liu X, Peng D, Dong J, Hsiao YY, Chen SL, Tsai WC, Lan S, Liu ZJ | title = The genome sequence of star fruit (Averrhoa carambola) | journal = Horticulture Research | volume = 7 | issue = 1 | pages = 95 | date = 2020-06-01 | pmid = 32528707 | pmc = 7261771 | doi = 10.1038/s41438-020-0307-3 | bibcode = 2020HorR....7...95W }}]
| |
Carya cathayensis (Chinese hickory)
|Rosaceae
|fruit crop
|706.43 Mb
|
|
|
|2019
| |
Eriobotrya japonica (Loquat)
|Rosaceae
|Fruit tree
|760.1 Mb
|45,743
|
|Shanghai Academy of Agricultural Sciences
|2020[{{cite journal |vauthors=Jiang S, An H, Xu F, Zhang X |title=Chromosome-level genome assembly and annotation of the loquat (Eriobotrya japonica) genome |journal=GigaScience |volume=9 |issue=3 |date=March 2020 |pmid=32141509 |pmc=7059265 |doi=10.1093/gigascience/giaa015}}]
|Illumina+Nanopore+Hi-C
17 chromosomes, scaffold N50: 39.7 Mb |
Fragaria vesca (wild strawberry) | Rosaceae | Fruit crop | 240 Mbp | 34,809
| | | 2011[{{cite journal |vauthors=Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP, Burns P, Davis TM, Slovin JP, Bassil N, Hellens RP, Evans C, Harkins T, Kodira C, Desany B, Crasta OR, Jensen RV, Allan AC, Michael TP, Setubal JC, Celton JM, Rees DJ, Williams KP, Holt SH, Ruiz Rojas JJ, Chatterjee M, Liu B, Silva H, Meisel L, Adato A, Filichkin SA, Troggio M, Viola R, Ashman TL, Wang H, Dharmawardhana P, Elser J, Raja R, Priest HD, Bryant DW, Fox SE, Givan SA, Wilhelm LJ, Naithani S, Christoffels A, Salama DY, Carter J, Lopez Girona E, Zdepski A, Wang W, Kerstetter RA, Schwab W, Korban SS, Davik J, Monfort A, Denoyes-Rothan B, Arus P, Mittler R, Flinn B, Aharoni A, Bennetzen JL, Salzberg SL, Dickerman AW, Velasco R, Borodovsky M, Veilleux RE, Folta KM |title=The genome of woodland strawberry (Fragaria vesca) |journal=Nature Genetics |volume=43 |issue=2 |pages=109–16 |date=February 2011 |pmid=21186353 |pmc=3326587 |doi=10.1038/ng.740}}] | scaffold N50: 1.3 Mbp
454/Illumina/solid
39x coverage
WGS |
Gillenia trifoliata | Rosaceae | Apple Tribe | 320.17±4.22 Mb | 26,166 | 18
| | 2021[{{cite journal |vauthors=Su W, Jing Y, Lin S, Yue Z, Yang X, Xu J, Wu J, Zhang Z, Xia R, Zhu J, An N, Chen H, Hong Y, Yuan Y, Long T, Zhang L, Jiang Y, Liu Z, Zhang H, Gao Y, Liu Y, Lin H, Wang H, Yant L, Lin S, Liu Z |title=Polyploidy underlies co-option and diversification of biosynthetic triterpene pathways in the apple tribe |journal=PNAS |volume=118 |issue=20 |date=May 2021 |pages=e2101767118 |pmid=33986115 |pmc=8157987 |doi=10.1073/pnas.2101767118 |bibcode=2021PNAS..11801767S |issn=0027-8424 |doi-access=free}}] | Number of scaffolds(>2kb): 789, scaffold N50: 30,093,771 bp, Contig N50 (bp): 828,523 |
Malus domestica (apple) "Golden Delicious" | Rosaceae | Fruit crop | ~742.3 Mbp | 57,386
| | | 2010[{{cite journal |vauthors=Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R |title=The genome of the domesticated apple (Malus × domestica Borkh.) |journal=Nature Genetics |volume=42 |issue=10 |pages=833–9 |date=October 2010 |pmid=20802477 |doi=10.1038/ng.654 |doi-access=free}}] | contig N50 13.4 (kbp??)
scaffold N50 1,542.7 (kbp??)
total coverage ~16.9x (Sanger + 454)
71.2% anchored |
Prunus amygdalus (almond) | Rosaceae | Fruit crop | | | | | 2013?[{{cite web |url=http://news.gramene.org/node/195 |title=Four Rosaceae Genomes Released |date=11 June 2013 |work=Gramene: A Resource for Comparative Plant Genomics}}] | |
Prunus avium (sweet cherry) cv. Stella | Rosaceae | Fruit crop | | | | | 2013? | |
Prunus mume (Chinese plum or Japanese apricot) | Rosaceae | Fruit crop | | | | | 2012[{{cite journal |vauthors=Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, Tao Y, Wang J, Yuan Z, Fan G, Xing Z, Han C, Pan H, Zhong X, Shi W, Liang X, Du D, Sun F, Xu Z, Hao R, Lv T, Lv Y, Zheng Z, Sun M, Luo L, Cai M, Gao Y, Wang J, Yin Y, Xu X, Cheng T, Wang J |title=The genome of Prunus mume |journal=Nature Communications |volume=3 |pages=1318 |date=2012 |pmid=23271652 |pmc=3535359 |doi=10.1038/ncomms2290 |bibcode=2012NatCo...3.1318Z}}] | |
Prunus persica (peach) | Rosaceae | Fruit crop | 265 Mbp | 27,852
| | | 2013[{{cite journal |vauthors=Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan P, Del Fabbro C, Aramini V, Copetti D, Gonzalez S, Horner DS, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arús P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar DS |title=The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution |journal=Nature Genetics |volume=45 |issue=5 |pages=487–94 |date=May 2013 |pmid=23525075 |doi=10.1038/ng.2586 |hdl=2434/218547 |doi-access=free |hdl-access=free}}] | Sanger coverage:8.47x
WGS
ca 99% ESTs mapped
215.9 Mbp in pseudomolecules |
Prunus salicina (Japanese plum)
|Rosaceae
|Fruit crop
|284.2 Mbp
|24,448
|8
|
|2020[{{cite journal |vauthors=Liu C, Feng C, Peng W, Hao J, Wang J, Pan J, He Y |title=Chromosome-level draft genome of a diploid plum (Prunus salicina) |journal=GigaScience |volume=9 |issue=12 |date=December 2020 |pmid=33300949 |pmc=7727024 |doi=10.1093/gigascience/giaa130}}]
|PacBio/Hi-C, with contig N50 of 1.78 Mb and scaffold N50 of 32.32 Mb. |
Pyrus bretschneideri (ya pear or Chinese white pear) cv. Dangshansuli | Rosaceae | Fruit crop | | | | | 2012[{{cite journal |vauthors=Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S |title=The genome of the pear (Pyrus bretschneideri Rehd.) |journal=Genome Research |volume=23 |issue=2 |pages=396–408 |date=February 2013 |pmid=23149293 |pmc=3561880 |doi=10.1101/gr.144311.112}}] | |
Pyrus communis (European pear) cv. Doyenne du Comice | Rosaceae | Fruit crop | | | | | 2013? | |
Rosa roxburghii (Chestnut Rose)
|Rosaceae
|Fruit crop
|504 Mbp
|
|
|
|2023[{{cite journal | vauthors = Zong D, Liu H, Gan P, Ma S, Liang H, Yu J, Li P, Jiang T, Sahu SK, Yang Q, Zhang D, Li L, Qiu X, Shao W, Yang J, Li Y, Guang X, He C | title = Chromosomal-scale genomes of two Rosa species provide insights into genome evolution and ascorbate accumulation | journal = The Plant Journal | volume = 117 | issue = 4 | pages = 1264–1280 | date = February 2024 | pmid = 37964640 | doi = 10.1111/tpj.16543 | s2cid = 265210737 }}]
| |
Rosa sterilis
|Rosaceae
|Fruit crop
|981.2 Mb
|
|
|
|2023[{{cite journal | vauthors = Zong D, Liu H, Gan P, Ma S, Liang H, Yu J, Li P, Jiang T, Sahu SK, Yang Q, Zhang D, Li L, Qiu X, Shao W, Yang J, Li Y, Guang X, He C | title = Chromosomal-scale genomes of two Rosa species provide insights into genome evolution and ascorbate accumulation | journal = The Plant Journal | volume = 117 | issue = 4 | pages = 1264–1280 | date = February 2024 | pmid = 37964640 | doi = 10.1111/tpj.16543 | s2cid = 265210737 }}]
| |
Rubus occidentalis
(Black raspberry)
|Rosaceae
|Fruit crop
|290 Mbp
|
|
|
|2018[{{cite journal |vauthors=VanBuren R, Wai CM, Colle M, Wang J, Sullivan S, Bushakra JM, Liachko I, Vining KJ, Dossett M, Finn CE, Jibran R, Chagné D, Childs K, Edger PP, Mockler TC, Bassil NV |title=A near complete, chromosome-scale assembly of the black raspberry (Rubus occidentalis) genome |journal=GigaScience |volume=7 |issue=8 |date=August 2018 |pmid=30107523 |pmc=6131213 |doi=10.1093/gigascience/giy094}}]
| |
Citrus clementina (Clementine) | Rutaceae | Fruit crop | | | | | 2013?[{{cite web |url=http://www.phytozome.net/clementine.php |work=Phytozome v9.1 |title=Citrus clementina |access-date=2013-07-10 |archive-url=https://web.archive.org/web/20150219072340/http://www.phytozome.net/clementine.php |archive-date=2015-02-19 |url-status=dead}}] | |
Citrus sinensis (Sweet orange) | Rutaceae | Fruit crop | | | | | 2013?, 2013[{{cite journal |vauthors=Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao WB, Hao BH, Lyon MP, Chen J, Gao S, Xing F, Lan H, Chang JW, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas MK, Zeng W, Guo F, Cao H, Yang X, Xu XW, Cheng YJ, Xu J, Liu JH, Luo OJ, Tang Z, Guo WW, Kuang H, Zhang HY, Roose ML, Nagarajan N, Deng XX, Ruan Y |title=The draft genome of sweet orange (Citrus sinensis) |journal=Nature Genetics |volume=45 |issue=1 |pages=59–66 |date=January 2013 |pmid=23179022 |doi=10.1038/ng.2472 |doi-access=free}}] | |
Clausena lansium (Wampee)
|Rutaceae
|Fruit crop
|
|
|
|
|2021[{{cite journal |vauthors=Fan Y, Sahu SK, Yang T, Mu W, Wei J, Cheng L, Yang J, Liu J, Zhao Y, Lisby M, Liu H |title=The Clausena lansium (Wampee) genome reveal new insights into the carbazole alkaloids biosynthesis pathway |journal=Genomics |volume=113 |issue=6 |pages=3696–3704 |date=November 2021 |pmid=34520805 |doi=10.1016/j.ygeno.2021.09.007 |s2cid=237515315 |doi-access=free}}]
| |
Populus trichocarpa (poplar) | Salicaceae | Carbon sequestration, model tree, timber | 510 Mbp (cytogenetic) 485 Mbp (coverage) | 73,013 [Phytozome]
| | | 2006[{{cite journal |vauthors=Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D |title=The genome of black cottonwood, Populus trichocarpa (Torr. & Gray) |journal=Science |volume=313 |issue=5793 |pages=1596–604 |date=September 2006 |pmid=16973872 |doi=10.1126/science.1128691 |bibcode=2006Sci...313.1596T |osti=901819 |s2cid=7717980 |url=https://escholarship.org/content/qt3101x2rn/qt3101x2rn.pdf?t=li5dgw}}] | Scaffold N50: 19.5 Mbp
Contig N50:552.8 Kbp [phytozome]
WGS
>=95 % cDNA found |
Populus pruinosa
(desert tree)
|Salicaceae
|farming and ranching
|479.3 Mbp
|35,131
|
|
|2017[{{cite journal |vauthors=Yang W, Wang K, Zhang J, Ma J, Liu J, Ma T |title=The draft genome sequence of a desert tree Populus pruinosa |journal=GigaScience |volume=6 |issue=9 |pages=1–7 |date=September 2017 |pmid=28938721 |pmc=5603765 |doi=10.1093/gigascience/gix075}}]
| |
Acer truncatum (purpleblow maple)
|Sapindaceae
|Tree producing nervonic acid
|633.28 Mb
|28,438
|
|
|2020[{{cite journal |vauthors=Ma Q, Sun T, Li S, Wen J, Zhu L, Yin T, Yan K, Xu X, Li S, Mao J, Wang YN, Jin S, Zhao X, Li Q |title=The Acer truncatum genome provides insights into the nervonic acid biosynthesis |journal=The Plant Journal |date=August 2020 |volume=104 |issue=3 |pages=662–678 |pmid=32772482 |doi=10.1111/tpj.14954 |pmc=7702125 |doi-access=free}}]
|contig N50 = 773.17 Kb; scaffold N50 = 46.36 Mb |
Acer yangbiense
|Sapindaceae
|Plant species with extremely small populations
|110 Gb
|28,320
|13
|
|2019[{{cite journal |vauthors=Yang J, Wariss HM, Tao L, Zhang R, Yun Q, Hollingsworth P, Dao Z, Luo G, Guo H, Ma Y, Sun W |title=De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China |journal=GigaScience |volume=8 |issue=7 |date=July 2019 |pmid=31307060 |pmc=6629541 |doi=10.1093/gigascience/giz085}}]
|scaffold N50 = 45 Mb |
Dimocarpus longan (Longan)
|Sapindaceae
|Fruit crop
|471.88 Mb
|
|
|
|2017[{{cite journal |vauthors=Lin Y, Min J, Lai R, Wu Z, Chen Y, Yu L, Cheng C, Jin Y, Tian Q, Liu Q, Liu W, Zhang C, Lin L, Zhang D, Thu M, Zhang Z, Liu S, Zhong C, Fang X, Wang J, Yang H, Varshney RK, Yin Y, Lai Z |title=Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics |journal=GigaScience |volume=6 |issue=5 |pages=1–14 |date=May 2017 |pmid=28368449 |pmc=5467034 |doi=10.1093/gigascience/gix023}}]
| |
Xanthoceras sorbifolium Bunge (Yellowhorn)
|Sapindaceae
|Fruit Crop
|504.2 Mb
|24,672
|
|
|2019[{{cite journal |vauthors=Bi Q, Zhao Y, Du W, Lu Y, Gui L, Zheng Z, Yu H, Cui Y, Liu Z, Cui T, Cui D, Liu X, Li Y, Fan S, Hu X, Fu G, Ding J, Ruan C, Wang L |title=Pseudomolecule-level assembly of the Chinese oil tree yellowhorn (Xanthoceras sorbifolium) genome |journal=GigaScience |volume=8 |issue=6 |date=June 2019 |pmid=31241154 |pmc=6593361 |doi=10.1093/gigascience/giz070}}][{{cite journal |vauthors=Liang Q, Li H, Li S, Yuan F, Sun J, Duan Q, Li Q, Zhang R, Sang YL, Wang N, Hou X, Yang KQ, Liu JN, Yang L |title=The genome assembly and annotation of yellowhorn (Xanthoceras sorbifolium Bunge) |journal=GigaScience |volume=8 |issue=6 |date=June 2019 |pmid=31241155 |pmc=6593362 |doi=10.1093/gigascience/giz071}}]
| |
Aquilaria sinensis (Agarwood)
|Thymelaeaceae
|Fragrant wood
|726.5 Mb
|29,203
|
|
|2020[{{cite journal |vauthors=Ding X, Mei W, Lin Q, Wang H, Wang J, Peng S, Li H, Zhu J, Li W, Wang P, Chen H, Dong W, Guo D, Cai C, Huang S, Cui P, Dai H |title=Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family |journal=GigaScience |volume=9 |issue=3 |date=March 2020 |pmid=32118265 |pmc=7050300 |doi=10.1093/gigascience/giaa013}}]
|Illumina+nanopore+Hi-C, scaffold N50: 88.78 Mb |
Vitis vinifera (grape) genotype PN40024 | Vitaceae | fruit crop | | | | | 2007[{{cite journal |vauthors=Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P |title=The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla |journal=Nature |volume=449 |issue=7161 |pages=463–7 |date=September 2007 |pmid=17721507 |doi=10.1038/nature06148 |bibcode=2007Natur.449..463J |doi-access=free |hdl=11577/2430527 |hdl-access=free}}] | |