list of sequenced plant genomes

{{Short description|none}}

{{cs1 config|name-list-style=vanc|display-authors=6}}

This list of sequenced plant genomes contains plant species known to have publicly available complete genome sequences that have been assembled, annotated and published. Unassembled genomes are not included, nor are organelle only sequences. For all kingdoms, see the list of sequenced genomes.

See also List of sequenced algae genomes.

[[Bryophytes]]

class="wikitable sortable" style="border:1px solid #aaa;"
Organism strainDivisionRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Anthoceros angustusBryophytesEarly diverging land plant|
Ceratodon purpureusBryophytesEarly diverging land plant|
Fontinalis antipyretica (greater water-moss)

|Bryophytes

|Aquatic moss

|385.2 Mbp

|16,538

|BGI

|2020{{Cite journal |vauthors=Yu J, Li L, Wang S, Dong S, Chen Z, Patel N, Goffinet B, Liu H, Liu Y |title=Draft genome of the aquatic moss Fontinalis antipyretica (Fontinalaceae, Bryophyta) |journal=Gigabyte |year=2020 |volume=2020 |pages=1–9 |language=en |doi=10.46471/gigabyte.8 |pmid=36824590 |pmc=9631980 |doi-access=free}}

|BGISEQ-500 & 10X, scaffold N50 45.8 Kbp

Marchantia polymorpha

|Bryophytes

|Early diverging land plant

|225.8 Mb

|19,138

|

|2017{{cite journal |vauthors=Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, Adam C, Aki SS, Althoff F, Araki T, Arteaga-Vazquez MA, Balasubrmanian S, Barry K, Bauer D, Boehm CR, Briginshaw L, Caballero-Perez J, Catarino B, Chen F, Chiyoda S, Chovatia M, Davies KM, Delmans M, Demura T, Dierschke T, Dolan L, Dorantes-Acosta AE, Eklund DM, Florent SN, Flores-Sandoval E, Fujiyama A, Fukuzawa H, Galik B, Grimanelli D, Grimwood J, Grossniklaus U, Hamada T, Haseloff J, Hetherington AJ, Higo A, Hirakawa Y, Hundley HN, Ikeda Y, Inoue K, Inoue SI, Ishida S, Jia Q, Kakita M, Kanazawa T, Kawai Y, Kawashima T, Kennedy M, Kinose K, Kinoshita T, Kohara Y, Koide E, Komatsu K, Kopischke S, Kubo M, Kyozuka J, Lagercrantz U, Lin SS, Lindquist E, Lipzen AM, Lu CW, De Luna E, Martienssen RA, Minamino N, Mizutani M, Mizutani M, Mochizuki N, Monte I, Mosher R, Nagasaki H, Nakagami H, Naramoto S, Nishitani K, Ohtani M, Okamoto T, Okumura M, Phillips J, Pollak B, Reinders A, Rövekamp M, Sano R, Sawa S, Schmid MW, Shirakawa M, Solano R, Spunde A, Suetsugu N, Sugano S, Sugiyama A, Sun R, Suzuki Y, Takenaka M, Takezawa D, Tomogane H, Tsuzuki M, Ueda T, Umeda M, Ward JM, Watanabe Y, Yazaki K, Yokoyama R, Yoshitake Y, Yotsui I, Zachgo S, Schmutz J |title=Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome |journal=Cell |volume=171 |issue=2 |pages=287–304.e15 |date=October 2017 |pmid=28985561 |doi=10.1016/j.cell.2017.09.030 |doi-access=free |hdl=21.11116/0000-0000-371C-4 |hdl-access=free}}

Physcomitrella patens ssp. patens str. Gransden 2004BryophytesEarly diverging land plant462.3 Mbp35,9382008{{cite journal |vauthors=Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL |title=The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants |journal=Science |volume=319 |issue=5859 |pages=64–9 |date=January 2008 |pmid=18079367 |doi=10.1126/science.1150646 |bibcode=2008Sci...319...64R |hdl=11858/00-001M-0000-0012-3787-A |s2cid=11115152 |hdl-access=free}}
Pleurozium schreberi (feather moss)

|Bryophytes

|Ubiquitous moss species

|318 Mbp

|15,992

|

|2019{{cite journal |vauthors=Pederson ER, Warshan D, Rasmussen U |title=Genome Sequencing of Pleurozium schreberi: The Assembled and Annotated Draft Genome of a Pleurocarpous Feather Moss |journal=G3 |volume=9 |issue=9 |pages=2791–2797 |date=September 2019 |pmid=31285273 |pmc=6723128 |doi=10.1534/g3.119.400279}}

Climacium dendroides (tree climacium moss)

|Bryophytes

|Ubiquitous moss species

|413.1 Mbp

|

|

|2024{{cite journal |last1=Bell |first1=David |last2=Long |first2=David |title=The genome sequence of the tree-moss, Climacium dendroides (Hedw.) F.Weber & D.Mohr (Climaciaceae) |journal=Wellcome Open Research |date=2024 |volume=9 |page=311 |doi=10.12688/wellcomeopenres.22450.1 |doi-access=free |pmc=11503002 }}

|

[[Vascular plants]]

= [[Lycophyte]]s =

class="wikitable sortable" style="border:1px solid #aaa;"
Organism strainDivisionRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Isoetes sinensis

|Lycopodiophyta

|First aquatic Quillwort

|2.131 GB

|57,303

|

|2023{{cite journal | vauthors = Cui J, Zhu Y, Du H, Liu Z, Shen S, Wang T, Cui W, Zhang R, Jiang S, Wu Y, Gu X, Yu H, Liang Z | title = Chromosome-level reference genome of tetraploid Isoetes sinensis provides insights into evolution and adaption of lycophytes | journal = GigaScience | volume = 12 | date = December 2022 | pmid = 37776367 | pmc = 10541799 | doi = 10.1093/gigascience/giad079 }}

|Scaffold N50 = 86 Mb

Selaginella moellendorffiiLycopodiophytaModel organism106 Mb22,2852011{{cite journal |vauthors=Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA, Ashton NW, Axtell MJ, Barker E, Barker MS, Bennetzen JL, Bonawitz ND, Chapple C, Cheng C, Correa LG, Dacre M, DeBarry J, Dreyer I, Elias M, Engstrom EM, Estelle M, Feng L, Finet C, Floyd SK, Frommer WB, Fujita T, Gramzow L, Gutensohn M, Harholt J, Hattori M, Heyl A, Hirai T, Hiwatashi Y, Ishikawa M, Iwata M, Karol KG, Koehler B, Kolukisaoglu U, Kubo M, Kurata T, Lalonde S, Li K, Li Y, Litt A, Lyons E, Manning G, Maruyama T, Michael TP, Mikami K, Miyazaki S, Morinaga S, Murata T, Mueller-Roeber B, Nelson DR, Obara M, Oguri Y, Olmstead RG, Onodera N, Petersen BL, Pils B, Prigge M, Rensing SA, Riaño-Pachón DM, Roberts AW, Sato Y, Scheller HV, Schulz B, Schulz C, Shakirov EV, Shibagaki N, Shinohara N, Shippen DE, Sørensen I, Sotooka R, Sugimoto N, Sugita M, Sumikawa N, Tanurdzic M, Theissen G, Ulvskov P, Wakazuki S, Weng JK, Willats WW, Wipf D, Wolf PG, Yang L, Zimmer AD, Zhu Q, Mitros T, Hellsten U, Loqué D, Otillar R, Salamov A, Schmutz J, Shapiro H, Lindquist E, Lucas S, Rokhsar D, Grigoriev IV |title=The Selaginella genome identifies genetic changes associated with the evolution of vascular plants |journal=Science |volume=332 |issue=6032 |pages=960–3 |date=May 2011 |pmid=21551031 |pmc=3166216 |doi=10.1126/science.1203810 |bibcode=2011Sci...332..960B}}{{cite web |url=http://genome.jgi-psf.org/Selmo1/Selmo1.home.html |title=Phytozome |work=JGI MycoCosm}}scaffold N50 = 1.7 Mb
Selaginella lepidophylla

|Lycopodiophyta

|Desiccation tolerance

|122 Mb

|27,204

|

|2018{{cite journal |vauthors=VanBuren R, Wai CM, Ou S, Pardo J, Bryant D, Jiang N, Mockler TC, Edger P, Michael TP |title=Extreme haplotype variation in the desiccation-tolerant clubmoss Selaginella lepidophylla |journal=Nature Communications |volume=9 |issue=1 |pages=13 |date=January 2018 |pmid=29296019 |pmc=5750206 |doi=10.1038/s41467-017-02546-5 |bibcode=2018NatCo...9...13V}}

|contig N50 = 163 kb

= [[Fern]]s =

class="wikitable sortable" style="border:1px solid #aaa;"
Organism strainDivisionRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Azolla filiculoidesPolypodiophyta

| Fern

0.75 Gb20,201

|

2018{{cite journal |vauthors=Li FW, Brouwer P, Carretero-Paulet L, Cheng S, de Vries J, Delaux PM, Eily A, Koppers N, Kuo LY, Li Z, Simenc M, Small I, Wafula E, Angarita S, Barker MS, Bräutigam A, dePamphilis C, Gould S, Hosmani PS, Huang YM, Huettel B, Kato Y, Liu X, Maere S, McDowell R, Mueller LA, Nierop KG, Rensing SA, Robison T, Rothfels CJ, Sigel EM, Song Y, Timilsena PR, Van de Peer Y, Wang H, Wilhelmsson PK, Wolf PG, Xu X, Der JP, Schluepmann H, Wong GK, Pryer KM |title=Fern genomes elucidate land plant evolution and cyanobacterial symbioses |journal=Nature Plants |volume=4 |issue=7 |pages=460–472 |date=July 2018 |pmid=29967517 |pmc=6786969 |doi=10.1038/s41477-018-0188-8|bibcode=2018NatPl...4..460L }}
Salvinia cucullata

|Polypodiophyta

|Fern

|0.26 Gb

|19,914

|

|2018

|

Ceratopteris richardii

|Polypodiophyta

|Model organism

|7.5 Gb

|36,857

|

|2019 (v1.1),{{cite journal |vauthors=Marchant DB, Sessa EB, Wolf PG, Heo K, Barbazuk WB, Soltis PS, Soltis DE |title=The C-Fern (Ceratopteris richardii) genome: insights into plant genome evolution with the first partial homosporous fern genome assembly |journal=Scientific Reports |volume=9 |issue=1 |pages=18181 |date=December 2019 |pmid=31796775 |pmc=6890710 |doi=10.1038/s41598-019-53968-8 |bibcode=2019NatSR...918181M}} 2021 (v2.1){{Cite web |title=Phytozome v13 |url=https://phytozome-next.jgi.doe.gov/info/Crichardii_v2_1 |access-date=2021-10-15 |website=phytozome-next.jgi.doe.gov}}

|Partial assembly consisting of 7.5 Gb/11.2 Gb, arranged in 39 chromosomes

Alsophila spinulosa

|Polypodiophyta

|Tree Fern

|6.23 Gb

|67,831

|

|2022

:{{cite journal |vauthors=Qiao X, Zhang S, Paterson AH |title=Pervasive genome duplications across the plant tree of life and their links to major evolutionary innovations and transitions |journal=Computational and Structural Biotechnology Journal |volume=20 |pages=3248–3256 |year=2022 |pmid=35782740 |pmc=9237934 |doi=10.1016/j.csbj.2022.06.026 |publisher=Elsevier BV |s2cid=249722160}}

:

:{{cite journal |vauthors=Stull GW, Pham KK, Soltis PS, Soltis DE |title=Deep reticulation: the long legacy of hybridization in vascular plant evolution |journal=The Plant Journal |volume=114 |issue=4 |pages=743–766 |date=May 2023 |pmid=36775995 |doi=10.1111/tpj.16142 |publisher=John Wiley & Sons Ltd |s2cid=253124732 |doi-access=free}}

:

:These reviews cite this research.

:

:{{cite journal |vauthors=Huang X, Wang W, Gong T, Wickell D, Kuo LY, Zhang X, Wen J, Kim H, Lu F, Zhao H, Chen S, Li H, Wu W, Yu C, Chen S, Fan W, Chen S, Bao X, Li L, Zhang D, Jiang L, Yan X, Liao Z, Zhou G, Guo Y, Ralph J, Sederoff RR, Wei H, Zhu P, Li FW, Ming R, Li Q |title=The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence |journal=Nature Plants |volume=8 |issue=5 |pages=500–512 |date=May 2022 |pmid=35534720 |pmc=9122828 |doi=10.1038/s41477-022-01146-6 |s2cid=248668428 |doi-access=free|bibcode=2022NatPl...8..500H }}

|

= [[Gymnosperm]]s =

class="wikitable sortable" style="border:1px solid #aaa;"
Organism strainDivisionRelevanceGenome sizeNumber of genes predicted

!No of chromosomes

OrganizationYear of completionAssembly status
Cycas panzhihuaensis (Dukou sago palm)

|Cycadophyta

|Rare and vulnerable species of cycad

|10.5 Gb

|

|

|

|2022{{cite journal |vauthors=Liu Y, Wang S, Li L, Yang T, Dong S, Wei T, Wu S, Liu Y, Gong Y, Feng X, Ma J, Chang G, Huang J, Yang Y, Wang H, Liu M, Xu Y, Liang H, Yu J, Cai Y, Zhang Z, Fan Y, Mu W, Sahu SK, Liu S, Lang X, Yang L, Li N, Habib S, Yang Y, Lindstrom AJ, Liang P, Goffinet B, Zaman S, Wegrzyn JL, Li D, Liu J, Cui J, Sonnenschein EC, Wang X, Ruan J, Xue JY, Shao ZQ, Song C, Fan G, Li Z, Zhang L, Liu J, Liu ZJ, Jiao Y, Wang XQ, Wu H, Wang E, Lisby M, Yang H, Wang J, Liu X, Xu X, Li N, Soltis PS, Van de Peer Y, Soltis DE, Gong X, Liu H, Zhang S |title=The Cycas genome and the early evolution of seed plants |journal=Nature Plants |volume=8 |issue=4 |pages=389–401 |date=April 2022 |pmid=35437001 |doi=10.1038/s41477-022-01129-7 |pmc=9023351 |s2cid=248241496 |doi-access=free|bibcode=2022NatPl...8..389L }}

|

Picea abies (Norway spruce)PinalesTimber, tonewood, ornamental such as Christmas tree

|19.6 Gb

| 26,359{{cite journal |vauthors=Stevens KA, Wegrzyn JL, Zimin A, Puiu D, Crepeau M, Cardeno C, Paul R, Gonzalez-Ibeas D, Koriabine M, Holtz-Morris AE, Martínez-García PJ, Sezen UU, Marçais G, Jermstad K, McGuire PE, Loopstra CA, Davis JM, Eckert A, de Jong P, Yorke JA, Salzberg SL, Neale DB, Langley CH |title=Sequence of the Sugar Pine Megagenome |journal=Genetics |volume=204 |issue=4 |pages=1613–1626 |date=December 2016 |pmid=27794028 |pmc=5161289 |doi=10.1534/genetics.116.193227}}

|12

Umeå Plant Science Centre / SciLifeLab, Sweden

| 2013{{cite journal |vauthors=Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hällman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Käller M, Luthman J, Lysholm F, Niittylä T, Olson A, Rilakovic N, Ritland C, Rosselló JA, Sena J, Svensson T, Talavera-López C, Theißen G, Tuominen H, Vanneste K, Wu ZQ, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Garcia Gil R, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Thompson SL, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S |title=The Norway spruce genome sequence and conifer genome evolution |journal=Nature |volume=497 |issue=7451 |pages=579–84 |date=May 2013 |pmid=23698360 |doi=10.1038/nature12211 |bibcode=2013Natur.497..579N |doi-access=free |hdl=1854/LU-4110028 |hdl-access=free}}

Picea glauca (White spruce)

|Pinales

|Timber, Pulp

|20.8 Gb

|14,462

|12

|Institutional Collaboration

|2013{{cite journal |vauthors=Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, Yuen MM, Keeling CI, Brand D, Vandervalk BP, Kirk H, Pandoh P, Moore RA, Zhao Y, Mungall AJ, Jaquish B, Yanchuk A, Ritland C, Boyle B, Bousquet J, Ritland K, Mackay J, Bohlmann J, Jones SJ |title=Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data |journal=Bioinformatics |volume=29 |issue=12 |pages=1492–7 |date=June 2013 |pmid=23698863 |pmc=3673215 |doi=10.1093/bioinformatics/btt178}}{{cite journal |vauthors=Warren RL, Keeling CI, Yuen MM, Raymond A, Taylor GA, Vandervalk BP, Mohamadi H, Paulino D, Chiu R, Jackman SD, Robertson G, Yang C, Boyle B, Hoffmann M, Weigel D, Nelson DR, Ritland C, Isabel N, Jaquish B, Yanchuk A, Bousquet J, Jones SJ, MacKay J, Birol I, Bohlmann J |title=Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism |journal=The Plant Journal |volume=83 |issue=2 |pages=189–212 |date=July 2015 |pmid=26017574 |doi=10.1111/tpj.12886 |s2cid=2642832 |doi-access=free}}

|

Pinus taeda (Loblolly pine)

|Pinales

|Timber

|20.15 Gb

|9,024

|12

|

|2014{{cite journal |vauthors=Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD, Martínez-García PJ, Vasquez-Gross HA, Lin BY, Zieve JJ, Dougherty WM, Fuentes-Soriano S, Wu LS, Gilbert D, Marçais G, Roberts M, Holt C, Yandell M, Davis JM, Smith KE, Dean JF, Lorenz WW, Whetten RW, Sederoff R, Wheeler N, McGuire PE, Main D, Loopstra CA, Mockaitis K, deJong PJ, Yorke JA, Salzberg SL, Langley CH |title=Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies |journal=Genome Biology |volume=15 |issue=3 |pages=R59 |date=March 2014 |pmid=24647006 |pmc=4053751 |doi=10.1186/gb-2014-15-3-r59 |doi-access=free}}{{cite journal |vauthors=Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ, Neale DB, Salzberg SL, Yorke JA, Langley CH |title=Sequencing and assembly of the 22-gb loblolly pine genome |journal=Genetics |volume=196 |issue=3 |pages=875–90 |date=March 2014 |pmid=24653210 |pmc=3948813 |doi=10.1534/genetics.113.159715}}{{cite journal |vauthors=Wegrzyn JL, Liechty JD, Stevens KA, Wu LS, Loopstra CA, Vasquez-Gross HA, Dougherty WM, Lin BY, Zieve JJ, Martínez-García PJ, Holt C, Yandell M, Zimin AV, Yorke JA, Crepeau MW, Puiu D, Salzberg SL, Dejong PJ, Mockaitis K, Main D, Langley CH, Neale DB |title=Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation |journal=Genetics |volume=196 |issue=3 |pages=891–909 |date=March 2014 |pmid=24653211 |pmc=3948814 |doi=10.1534/genetics.113.159996}}

|N50 scaffold size: 66.9 kbp

Pinus lambertiana (Sugar pine)

|Pinales

|Timber; with the largest genomes among the pines;

the largest pine species

|31 Gb

|13,936

|12

|

|2016

|61.5X sequence coverage, platforms used:

Hiseq 2000, Hiseq 2500, GAIIx, MiSeq

Ginkgo biloba

|Ginkgoales

|

|11.75 Gb

|41,840

|

|

|2016{{cite journal |vauthors=Guan R, Zhao Y, Zhang H, Fan G, Liu X, Zhou W, Shi C, Wang J, Liu W, Liang X, Fu Y, Ma K, Zhao L, Zhang F, Lu Z, Lee SM, Xu X, Wang J, Yang H, Fu C, Ge S, Chen W |title=Draft genome of the living fossil Ginkgo biloba |journal=GigaScience |volume=5 |issue=1 |pages=49 |date=November 2016 |pmid=27871309 |pmc=5118899 |doi=10.1186/s13742-016-0154-1 |doi-access=free}}

|N50 scaffold size: 48.2 kbp

Pseudotsuga menziesii

|Pinales

|

|16 Gb

|54,830

|13

|

|2017{{cite journal |vauthors=Neale DB, McGuire PE, Wheeler NC, Stevens KA, Crepeau MW, Cardeno C, Zimin AV, Puiu D, Pertea GM, Sezen UU, Casola C, Koralewski TE, Paul R, Gonzalez-Ibeas D, Zaman S, Cronn R, Yandell M, Holt C, Langley CH, Yorke JA, Salzberg SL, Wegrzyn JL |title=The Douglas-Fir Genome Sequence Reveals Specialization of the Photosynthetic Apparatus in Pinaceae |journal=G3 |volume=7 |issue=9 |pages=3157–3167 |date=September 2017 |pmid=28751502 |doi=10.1534/g3.117.300078 |pmc=5592940 |doi-access=free}}

|N50 scaffold size : 340.7 kbp

Gnetum monatum

|Gnetales

|

|4.07 Gb

|27,491

|

|

|2018{{cite journal |vauthors=Wan T, Liu ZM, Li LF, Leitch AR, Leitch IJ, Lohaus R, Liu ZJ, Xin HP, Gong YB, Liu Y, Wang WC, Chen LY, Yang Y, Kelly LJ, Yang J, Huang JL, Li Z, Liu P, Zhang L, Liu HM, Wang H, Deng SH, Liu M, Li J, Ma L, Liu Y, Lei Y, Xu W, Wu LQ, Liu F, Ma Q, Yu XR, Jiang Z, Zhang GQ, Li SH, Li RQ, Zhang SZ, Wang QF, Van de Peer Y, Zhang JB, Wang XM |title=A genome for gnetophytes and early evolution of seed plants |journal=Nature Plants |volume=4 |issue=2 |pages=82–89 |date=February 2018 |pmid=29379155 |doi=10.1038/s41477-017-0097-2 |doi-access=free |bibcode=2018NatPl...4...82W |hdl=1854/LU-8558174 |hdl-access=free}}

|

Larix sibirica

|Pinales

|

|12.34 Gbp

|

|

|

|2019{{cite journal |vauthors=Kuzmin DA, Feranchuk SI, Sharov VV, Cybin AN, Makolov SV, Putintseva YA, Oreshkova NV, Krutovsky KV |title=Stepwise large genome assembly approach: a case of Siberian larch (Larix sibirica Ledeb) |journal=BMC Bioinformatics |volume=20 |issue=Suppl 1 |pages=37 |date=February 2019 |pmid=30717661 |pmc=6362582 |doi=10.1186/s12859-018-2570-y |doi-access=free}}

|scaffold N50 of 6440 bp

Abies alba

|Pinales

|

|18.16 Gb

|94,205

|

|

|2019{{cite journal |vauthors=Mosca E, Cruz F, Gómez-Garrido J, Bianco L, Rellstab C, Brodbeck S, Csilléry K, Fady B, Fladung M, Fussi B, Gömöry D, González-Martínez SC, Grivet D, Gut M, Hansen OK, Heer K, Kaya Z, Krutovsky KV, Kersten B, Liepelt S, Opgenoorth L, Sperisen C, Ullrich KK, Vendramin GG, Westergren M, Ziegenhagen B, Alioto T, Gugerli F, Heinze B, Höhn M, Troggio M, Neale DB |title=Abies alba Mill.): A Community-Generated Genomic Resource |journal=G3 |volume=9 |issue=7 |pages=2039–2049 |date=July 2019 |pmid=31217262 |doi=10.1534/g3.119.400083 |pmc=6643874 |doi-access=free}}

|scaffold N50 of 14,051 bp

= [[Angiosperms]] =

== [[Amborellales]] ==

class="wikitable sortable" style="border:1px solid #aaa;"
Organism strainFamilyRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Amborella trichopodaAmborellaceaeBasal angiosperm2013{{cite journal |author=Amborella Genome Project |s2cid=202600898 |title=The Amborella genome and the evolution of flowering plants |journal=Science |volume=342 |issue=6165 |pages=1241089 |date=December 2013 |pmid=24357323 |doi=10.1126/science.1241089 |url=https://escholarship.org/uc/item/06v4x3nz}}{{cite web |title=Amborella Genome Database |publisher=Penn State University |url=http://www.amborella.org/ |archive-url=https://web.archive.org/web/20130628071728/http://www.amborella.org/ |archive-date=2013-06-28 |url-status=dead}}

== Chlorantales ==

class="wikitable sortable" style="border:1px solid #aaa;"
Organism strainFamilyRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Chloranthus spicatus (Thunb.) Makino,{{Cite web |title=Chloranthus spicatus (Thunb.) Makino |url=https://www.gbif.org/species/3750517 |access-date=2022-07-07 |website=www.gbif.org |language=en}} (Pearl Orchid)Chlorantaceae2021{{cite journal |vauthors=Guo X, Fang D, Sahu SK, Yang S, Guang X, Folk R, Smith SA, Chanderbali AS, Chen S, Liu M, Yang T, Zhang S, Liu X, Xu X, Soltis PS, Soltis DE, Liu H |title=Chloranthus genome provides insights into the early diversification of angiosperms |journal=Nature Communications |volume=12 |issue=1 |pages=6930 |date=November 2021 |pmid=34836973 |pmc=8626473 |doi=10.1038/s41467-021-26922-4 |bibcode=2021NatCo..12.6930G}}saffold N50 of 191.37 Mb
Magnoliales

class="wikitable sortable" style="border:1px solid #aaa;"
Organism strainFamilyRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Annona muricataAnnonaceaeCommercially grown fruit, medicinal applications799.11 Mb23,375[https://iber.ubd.edu.bn/ Institute for Biodiversity and Environmental Research (UBD)]

[https://www.actg.science/ Alliance for Conservation Tree Genomics]

Biodiversity Genomics Team

| 2021{{cite journal |vauthors=Strijk JS, Hinsinger DD, Roeder MM, Chatrou LW, Couvreur TL, Erkens RH, Sauquet H, Pirie MD, Thomas DC, Cao K |title=Chromosome-level reference genome of the soursop (Annona muricata): A new resource for Magnoliid research and tropical pomology |journal=Molecular Ecology Resources |volume=21 |issue=5 |pages=1608–1619 |date=July 2021 |pmid=33569882 |pmc=8251617 |doi=10.1111/1755-0998.13353 |doi-access=free}}

PacBio and Illumina short‐reads, in combination with 10× Genomics and Bionano data (v1). A total of 949 scaffolds assembled to a final size of 656.77 Mb, with a scaffold N50 of 3.43 Mb (v1), and then further improved to seven pseudo‐chromosomes using Hi‐C sequencing data (v2; scaffold N50: 93.2 Mb, total size in chromosomes: 639.6 Mb).
Salix arbutifolia
(syn. Chosenia arbutifolia)

|Salicaceae

|Seriously endangered relic species

|338.93 Mb

|33,229

|

|2022{{cite journal |vauthors=He X, Wang Y, Lian J, Zheng J, Zhou J, Li J, Jiao Z, Niu Y, Wang W, Zhang J, Wang B, Zhuge Q |title=The whole-genome assembly of an endangered Salicaceae species: Chosenia arbutifolia (Pall.) A. Skv |journal=GigaScience |volume=11 |date=November 2022 |pmid=36374197 |pmc=9661892 |doi=10.1093/gigascience/giac109}}

|Contig N50 of 1.68 Mb

Cinnamomum kanehirae (Stout camphor tree)

|Lauraceae

|

|730.7 Mb

|

|

|2019{{cite journal |doi=10.1098/rspb.2019.0099 |title=Darwin review: Angiosperm phylogeny and evolutionary radiations |date=2019 |last1=Soltis |first1=Pamela S. |last2=Folk |first2=Ryan A. |last3=Soltis |first3=Douglas E. |journal=Proceedings of the Royal Society B: Biological Sciences |volume=286 |issue=1899 |pmc=6452062 }}

|

==[[Eudicots]]==

=== [[Proteales]] ===

class="wikitable sortable" style="border:1px solid #aaa;"
Organism strainFamilyRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Macadamia integrifolia HAES 741 (Macadamia nut)

|Proteaceae

|Commercially grown nut

|745 Mb

|34,274

|

|2020{{cite journal |vauthors=Nock CJ, Baten A, Mauleon R, Langdon KS, Topp B, Hardner C, Furtado A, Henry RJ, King GJ |title=Chromosome-Scale Assembly and Annotation of the Macadamia Genome (Macadamia integrifolia HAES 741) |journal=G3 |volume=10 |issue=10 |pages=3497–3504 |date=October 2020 |pmid=32747341 |pmc=7534425 |doi=10.1534/g3.120.401326}}

|N50 413 kb

Macadamia jansenii

|Proteaceae

|Rare relative of macademia nut

|750 Mbp

|

|

|2020{{cite journal |vauthors=Murigneux V, Rai SK, Furtado A, Bruxner TJ, Tian W, Harliwong I, Wei H, Yang B, Ye Q, Anderson E, Mao Q, Drmanac R, Wang O, Peters BA, Xu M, Wu P, Topp B, Coin LJ, Henry RJ |title=Comparison of long-read methods for sequencing and assembly of a plant genome |journal=GigaScience |volume=9 |issue=12 |date=December 2020 |pmid=33347571 |pmc=7751402 |doi=10.1093/gigascience/giaa146}}

|Compared Nanopore, Illumina and BGI stLRF data

Nelumbo nucifera (sacred lotus)NelumbonaceaeBasal eudicot929 Mbp

|

2013{{cite journal |vauthors=Ming R, VanBuren R, Liu Y, Yang M, Han Y, Li LT, Zhang Q, Kim MJ, Schatz MC, Campbell M, Li J, Bowers JE, Tang H, Lyons E, Ferguson AA, Narzisi G, Nelson DR, Blaby-Haas CE, Gschwend AR, Jiao Y, Der JP, Zeng F, Han J, Min XJ, Hudson KA, Singh R, Grennan AK, Karpowicz SJ, Watling JR, Ito K, Robinson SA, Hudson ME, Yu Q, Mockler TC, Carroll A, Zheng Y, Sunkar R, Jia R, Chen N, Arro J, Wai CM, Wafula E, Spence A, Han Y, Xu L, Zhang J, Peery R, Haus MJ, Xiong W, Walsh JA, Wu J, Wang ML, Zhu YJ, Paull RE, Britt AB, Du C, Downie SR, Schuler MA, Michael TP, Long SP, Ort DR, Schopf JW, Gang DR, Jiang N, Yandell M, dePamphilis CW, Merchant SS, Paterson AH, Buchanan BB, Li S, Shen-Miller J |title=Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.) |journal=Genome Biology |volume=14 |issue=5 |pages=R41 |date=May 2013 |pmid=23663246 |pmc=4053705 |doi=10.1186/gb-2013-14-5-r41 |doi-access=free|bibcode=2013GeBio..14R..41M }}contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp

=== [[Ranunculales]] ===

class="wikitable sortable" style="border:1px solid #aaa;"
Organism strainFamilyRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Aquilegia coeruleaRanunculaceaeBasal eudicotUnpublished{{cite web |url=http://www.phytozome.net/aquilegia.php |work=Phytozome v9.1 |title=Aquilegia caerulea |access-date=2013-07-10 |archive-url=https://web.archive.org/web/20150220011446/http://www.phytozome.net/aquilegia.php |archive-date=2015-02-20 |url-status=dead}}

=== [[Trochodendrales]] ===

class="wikitable sortable" style="border:1px solid #aaa;"
Organism strainFamilyRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Trochodendron aralioides (Wheel tree)TrochodendralesBasal eudicot having secondary xylem without vessel elements1.614 Gb

|35,328

|Guangxi University

| 2019{{cite journal |vauthors=Strijk JS, Hinsinger DD, Zhang F, Cao K |title=Trochodendron aralioides, the first chromosome-level draft genome in Trochodendrales and a valuable resource for basal eudicot research |journal=GigaScience |volume=8 |issue=11 |date=November 2019 |pmid=31738437 |pmc=6859433 |doi=10.1093/gigascience/giz136}}

19 scaffolds corresponding to 19 chromosomes

=== [[Caryophyllales]] ===

class="wikitable sortable" style="border:1px solid #aaa;"
Organism strainFamilyRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Beta vulgaris (sugar beet)ChenopodiaceaeCrop plant714–758 Mbp27,4212013{{cite journal |vauthors=Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldón T, Lehrach H, Weisshaar B, Himmelbauer H |title=The genome of the recently domesticated crop plant sugar beet (Beta vulgaris) |journal=Nature |volume=505 |issue=7484 |pages=546–9 |date=January 2014 |pmid=24352233 |doi=10.1038/nature12817 |bibcode=2014Natur.505..546D |doi-access=free |hdl=10230/22493 |hdl-access=free}}
Chenopodium quinoa

|Chenopodiaceae

|Crop plant

|1.39–1.50 Gb

|44,776

|

|2017{{cite journal |vauthors=Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJ, Ohyanagi H, Mineta K, Michell CT, Saber N, Kharbatia NM, Rupper RR, Sharp AR, Dally N, Boughton BA, Woo YH, Gao G, Schijlen EG, Guo X, Momin AA, Negrão S, Al-Babili S, Gehring C, Roessner U, Jung C, Murphy K, Arold ST, Gojobori T, Linden CG, van Loo EN, Jellen EN, Maughan PJ, Tester M |title=The genome of Chenopodium quinoa |journal=Nature |volume=542 |issue=7641 |pages=307–312 |date=February 2017 |pmid=28178233 |doi=10.1038/nature21370 |bibcode=2017Natur.542..307J |doi-access=free |hdl=10754/622874 |hdl-access=free}}

|3,486 scaffolds, scaffold N50 of 3.84 Mb, 90% of the assembled genome is contained in 439 scaffolds

Amaranthus hypocondriacus

|Amaranthaceae

|Crop plant

|403.9 Mb

|23,847

|

|2016{{cite journal |vauthors=Clouse JW, Adhikary D, Page JT, Ramaraj T, Deyholos MK, Udall JA, Fairbanks DJ, Jellen EN, Maughan PJ |title=The Amaranth Genome: Genome, Transcriptome, and Physical Map Assembly |journal=The Plant Genome |volume=9 |issue=1 |pages=0 |date=March 2016 |pmid=27898770 |doi=10.3835/plantgenome2015.07.0062 |doi-access=free}}

|16 large scaffolds from 16.9 to 38.1 Mb. N50 and L50 of the assembly was 24.4 Mb and 7, respectively.{{Cite web |url=https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Ahypochondriacus_er |title=Phytozome |website=phytozome.jgi.doe.gov |access-date=2017-06-21}}

Carnegiea gigantea

|Cactaceae

|Wild plant

|1.40 Gb

|28,292

|

|2017{{cite journal |vauthors=Copetti D, Búrquez A, Bustamante E, ((Charboneau JLM)), Childs KL, Eguiarte LE, Lee S, Liu TL, McMahon MM, Whiteman NK, Wing RA, Wojciechowski MF, Sanderson MJ |title=Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti |journal=Proc Natl Acad Sci U S A |volume=114 |issue=45 |pages=12003–12008 |date=November 2017 |pmid=29078296 |pmc=5692538 |doi=10.1073/pnas.1706367114 |bibcode=2017PNAS..11412003C |doi-access=free}}

|57,409 scaffolds, scaffold N50 of 61.5 kb

Nepenthes mirabilis

|Nepenthes

|Carnivorous Plant

|691 Mb

|42,961

|

|2023{{cite journal | vauthors = Gao Y, Liao HB, Liu TH, Wu JM, Wang ZF, Cao HL | title = Draft genome and transcriptome of Nepenthes mirabilis, a carnivorous plant in China | journal = BMC Genomic Data | volume = 24 | issue = 1 | pages = 21 | date = April 2023 | pmid = 37060047 | pmc = 10103442 | doi = 10.1186/s12863-023-01126-5 | doi-access = free }}

|159,555 contigs/scaffolds and N50 of 10,307 bp

Suaeda aralocaspica

|Amaranthaceae

|Performs complete C4 photosynthesis within individual cells (SCC4)

|467 Mb

|29,604

|ABLife Inc.

|2019{{cite journal |vauthors=Wang L, Ma G, Wang H, Cheng C, Mu S, Quan W, Jiang L, Zhao Z, Zhang Y, Zhang K, Wang X, Tian C, Zhang Y |title=A draft genome assembly of halophyte Suaeda aralocaspica, a plant that performs C4 photosynthesis within individual cells |journal=GigaScience |volume=8 |issue=9 |date=September 2019 |pmid=31513708 |pmc=6741815 |doi=10.1093/gigascience/giz116}}

|4,033 scaffolds, scaffold N50 length of 1.83 Mb

Simmondsia chinensis (jojoba)

|Simmondsiaceae

|Oilseed Crop

|887 Mb

|23,490

|

|2020{{cite journal |vauthors=Sturtevant D, Lu S, Zhou ZW, Shen Y, Wang S, Song JM, Zhong J, Burks DJ, Yang ZQ, Yang QY, Cannon AE, Herrfurth C, Feussner I, Borisjuk L, Munz E, Verbeck GF, Wang X, Azad RK, Singleton B, Dyer JM, Chen LL, Chapman KD, Guo L |title=Simmondsia chinensis): A taxonomically isolated species that directs wax ester accumulation in its seeds |journal=Science Advances |volume=6 |issue=11 |pages=eaay3240 |date=March 2020 |pmid=32195345 |doi=10.1126/sciadv.aay3240 |doi-access=free |pmc=7065883}}

|994 scaffolds, scaffold N50 length of 5.2 Mb

Drosera capensis

|Droseraceae

|Carnivorous Plant

|263.79 Mb

|

|

|2016{{cite journal |vauthors=Butts C, Bierma J, Martin R |title=Novel proteases from the genome of the carnivorous plant Drosera capensis: structural prediction and comparative analysis |journal=Proteins |volume=84 |pages=1517–1533 |date=July 2016 |issue=10 |pmid=27353064 |doi=10.1002/prot.25095 |pmc=5026580}}

|12,713 scaffolds

Tamarix chinensis (Chinese tamarisk)

|Tamaricaceae

|Margin tree

|1.32 Gb

|

|

|2023{{cite journal | vauthors = Liu JN, Fang H, Liang Q, Dong Y, Wang C, Yan L, Ma X, Zhou R, Lang X, Gai S, Wang L, Xu S, Yang KQ, Wu D | title = Genomic analyses provide insights into the evolution and salinity adaptation of halophyte Tamarix chinensis | journal = GigaScience | volume = 12 | date = December 2022 | pmid = 37494283 | pmc = 10370455 | doi = 10.1093/gigascience/giad053 }}

|

=== [[Rosids]] ===

class="wikitable sortable" style="border:1px solid #aaa;"
Organism strainFamilyRelevanceGenome sizeNumber of genes predicted

!No of chromosomes

OrganizationYear of completionAssembly status
Bretschneidera sinensis

|Akaniaceae

|endangered relic tree species

|1.21 Gb

|45,839

|

|

|2022{{cite journal |vauthors=Zhang H, Du X, Dong C, Zheng Z, Mu W, Zhu M, Yang Y, Li X, Hu H, Shrestha N, Li M, Yang Y |title=Genomes and demographic histories of the endangered Bretschneidera sinensis (Akaniaceae) |journal=GigaScience |volume=11 |date=June 2022 |pmid=35701375 |pmc=9197684 |doi=10.1093/gigascience/giac050}}

|

Sclerocarya birrea

(Marula)

|Anacardiaceae

|Used for food

|

|18,397

|

|

|2018{{cite journal | vauthors = Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, Song B, Cheng S, Kariba R, Muthemba S, Hendre PS, Mayes S, Ho WK, Yssel AE, Kendabie P, Wang S, Li L, Muchugi A, Jamnadass R, Lu H, Peng S, Van Deynze A, Simons A, Yana-Shapiro H, Van de Peer Y, Xu X, Yang H, Wang J, Liu X | title = The draft genomes of five agriculturally important African orphan crops | journal = GigaScience | volume = 8 | issue = 3 | date = March 2019 | pmid = 30535374 | pmc = 6405277 | doi = 10.1093/gigascience/giy152 }}{{cite book |title=GigaDB Dataset |chapter=Genomic data of Marula (Sclerocarya birrea) |doi=10.5524/101057 |year=2018 |vauthors=Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, Song B, Cheng S, Kariba R, Muthemba S, Hendre PS, Mayes S, Ho WK, Kendabie P, Wang S, Li L, Muchugi A, Jamnadass R, Lu H, Peng S, Deynze AV, Simons A, Yana-Shapiro H, Xu X, Yang H, Wang J, Liu X |publisher=GigaScience Database}}

|

Begonia masoniana (Iron cross begonia)

|Begoniaceae

|Flower

|799.83 Mb

|

|

|

|2022{{cite journal | vauthors = Li L, Chen X, Fang D, Dong S, Guo X, Li N, Campos-Dominguez L, Wang W, Liu Y, Lang X, Peng Y, Tian D, Thomas DC, Mu W, Liu M, Wu C, Yang T, Zhang S, Yang L, Yang J, Liu ZJ, Zhang L, Zhang X, Chen F, Jiao Y, Guo Y, Hughes M, Wang W, Liu X, Zhong C, Li A, Sahu SK, Yang H, Wu E, Sharbrough J, Lisby M, Liu X, Xu X, Soltis DE, Van de Peer Y, Kidner C, Zhang S, Liu H | title = Genomes shed light on the evolution of Begonia, a mega-diverse genus | journal = The New Phytologist | volume = 234 | issue = 1 | pages = 295–310 | date = April 2022 | pmid = 34997964 | pmc = 7612470 | doi = 10.1111/nph.17949 | bibcode = 2022NewPh.234..295L }}

|

Begonia peltatifolia (Rex begonia)

|Begoniaceae

|Flower

|331.75 Mb

|

|

|

|2022

|

Betula pendula (silver birch)BetulaceaeBoreal forest tree, model for forest biotechnology435 Mbp28,399

|14

| University of Helsinki

2017{{cite journal |vauthors=Salojärvi J, Smolander OP, Nieminen K, Rajaraman S, Safronov O, Safdari P, Lamminmäki A, Immanen J, Lan T, Tanskanen J, Rastas P, Amiryousefi A, Jayaprakash B, Kammonen JI, Hagqvist R, Eswaran G, Ahonen VH, Serra JA, Asiegbu FO, de Dios Barajas-Lopez J, Blande D, Blokhina O, Blomster T, Broholm S, Brosché M, Cui F, Dardick C, Ehonen SE, Elomaa P, Escamez S, Fagerstedt KV, Fujii H, Gauthier A, Gollan PJ, Halimaa P, Heino PI, Himanen K, Hollender C, Kangasjärvi S, Kauppinen L, Kelleher CT, Kontunen-Soppela S, Koskinen JP, Kovalchuk A, Kärenlampi SO, Kärkönen AK, Lim KJ, Leppälä J, Macpherson L, Mikola J, Mouhu K, Mähönen AP, Niinemets Ü, Oksanen E, Overmyer K, Palva ET, Pazouki L, Pennanen V, Puhakainen T, Poczai P, Possen BJ, Punkkinen M, Rahikainen MM, Rousi M, Ruonala R, van der Schoot C, Shapiguzov A, Sierla M, Sipilä TP, Sutela S, Teeri TH, Tervahauta AI, Vaattovaara A, Vahala J, Vetchinnikova L, Welling A, Wrzaczek M, Xu E, Paulin LG, Schulman AH, Lascoux M, Albert VA, Auvinen P, Helariutta Y, Kangasjärvi J |title=Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch |journal=Nature Genetics |volume=49 |issue=6 |pages=904–912 |date=May 2017 |pmid=28481341 |doi=10.1038/ng.3862 |doi-access=free}}454/Illumina/PacBio. Assembly size 435 Mbp. Contig N50: 48,209 bp, scaffold N50: 239,796 bp. 89% of the assembly mapped to 14 pseudomolecules. Additionally 150 birch individuals sequenced.
Betula platyphylla (Japanese white birch)

|Betulaceae

|Pioneer hardwood tree species

|430 Mbp

|

|

|

|2021{{cite journal |vauthors=Chen S, Wang Y, Yu L, Zheng T, Wang S, Yue Z, Jiang J, Kumari S, Zheng C, Tang H, Li J, Li Y, Chen J, Zhang W, Kuang H, Robertson JS, Zhao PX, Li H, Shu S, Yordanov YS, Huang H, Goodstein DM, Gai Y, Qi Q, Min J, Xu C, Wang S, Qu GZ, Paterson AH, Sankoff D, Wei H, Liu G, Yang C |title=Genome sequence and evolution of Betula platyphylla |journal=Horticulture Research |volume=8 |issue=1 |pages=37 |date=February 2021 |pmid=33574224 |doi=10.1038/s41438-021-00481-7 |pmc=7878895 |doi-access=free|bibcode=2021HorR....8...37C }}

|contig N50 = 751 kbp

Betula nana (dwarf birch)BetulaceaeArctic shrub450 Mbp|[https://web.archive.org/web/20180828211003/http://www.birchgenome.org/ QMUL/SBCS]2013{{cite journal |vauthors=Wang N, Thomson M, Bodles WJ, Crawford RM, Hunt HV, Featherstone AW, Pellicer J, Buggs RJ |title=Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers |journal=Molecular Ecology |volume=22 |issue=11 |pages=3098–111 |date=June 2013 |pmid=23167599 |doi=10.1111/mec.12131 |bibcode=2013MolEc..22.3098W |s2cid=206179485}}
Corylus heterophylla Fisch (Asian hazel)

|Betulaceae

|Nut tree used for food

|370.75 Mbp

|27,591

|11

|

|2021{{cite journal |vauthors=Zhao T, Ma W, Yang Z, Liang L, Chen X, Wang G, Ma Q, Wang L |title=A chromosome-level reference genome of the hazelnut, Corylus heterophylla Fisch |journal=GigaScience |volume=10 |issue=4 |date=April 2021 |pmid=33871007 |pmc=8054262 |doi=10.1093/gigascience/giab027}}

|Nanopore/Hi-C chromosome scale. Contig N50 and scaffold N50 sizes of 2.07 and 31.33  Mb, respectively

Corylus mandshurica

|Betulaceae

|Hazel used for breeding

|367.67 Mb

|28,409

|11

|

|2021{{cite journal |vauthors=Li Y, Sun P, Lu Z, Chen J, Wang Z, Du X, Zheng Z, Wu Y, Hu H, Yang J, Ma J, Liu J, Yang Y |title=The Corylus mandshurica genome provides insights into the evolution of Betulaceae genomes and hazelnut breeding |journal=Horticulture Research |volume=8 |issue=1 |pages=54 |date=March 2021 |pmid=33642584 |doi=10.1038/s41438-021-00495-1 |pmc=7917096 |doi-access=free|bibcode=2021HorR....8...54L }}

|

Aethionema arabicumBrassicaceaeComparative analysis of crucifer genomes|2013{{cite journal |vauthors=Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ, Forczek E, Joly-Lopez Z, Steffen JG, Hazzouri KM, Dewar K, Stinchcombe JR, Schoen DJ, Wang X, Schmutz J, Town CD, Edger PP, Pires JC, Schumaker KS, Jarvis DE, Mandáková T, Lysak MA, van den Bergh E, Schranz ME, Harrison PM, Moses AM, Bureau TE, Wright SI, Blanchette M |title=An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions |journal=Nature Genetics |volume=45 |issue=8 |pages=891–8 |date=August 2013 |pmid=23817568 |doi=10.1038/ng.2684 |doi-access=free}}
Arabidopsis lyrata ssp. lyrata strain MN47BrassicaceaeModel plant206.7 Mbp

|32,670

|8

2011{{cite journal |vauthors=Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov AA, Schneeberger K, Spannagl M, Wang X, Yang L, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KF, Van de Peer Y, Grigoriev IV, Nordborg M, Weigel D, Guo YL |title=The Arabidopsis lyrata genome sequence and the basis of rapid genome size change |journal=Nature Genetics |volume=43 |issue=5 |pages=476–81 |date=May 2011 |pmid=21478890 |pmc=3083492 |doi=10.1038/ng.807}}8.3X sequence coverage, analyzed on ABI 3730XL capillary sequencers
Arabidopsis thaliana Ecotype:ColumbiaBrassicaceaeModel plant135 Mbp27,655{{Cite web |url=https://www.araport.org/data/araport11 |title=Updated Col-0 Genome Annotation (Araport11 Official Release) Updated Jun 2016 {{!}} Araport |website=www.araport.org |access-date=2019-03-18 |archive-date=2019-07-19 |archive-url=https://web.archive.org/web/20190719070344/https://www.araport.org/data/araport11 |url-status=dead}}

|5

|AGI

| 2000{{cite journal |title=Analysis of the genome sequence of the flowering plant Arabidopsis thaliana |journal=Nature |volume=408 |issue=6814 |pages=796–815 |date=December 2000 |pmid=11130711 |doi=10.1038/35048692 |bibcode=2000Natur.408..796T |author=((The Arabidopsis Genome Initiative)) |doi-access=free}}

Barbarea vulgaris

G-type

|Brassicaceae

|Model plant for specialised metabolites and plant defenses

|167.7 Mbp

|25,350

|8

|

|2017{{cite journal |vauthors=Byrne SL, Erthmann PØ, Agerbirk N, Bak S, Hauser TP, Nagy I, Paina C, Asp T |title=The genome sequence of Barbarea vulgaris facilitates the study of ecological biochemistry |journal=Scientific Reports |volume=7 |pages=40728 |date=January 2017 |pmid=28094805 |pmc=5240624 |doi=10.1038/srep40728 |bibcode=2017NatSR...740728B}}

|66.5 X coverage with Illumina GA II technology

Brassica rapa ssp. pekinensis (Chinese cabbage) accession Chiifu-401-42BrassicaceaeAssorted crops and model organism485 Mbp

|41,174 (has undergone genome triplication)

|10

|The Brassica rapa Genome Sequencing Project Consortium

| 2011{{cite journal |vauthors=Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IA, Batley J, Kim JS, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon SJ, Choi SR, Lee TH, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z |title=The genome of the mesopolyploid crop species Brassica rapa |journal=Nature Genetics |volume=43 |issue=10 |pages=1035–9 |date=August 2011 |pmid=21873998 |doi=10.1038/ng.919 |s2cid=205358099 |url=https://nrc-publications.canada.ca/eng/view/accepted/?id=8fdc0510-af47-4bba-bdf8-7c81bd2b18ec}}

72X coverage of paired short read sequences generated by Illumina GA II technology
Brassica napus (Oilseed rape or rapeseed) European winter oilseed cultivar 'Darmor-bzh'

|Brassicaceae

|Crops

|1130 Mbp

|101,040

|19

|Institutional Collaboration

|2014{{cite journal |vauthors=Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VH, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CH, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P |date=August 2014 |title=Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome |journal=Science |volume=345 |issue=6199 |pages=950–3 |bibcode=2014Sci...345..950C |doi=10.1126/science.1253435 |pmid=25146293 |doi-access=|s2cid=206556986 }}

  • {{cite press release |title=Oilseed rape genome sequenced |website=L'Institut national de la recherche agronomique |url=http://presse.inra.fr/en/Press-releases/Oilseed-rape-genome-sequenced |archive-url=https://web.archive.org/web/20170719211924/http://presse.inra.fr/en/Press-releases/Oilseed-rape-genome-sequenced |archive-date=2017-07-19}}

|454 GS-FLX+ Titanium (Roche, Basel, Switzerland) and Sanger sequencing. Correction and gap filling used 79 Gb of Illumina (San Diego, CA) HiSeq sequence.

Capsella rubellaBrassicaceaeClose relative of Arabidopsis thaliana130 Mbp26,521

|

JGI2013?{{cite web |url=http://www.phytozome.net/capsella.php |work=Phytozome v9.1 |title=Capsella rubella |access-date=2013-07-09 |archive-url=https://web.archive.org/web/20150426030222/http://www.phytozome.net/capsella.php |archive-date=2015-04-26 |url-status=dead}} 2013{{cite journal |vauthors=Slotte T, Hazzouri KM, Ågren JA, Koenig D, Maumus F, Guo YL, Steige K, Platts AE, Escobar JS, Newman LK, Wang W, Mandáková T, Vello E, Smith LM, Henz SR, Steffen J, Takuno S, Brandvain Y, Coop G, Andolfatto P, Hu TT, Blanchette M, Clark RM, Quesneville H, Nordborg M, Gaut BS, Lysak MA, Jenkins J, Grimwood J, Chapman J, Prochnik S, Shu S, Rokhsar D, Schmutz J, Weigel D, Wright SI |title=The Capsella rubella genome and the genomic consequences of rapid mating system evolution |journal=Nature Genetics |volume=45 |issue=7 |pages=831–5 |date=July 2013 |pmid=23749190 |doi=10.1038/ng.2669 |doi-access=free}}
Cardamine hirsuta (hairy bittercress) strain 'Oxford'

|Brassicaceae

|A model system for studies in evolution of plant development

|198 Mbp

|29,458

|8

|Max Planck Institute for Plant Breeding Research, Köln, Germany

|2016{{cite journal |vauthors=Gan X, Hay A, Kwantes M, Haberer G, Hallab A, Ioio RD, Hofhuis H, Pieper B, Cartolano M, Neumann U, Nikolov LA, Song B, Hajheidari M, Briskine R, Kougioumoutzi E, Vlad D, Broholm S, Hein J, Meksem K, Lightfoot D, Shimizu KK, Shimizu-Inatsugi R, Imprialou M, Kudrna D, Wing R, Sato S, Huijser P, Filatov D, Mayer KF, Mott R, Tsiantis M |title=The Cardamine hirsuta genome offers insight into the evolution of morphological diversity |journal=Nature Plants |volume=2 |issue=11 |pages=16167 |date=October 2016 |pmid=27797353 |doi=10.1038/nplants.2016.167 |pmc=8826541 |doi-access=free|bibcode=2016NatPl...216167G }}

|Shotgun sequencing strategy, combining paired end reads (197× assembled sequence coverage) and mate pair reads (66× assembled) from Illumina HiSeq (a total of 52 Gbp raw reads).

Eruca sativa (salad rocket)

|Brassicaceae

|Used for food

|851 Mbp

|45,438

|

|University of Reading

|2020{{cite journal |vauthors=Bell L, Chadwick M, Puranik M, Tudor R, Methven L, Kennedy S, Wagstaff C |title=The Eruca sativa Genome and Transcriptome: A Targeted Analysis of Sulfur Metabolism and Glucosinolate Biosynthesis Pre and Postharvest |journal=Frontiers in Plant Science |volume=11 |pages=525102 |date=2020 |pmid=33193472 |pmc=7652772 |doi=10.3389/fpls.2020.525102 |doi-access=free}}

|Illumina MiSeq and HiSeq2500. PCR free paired end and long mate pair sequencing and assembly. Illumina HiSeq transcriptome sequencing (125/150 bp paired end reads).

Erysimum cheiranthoides (wormseed wallflower) strain 'Elbtalaue'

|Brassicaceae

|Model plant for studying defensive chemistry, including cardiac glycosides

|175 Mbp

|29,947

|8

|Boyce Thompson Institute, Ithaca, NY

|2020{{Cite web |date=September 17, 2019 |title=Erysimum Genome Site |url=https://www.erysimum.org/ |website=www.erysimum.org}}{{cite journal |vauthors=Züst T, Strickler SR, Powell AF, Mabry ME, An H, Mirzaei M, York T, Holland CK, Kumar P, Erb M, Petschenka G, Gómez JM, Perfectti F, Müller C, Pires JC, Mueller LA, Jander G |title=Independent evolution of ancestral and novel defenses in a genus of toxic plants (Erysimum, Brassicaceae) |journal=eLife |volume=9 |pages=e51712 |date=April 2020 |pmid=32252891 |pmc=7180059 |doi=10.7554/eLife.51712 |doi-access=free}}

|39.5 Gb PacBio sequences (average length 10,603 bp), one lane Illumina MiSeq sequencing (2 x 250 bp paired end), Phase Genomics Hi-C scaffolding, PacBio and Illumina transcriptome sequencing

Eutrema salsugineumBrassicaceaeA relative of arabidopsis with high salt tolerance240 Mbp26,351

|

JGI2013{{cite journal |vauthors=Yang R, Jarvis DE, Chen H, Beilstein MA, Grimwood J, Jenkins J, Shu S, Prochnik S, Xin M, Ma C, Schmutz J, Wing RA, Mitchell-Olds T, Schumaker KS, Wang X |title=The Reference Genome of the Halophytic Plant Eutrema salsugineum |journal=Frontiers in Plant Science |volume=4 |pages=46 |year=2013 |pmid=23518688 |pmc=3604812 |doi=10.3389/fpls.2013.00046 |doi-access=free}}
Eutrema parvulumBrassicaceaeComparative analysis of crucifer genomes|2013
Leavenworthia alabamicaBrassicaceaeComparative analysis of crucifer genomes|2013
Sisymbrium irioBrassicaceaeComparative analysis of crucifer genomes|2013
Thellungiella parvulaBrassicaceaeA relative of arabidopsis with high salt tolerance|2011{{cite journal |vauthors=Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S, Yun DJ, Bressan RA, Zhu JK, Bohnert HJ, Cheeseman JM |title=The genome of the extremophile crucifer Thellungiella parvula |journal=Nature Genetics |volume=43 |issue=9 |pages=913–8 |date=August 2011 |pmid=21822265 |pmc=3586812 |doi=10.1038/ng.889}}
Cannabis sativa (hemp)CannabaceaeHemp and marijuana productionca 820 Mbp30,074 based on transcriptome assembly and clustering

|

2011{{cite journal |vauthors=van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, Page JE |title=The draft genome and transcriptome of Cannabis sativa |journal=Genome Biology |volume=12 |issue=10 |pages=R102 |date=October 2011 |pmid=22014239 |pmc=3359589 |doi=10.1186/gb-2011-12-10-r102 |doi-access=free}}Illumina/454

scaffold N50 16.2 Kbp

Capparis spinosa var. herbacea (Caper)

|Capparaceae

|Crop

|274.53 Mb

|21,577

|

|

|2022{{cite journal |vauthors=Wang L, Fan L, Zhao Z, Zhang Z, Jiang L, Chai M, Tian C |title=The Capparis spinosa var. herbacea genome provides the first genomic instrument for a diversity and evolution study of the Capparaceae family |journal=GigaScience |volume=11 |date=October 2022 |pmid=36310248 |pmc=9618406 |doi=10.1093/gigascience/giac106}}

|contig N50 9.36 Mb

Carica papaya (papaya)CaricaceaeFruit crop372 Mbp28,629

|

2008{{cite journal |vauthors=Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen C, Qian W, Shen J, Du P, Eustice M, Tong E, Tang H, Lyons E, Paull RE, Michael TP, Wall K, Rice DW, Albert H, Wang ML, Zhu YJ, Schatz M, Nagarajan N, Acob RA, Guan P, Blas A, Wai CM, Ackerman CM, Ren Y, Liu C, Wang J, Wang J, Na JK, Shakirov EV, Haas B, Thimmapuram J, Nelson D, Wang X, Bowers JE, Gschwend AR, Delcher AL, Singh R, Suzuki JY, Tripathi S, Neupane K, Wei H, Irikura B, Paidi M, Jiang N, Zhang W, Presting G, Windsor A, Navajas-Pérez R, Torres MJ, Feltus FA, Porter B, Li Y, Burroughs AM, Luo MC, Liu L, Christopher DA, Mount SM, Moore PH, Sugimura T, Jiang J, Schuler MA, Friedman V, Mitchell-Olds T, Shippen DE, dePamphilis CW, Palmer JD, Freeling M, Paterson AH, Gonsalves D, Wang L, Alam M |title=The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus) |journal=Nature |volume=452 |issue=7190 |pages=991–6 |date=April 2008 |pmid=18432245 |pmc=2836516 |doi=10.1038/nature06856 |bibcode=2008Natur.452..991M}}contig N50 11kbp

scaffold N50

1Mbp

total coverage ~3x (Sanger)

92.1% unigenes mapped

235Mbp anchored (of this 161Mbp also oriented)

Casuarina equisetifolia

(Australian Pine)

|Casuarinaceae

|bonsai subject

|300 Mbp

|29,827

|

|

|2018{{cite journal |vauthors=Ye G, Zhang H, Chen B, Nie S, Liu H, Gao W, Wang H, Gao Y, Gu L |title=De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth |journal=The Plant Journal |volume=97 |issue=4 |pages=779–794 |date=February 2019 |pmid=30427081 |doi=10.1111/tpj.14159 |doi-access=free}}

|

Tripterygium wilfordii (Lei gong teng)

|Celastraceae

|Chinese medicine crop

|340.12 Mbp

|31,593

|

|

|2021{{Cite journal |vauthors=Pei T, Yan M, Kong Y, Fan H, Liu J, Cui M, Fang Y, Ge B, Yang J, Zhao Q |title=The genome of Tripterygium wilfordii and characterization of the celastrol biosynthesis pathway |journal=Gigabyte |year=2021 |volume=2021 |pages=1–30 |language=en |doi=10.46471/gigabyte.14 |pmid=36967728 |pmc=10038137 |doi-access=free}}

|Contig N50 3.09 Mbp

Cleome gynandra

(African cabbage)

|Cleomaceae

|C4 leafy vegetable and medicinal plant

|740 Mb

|30,933

|

|

|2023{{cite journal |vauthors=Hoang NV, Sogbohossou EO, Xiong W, Simpson CJ, Singh P, Walden N, van den Bergh E, Becker FF, Li Z, Zhu XG, Brautigam A, Weber AP, van Haarst JC, Schijlen EG, Hendre PS, Van Deynze A, Achigan-Dako EG, Hibberd JM, Schranz ME |title=The Gynandropsis gynandra genome provides insights into whole-genome duplications and the evolution of C4 photosynthesis in Cleomaceae |journal=The Plant Cell |volume=35 |issue=5 |pages=1334–1359 |date=April 2023 |pmid=36691724 |pmc=10118270 |doi=10.1093/plcell/koad018}}

|N50 of 42 Mb

Kalanchoë fedtschenkoi Raym.-Hamet & H. PerrierKalanchoeCrassulaceaeMolecular genetic model for obligate CAM species in the eudicots

|256 Mbp

|30,964

|34

|

2017{{cite journal |vauthors=Yang X, Hu R, Yin H, Jenkins J, Shu S, Tang H, Liu D, Weighill DA, Cheol Yim W, Ha J, Heyduk K, Goodstein DM, Guo HB, Moseley RC, Fitzek E, Jawdy S, Zhang Z, Xie M, Hartwell J, Grimwood J, Abraham PE, Mewalal R, Beltrán JD, Boxall SF, Dever LV, Palla KJ, Albion R, Garcia T, Mayer JA, Don Lim S, Man Wai C, Peluso P, Van Buren R, De Paoli HC, Borland AM, Guo H, Chen JG, Muchero W, Yin Y, Jacobson DA, Tschaplinski TJ, Hettich RL, Ming R, Winter K, Leebens-Mack JH, Smith JA, Cushman JC, Schmutz J, Tuskan GA |title=The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism |journal=Nature Communications |volume=8 |issue=1 |pages=1899 |date=December 2017 |pmid=29196618 |pmc=5711932 |doi=10.1038/s41467-017-01491-7 |bibcode=2017NatCo...8.1899Y}}~70× paired-end reads and ~37× mate-pair reads generated using an Illumina MiSeq platform.
Rhodiola crenulata (Tibetan medicinal herb)

|Crassulaceae

|Uses for medicine and food

|344.5 Mb

|35,517

|

|

|2017{{cite journal |vauthors=Fu Y, Li L, Hao S, Guan R, Fan G, Shi C, Wan H, Chen W, Zhang H, Liu G, Wang J, Ma L, You J, Ni X, Yue Z, Xu X, Sun X, Liu X, Lee SM |title=Draft genome sequence of the Tibetan medicinal herb Rhodiola crenulata |journal=GigaScience |volume=6 |issue=6 |pages=1–5 |date=June 2017 |pmid=28475810 |pmc=5530320 |doi=10.1093/gigascience/gix033}}

|

Citrullus lanatus (watermelon)CucurbitaceaeVegetable cropca 425 Mbp23,440

|

BGI2012{{cite journal |vauthors=Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham BK, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, Mueller LA, Zhao H, He H, Zhang Y, Zhang Z, Huang S, Tan T, Pang E, Lin K, Hu Q, Kuang H, Ni P, Wang B, Liu J, Kou Q, Hou W, Zou X, Jiang J, Gong G, Klee K, Schoof H, Huang Y, Hu X, Dong S, Liang D, Wang J, Wu K, Xia Y, Zhao X, Zheng Z, Xing M, Liang X, Huang B, Lv T, Wang J, Yin Y, Yi H, Li R, Wu M, Levi A, Zhang X, Giovannoni JJ, Wang J, Li Y, Fei Z, Xu Y |title=The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions |journal=Nature Genetics |volume=45 |issue=1 |pages=51–8 |date=January 2013 |pmid=23179023 |doi=10.1038/ng.2470 |hdl=2434/619399 |doi-access=free |hdl-access=free}}Illumina

coverage 108.6x

contig N50 26.38 kbp

Scaffold N50 2.38 Mbp

genome covered 83.2%

~97% ESTs mapped

Cucumis melo (Muskmelon) DHL92CucurbitaceaeVegetable crop450 Mbp27,427

|

2012{{cite journal |vauthors=Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, Hénaff E, Câmara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutiérrez S, Blanca J, Cañizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodríguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdos B, Melé M, Yang L, Weng Y, Navarro A, Marques-Bonet T, Aranda MA, Nuez F, Picó B, Gabaldón T, Roma G, Guigó R, Casacuberta JM, Arús P, Puigdomènech P |title=The genome of melon (Cucumis melo L.) |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=109 |issue=29 |pages=11872–7 |date=July 2012 |pmid=22753475 |pmc=3406823 |doi=10.1073/pnas.1205415109 |bibcode=2012PNAS..10911872G |doi-access=free}}454

13.5x coverage

contig N50: 18.1kbp

scaffold N50: 4.677 Mbp

WGS

Cucumis sativus (cucumber) 'Chinese long' inbred line 9930CucurbitaceaeVegetable crop350 Mbp (Kmer depth) 367 Mbp (flow cytometry)26,682

|

2009{{cite journal |vauthors=Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EA, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Wu Z, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S |title=The genome of the cucumber, Cucumis sativus L |journal=Nature Genetics |volume=41 |issue=12 |pages=1275–81 |date=December 2009 |pmid=19881527 |doi=10.1038/ng.475 |doi-access=free}}contig N50 19.8kbp

scaffold N50 1,140kbp

total coverage ~72.2 (Sanger + Ilumina)

96.8% unigenes mapped

72.8% of the genome anchored

Cucurbita argyrosperma subsp. argyrosperma

(Silver-seed gourd)

|Cucurbitaceae

|Seed and fruit crop

|228.8 Mbp

|27,998

|20

|National Autonomous University of Mexico

|2019,{{cite journal |vauthors=Barrera-Redondo J, Ibarra-Laclette E, Vázquez-Lobo A, Gutiérrez-Guerrero YT, Sánchez de la Vega G, Piñero D, Montes-Hernández S, Lira-Saade R, Eguiarte LE |title=The Genome of Cucurbita argyrosperma (Silver-Seed Gourd) Reveals Faster Rates of Protein-Coding Gene and Long Noncoding RNA Turnover and Neofunctionalization within Cucurbita |language=en |journal=Molecular Plant |volume=12 |issue=4 |pages=506–520 |date=April 2019 |pmid=30630074 |doi=10.1016/j.molp.2018.12.023 |doi-access=free|bibcode=2019MPlan..12..506B }} updated in 2021

|contig N50 447 kbp

scaffold N50 11.6 Mbp

total coverage: 120x Illumina (HiSeq2000 and MiSeq) + 31x PacBio RSII

Cucurbita argyrosperma subsp. sororia

(wild gourd)

|Cucurbitaceae

|Wild relative of the silver-seed gourd

|255.2 Mbp

|30,592

|20

|National Autonomous University of Mexico

|2021{{cite journal |vauthors=Barrera-Redondo J, Sánchez-de la Vega G, Aguirre-Liguori JA, Castellanos-Morales G, Gutiérrez-Guerrero YT, Aguirre-Dugua X, Aguirre-Planter E, Tenaillon MI, Lira-Saade R, Eguiarte LE |title=The domestication of Cucurbita argyrosperma as revealed by the genome of its wild relative |journal=Horticulture Research |volume=8 |issue=1 |pages=109 |date=May 2021 |pmid=33931618 |pmc=8087764 |doi=10.1038/s41438-021-00544-9 |doi-access=free|bibcode=2021HorR....8..109B }}

|contig N50 1.2 Mbp

scaffold N50 12.1 Mbp

total coverage: 213x Illumina HiSeq4000 + 75.4x PacBio Sequel

Siraitia grosvenorii

(Monk fruit)

|Cucurbitaceae

|Chinese medicine/sweetener

|456.5 Mbp

|30,565

|

|Anhui Agricultural University

|2018{{cite journal |vauthors=Xia M, Han X, He H, Yu R, Zhen G, Jia X, Cheng B, Deng XW |title=Improved de novo genome assembly and analysis of the Chinese cucurbit Siraitia grosvenorii, also known as monk fruit or luo-han-guo |journal=GigaScience |volume=7 |issue=6 |date=June 2018 |pmid=29893829 |pmc=6007378 |doi=10.1093/gigascience/giy067}}

|

Hippophae rhamnoides (sea-buckthorn)

|Elaeagnaceae

|used in food and cosmetics

|730 Mbp

|30,812

|

|

|2022{{cite journal |vauthors=Wu Z, Chen H, Pan Y, Feng H, Fang D, Yang J, Wang Y, Yang J, Sahu SK, Liu J, Xing Y, Wang X, Liu M, Luo X, Gao P, Li L, Liu Z, Yang H, Liu X, Xu X, Liu H, Wang E |title=Genome of Hippophae rhamnoides provides insights into a conserved molecular mechanism in actinorhizal and rhizobial symbioses |journal=The New Phytologist |volume=235 |issue=1 |pages=276–291 |date=July 2022 |pmid=35118662 |doi=10.1111/nph.18017 |bibcode=2022NewPh.235..276W |s2cid=246529299}}

|

Hevea brasiliensis (rubber tree)Euphorbiaceaethe most economically important member of the genus Hevea|2013{{cite journal |vauthors=Rahman AY, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K, Feng Y, Hou S, Ong SY, Ng FL, Lee LS, Tan HS, Sakaff MK, Teh BS, Khoo BF, Badai SS, Aziz NA, Yuryev A, Knudsen B, Dionne-Laporte A, Mchunu NP, Yu Q, Langston BJ, Freitas TA, Young AG, Chen R, Wang L, Najimudin N, Saito JA, Alam M |title=Draft genome sequence of the rubber tree Hevea brasiliensis |journal=BMC Genomics |volume=14 |pages=75 |date=February 2013 |pmid=23375136 |pmc=3575267 |doi=10.1186/1471-2164-14-75 |doi-access=free}}
Jatropha curcas PalawanEuphorbiaceaebio-diesel crop|2011{{cite journal |vauthors=Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu T, Toyoda A, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena JA, Wada N, Kohinata T, Atefeh A, Yuasa S, Matsunaga S, Fukui K |title=Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L |journal=DNA Research |volume=18 |issue=1 |pages=65–76 |date=February 2011 |pmid=21149391 |pmc=3041505 |doi=10.1093/dnares/dsq030}}
Manihot esculenta (Cassava)EuphorbiaceaeHumanitarian importance~760 Mb30,666

|

JGI2012Prochnik et al. (2012), J. Tropical Plant Biology
Ricinus communis (Castor bean)EuphorbiaceaeOilseed crop320 Mbp31,237

|

JCVI2010{{cite journal |vauthors=Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G, Cahoon EB, Gedil M, Stanke M, Haas BJ, Wortman JR, Fraser-Liggett CM, Ravel J, Rabinowicz PD |title=Draft genome sequence of the oilseed species Ricinus communis |journal=Nature Biotechnology |volume=28 |issue=9 |pages=951–6 |date=September 2010 |pmid=20729833 |pmc=2945230 |doi=10.1038/nbt.1674}}Sanger coverage~4.6x contig N50 21.1 kbp scaffold N50 496.5kbp
Ricinus communis L. (Wild Castor)Euphorbiaceaeone of the most important oil crops worldwide~318.13 Mb30,066

|

National Key R&D Program of China, the National Natural Science Foundation of China, the Guangdong Basic and Applied Basic Research Foundation, China, and the Shenzhen Science and Technology Program, China2021{{cite journal |vauthors=Lu J, Pan C, Fan W, Liu W, Zhao H, Li D, Wang S, Hu L, He B, Qian K, Qin R, Ruan J, Lin Q, Lü S, Cui P |title=A Chromosome-level Assembly of A Wild Castor Genome Provides New Insights into the Adaptive Evolution in A Tropical Desert |journal=Genomics Proteomics Bioinformatics |volume=S1672-0229 |issue=21 |pages=00162–5 |date=July 2021 |pmid=34339842 |doi=10.1016/j.gpb.2021.04.003 |pmc=9510866 |s2cid=236885144 |doi-access=free}}genome size of 316 Mb, a scaffold N50 of 31.93 Mb, and a contig N50 of 8.96 Mb
Ammopiptanthus nanus

|Fabaceae

|Only genus of evergreen broadleaf shrub

|889 Mb

|37,188

|

|

|2018{{cite journal |vauthors=Gao F, Wang X, Li X, Xu M, Li H, Abla M, Sun H, Wei S, Feng J, Zhou Y |title=Long-read sequencing and de novo genome assembly of Ammopiptanthus nanus, a desert shrub |journal=GigaScience |volume=7 |issue=7 |date=July 2018 |pmid=29917074 |pmc=6048559 |doi=10.1093/gigascience/giy074}}

|

Cajanus cajan (Pigeon pea) var. AshaFabaceaeModel legume|2012{{cite journal |vauthors=Singh NK, Gupta DK, Jayaswal PK, Mahato AK, Dutta S, Singh S, Bhutani S, Dogra V, Singh BP, Kumawat G, Pal JK, Pandit A, Singh A, Rawal H, Kumar A, Rama Prashat G, Khare A, Yadav R, Raje RS, Singh MN, Datta S, Fakrudin B, Wanjari KB, Kansal R, Dash PK, Jain PK, Bhattacharya R, Gaikwad K, Mohapatra T, Srinivasan R, Sharma TR |title=The first draft of the pigeonpea genome sequence |journal=Journal of Plant Biochemistry and Biotechnology |volume=21 |issue=1 |pages=98–112 |year=2012 |pmid=24431589 |pmc=3886394 |doi=10.1007/s13562-011-0088-8|bibcode=2012JPBB...21...98S }}{{cite journal |vauthors=Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM, Farmer AD, Sheridan J, Iwata A, Tuteja R, Penmetsa RV, Wu W, Upadhyaya HD, Yang SP, Shah T, Saxena KB, Michael T, McCombie WR, Yang B, Zhang G, Yang H, Wang J, Spillane C, Cook DR, May GD, Xu X, Jackson SA |title=Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers |journal=Nature Biotechnology |volume=30 |issue=1 |pages=83–9 |date=November 2011 |pmid=22057054 |doi=10.1038/nbt.2022 |doi-access=free}}
Arachis duranensis (A genome diploid wild peanut) accession V14167FabaceaeWild ancestor of peanut, an oilseed and grain legume crop|2016{{cite journal |vauthors=Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araújo AC, Kozik A, Kim KD, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimarães PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SC, Xun X, Jackson SA, Michelmore R, Ozias-Akins P |title=The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut |journal=Nature Genetics |volume=48 |issue=4 |pages=438–46 |date=April 2016 |pmid=26901068 |doi=10.1038/ng.3517 |doi-access=free |hdl=2346/93664 |hdl-access=free}}Illumina 154x coverage, contig N50 22 kbp, scaffold N50 948 kbp
Amphicarpaea edgeworthii (Chinese hog-peanut)Fabaceaeproduces both aerial and subterranean fruits299-Mb27 899

|

Taishan Scholar Program, National Natural Science Foundation of China, the Innovation Program of SAAS2021{{cite journal |vauthors=Liu Y, Zhang X, Han K, Li R, Xu G, Han Y, Cui F, Fan S, Seim I, Fan G, Li G, Wan S |title=Insights into amphicarpy from the compact genome of the legume Amphicarpaea edgeworthii |journal=Plant Biotechnology Journal |volume=19 |issue=5 |pages=952–965 |date=2020 |pmid=33236503 |pmc=8131047 |doi=10.1111/pbi.13520}}
Arachis ipaensis (B genome diploid wild peanut) accession K30076

|Fabaceae

|Wild ancestor of peanut, an oilseed and grain legume crop

|

|

|

|

|2016

|Illumina 163x coverage, contig N50 23 kbp, scaffold N50 5,343 kbp

Cicer arietinum (chickpea)Fabaceaefilling|2013{{cite journal |vauthors=Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar'an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Luo MC, Thudi M, Gowda CL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR |title=Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement |journal=Nature Biotechnology |volume=31 |issue=3 |pages=240–6 |date=March 2013 |pmid=23354103 |doi=10.1038/nbt.2491 |s2cid=6649873 |url=http://oar.icrisat.org/6444/1/NB_Draftgenome_2013.pdf |doi-access=free}}
Cicer arietinum L. (chickpea)Fabaceae|2013{{cite journal |vauthors=Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D |title=A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.) |journal=The Plant Journal |volume=74 |issue=5 |pages=715–29 |date=June 2013 |pmid=23489434 |doi=10.1111/tpj.12173 |doi-access=free}}
Dalbergia odorifera (fragrant rosewood)

|Fabaceae

|Wood product (heartwood) and folk medicine

|653 Mb

|30,310

|10

|Chinese Academy of Forestry

|2020{{cite journal |vauthors=Hong Z, Li J, Liu X, Lian J, Zhang N, Yang Z, Niu Y, Cui Z, Xu D |title=The chromosome-level draft genome of Dalbergia odorifera |journal=GigaScience |volume=9 |issue=8 |date=August 2020 |pmid=32808664 |pmc=7433187 |doi=10.1093/gigascience/giaa084}}

|Contig N50: 5.92Mb

Scaffold N50: 56.1 6Mb

Faidherbia albida

(Apple-Ring Acacia)

|Fabaceae

|Importante in the Sahel for raising bees

|

|28,979

|

|

|2018{{Cite book |url=http://gigadb.org/dataset/101054 |title=GigaDB Dataset | chapter = Genomic data of the Apple-Ring Acacia (Faidherbia albida) |date=2018 |doi=10.5524/101054 |access-date=2019-06-19 | vauthors = Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, Song B, Cheng S, Kariba R, Muthemba S, Hendre PS, Mayes S, Ho WK, Kendabie P, Wang S, Li L, Muchugi A, Jamnadass R, Lu H, Peng S, Deynze AV, Simons A, Yana-Shapiro H, Xu X, Yang H, Wang J, Liu X |publisher=GigaScience Database }}

|

Glycine max (soybean) var. Williams 82FabaceaeProtein and oil crop1115 Mbp46,430

|

2010{{cite journal |vauthors=Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA |title=Genome sequence of the palaeopolyploid soybean |journal=Nature |volume=463 |issue=7278 |pages=178–83 |date=January 2010 |pmid=20075913 |doi=10.1038/nature08670 |bibcode=2010Natur.463..178S |url=https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1366&context=agronomyfacpub |doi-access=free}}Contig N50:189.4kbp

Scaffold N50:47.8Mbp

Sanger coverage ~8x

WGS

955.1 Mbp assembled

Lablab purpureus

(Hyacinth Bean)

|Fabaceae

|Crop for human consumption

|

|20,946

|

|

|2018{{Cite book |title=GigaDB Dataset |chapter=Genomic data of the Hyacinth Bean (Lablab purpureus) |doi=10.5524/101056 |year=2018 |vauthors=Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, Song B, Cheng S, Kariba R, Muthemba S, Hendre PS, Mayes S, Ho WK, Kendabie P, Wang S, Li L, Muchugi A, Jamnadass R, Lu H, Peng S, Deynze AV, Simons A, Yana-Shapiro H, Xu X, Yang H, Wang J, Liu X |publisher=GigaScience Database}}

|

Lotus japonicus (Bird's-foot Trefoil)FabaceaeModel legume|2008{{cite journal |vauthors=Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S |title=Genome structure of the legume, Lotus japonicus |journal=DNA Research |volume=15 |issue=4 |pages=227–39 |date=August 2008 |pmid=18511435 |pmc=2575887 |doi=10.1093/dnares/dsn008}}
Medicago truncatula (Barrel Medic)FabaceaeModel legume|2011{{cite journal |vauthors=Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KF, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KA, Tang H, Rombauts S, Zhao PX, Zhou P, Barbe V, Bardou P, Bechner M, Bellec A, Berger A, Bergès H, Bidwell S, Bisseling T, Choisne N, Couloux A, Denny R, Deshpande S, Dai X, Doyle JJ, Dudez AM, Farmer AD, Fouteau S, Franken C, Gibelin C, Gish J, Goldstein S, González AJ, Green PJ, Hallab A, Hartog M, Hua A, Humphray SJ, Jeong DH, Jing Y, Jöcker A, Kenton SM, Kim DJ, Klee K, Lai H, Lang C, Lin S, Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun JH, Najar FZ, Nicholson C, Noirot C, O'Bleness M, Paule CR, Poulain J, Prion F, Qin B, Qu C, Retzel EF, Riddle C, Sallet E, Samain S, Samson N, Sanders I, Saurat O, Scarpelli C, Schiex T, Segurens B, Severin AJ, Sherrier DJ, Shi R, Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang BB, Wang K, Wang M, Wang X, Warfsmann J, Weissenbach J, White DD, White JD, Wiley GB, Wincker P, Xing Y, Yang L, Yao Z, Ying F, Zhai J, Zhou L, Zuber A, Dénarié J, Dixon RA, May GD, Schwartz DC, Rogers J, Quétier F, Town CD, Roe BA |title=The Medicago genome provides insight into the evolution of rhizobial symbioses |journal=Nature |volume=480 |issue=7378 |pages=520–4 |date=November 2011 |pmid=22089132 |pmc=3272368 |doi=10.1038/nature10625 |bibcode=2011Natur.480..520Y}}
Melilotus officinalis (sweet yellow clover)

|Fabaceae

|Forage and Chinese medicine

|976.27 Mbp

|50,022

|

|

|2023{{cite journal | vauthors = He Q, Li Z, Liu Y, Yang H, Liu L, Ren Y, Zheng J, Xu R, Wang S, Zhan Q | title = Chromosome-scale assembly and analysis of Melilotus officinalis genome for SSR development and nodulation genes analysis | journal = The Plant Genome | volume = 16 | issue = 3 | pages = e20345 | date = September 2023 | pmid = 37259688 | doi = 10.1002/tpg2.20345 | doi-access = free }}

|

Phaseolus vulgaris (common bean)FabaceaeModel bean520 Mbp31,638

|

JGI2013?{{cite web |url=http://www.phytozome.net/commonbean.php |work=Phytozome v9.1 |title=Phaseolus vulgaris v1.0 |access-date=2013-07-09 |archive-url=https://web.archive.org/web/20150415030702/http://www.phytozome.net/commonbean.php |archive-date=2015-04-15 |url-status=dead}}
Prosopis cineraria (Ghaf)

|Fabaceae

|Desert mimosoid legume

|691 Mbp

|55,325

|

|

|2023{{cite journal | vauthors = Sudalaimuthuasari N, Ali R, Kottackal M, Rafi M, Al Nuaimi M, Kundu B, Al-Maskari RS, Wang X, Mishra AK, Balan J, Chaluvadi SR, Al Ansari F, Bennetzen JL, Purugganan MD, Hazzouri KM, Amiri KM | title = The Genome of the Mimosoid Legume Prosopis cineraria, a Desert Tree | journal = International Journal of Molecular Sciences | volume = 23 | issue = 15 | pages = 8503 | date = July 2022 | pmid = 35955640 | pmc = 9369113 | doi = 10.3390/ijms23158503 | doi-access = free }}

|

Vicia faba L. (Faba bean)

|Fabaceae

|

|

|

|

|Nature (journal)

|2023

:{{cite journal |vauthors=Ugalde JM, Straube H |title=New genes on the block: Neofunctionalization of tandem duplicate genes with putative new functions in Arabidopsis |journal=Plant Physiology |volume=192 |issue=4 |pages=2574–2576 |date=August 2023 |pmid=37158166 |pmc=10400027 |doi=10.1093/plphys/kiad271 |publisher=Oxford University Press |s2cid=258566187}}

:

:This review cites this research.

:

:{{cite journal |vauthors=Jayakodi M, Golicz AA, Kreplak J, Fechete LI, Angra D, Bednář P, Bornhofen E, Zhang H, Boussageon R, Kaur S, Cheung K, Čížková J, Gundlach H, Hallab A, Imbert B, Keeble-Gagnère G, Koblížková A, Kobrlová L, Krejčí P, Mouritzen TW, Neumann P, Nadzieja M, Nielsen LK, Novák P, Orabi J, Padmarasu S, Robertson-Shersby-Harvie T, Robledillo LÁ, Schiemann A, Tanskanen J, Törönen P, Warsame AO, Wittenberg AH, Himmelbach A, Aubert G, Courty PE, Doležel J, Holm LU, Janss LL, Khazaei H, Macas J, Mascher M, Smýkal P, Snowdon RJ, Stein N, Stoddard FL, Stougaard J, Tayeh N, Torres AM, Usadel B, Schubert I, O'Sullivan DM, Schulman AH, Andersen SU |title=The giant diploid faba genome unlocks variation in a global protein crop |journal=Nature |volume=615 |issue=7953 |pages=652–659 |date=March 2023 |pmid=36890232 |pmc=10033403 |doi=10.1038/s41586-023-05791-5 |bibcode=2023Natur.615..652J}}

|

Vicia villosa (hairy vetch)

|Fabaceae

|Forage and cover crop

|2.03 Gbp

|

|

|

|2023{{cite journal | vauthors = Fuller T, Bickhart DM, Koch LM, Kucek LK, Ali S, Mangelson H, Monteros MJ, Hernandez T, Smith TP, Riday H, Sullivan ML | title = A reference assembly for the legume cover crop hairy vetch (Vicia villosa) | journal = GigaByte | volume = 2023 | pages = 1–20 | date = 2023-11-13 | pmid = 38023065 | pmc = 10659084 | doi = 10.46471/gigabyte.98 | doi-access = free }}

|

Vigna hirtella (Wild vigna)

|Fabaceae

|Wild legume

|474.1 Mbp

|

|

|

|2023{{Cite book | title = GigaDB Dataset | chapter = Supporting data for "Genomic data of Vigna hirtella" |date=2023 |url=http://dx.doi.org/10.5524/102399 |language=en |doi=10.5524/102399 | vauthors = Pootakham W, Sonthirod C, Naktang C, Yundaeng C, Yoocha T, Kongkachana W, Sangsrakru D, Somta P, Tangphatsornruang S | publisher = GigaScience Database }}

|

Vigna reflexo-pilosa (Créole bean)

|Fabaceae

|Tetraploid wild legume

|998.7 Mbp

|

|

|

|2023{{cite journal | vauthors = Pootakham W, Sonthirod C, Naktang C, Yundaeng C, Yoocha T, Kongkachana W, Sangsrakru D, Somta P, Tangphatsornruang S | title = Genome assemblies of Vigna reflexo-pilosa (créole bean) and its progenitors, Vigna hirtella and Vigna trinervia, revealed homoeolog expression bias and expression-level dominance in the allotetraploid | journal = GigaScience | volume = 12 | date = December 2022 | pmid = 37470496 | pmc = 10357499 | doi = 10.1093/gigascience/giad050 }}{{Cite book |title=GigaDB Dataset | chapter = Supporting data for "Genomic data of créole bean, Vigna reflexopilosa" |date=2023 |language=en |doi=10.5524/102398 | vauthors = Pootakham W, Sonthirod C, Naktang C, Yundaeng C, Yoocha T, Kongkachana W, Sangsrakru D, Somta P, Tangphatsornruang |publisher=GigaScience Database}}

|

Vigna subterranea

(Bambara Groundnut)

|Fabaceae

|similar to peanuts

|

|31,707

|

|

|2018{{Cite book | chapter-url=http://gigadb.org/dataset/101055 | title = GigaDB Dataset | chapter = Genomic data of the Bambara Groundnut (Vigna subterranea) |date=2018 |doi=10.5524/101055 |access-date=2019-06-19 | vauthors = Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, Song B, Cheng S, Kariba R, Muthemba S, Hendre PS, Mayes S, Ho WK, Kendabie P, Wang S, Li L, Muchugi A, Jamnadass R, Lu H, Peng S, Deynze AV, Simons A, Yana-Shapiro H, Xu X, Yang H, Wang J, Liu X | publisher = GigaScience Database }}

|

Vigna trinervia

|Fabaceae

|

|498,7 Mbp

|

|

|

|2023

|

Trifolium pratense L. (Red clover)

|Fabaceae

|often used to relieve symptoms of menopause, high cholesterol, and osteoporosis.{{cite book |vauthors=Nieves JW |chapter=Alternative Therapy through Nutrients and Nutraceuticals |title=Osteoporosis |date=2013 |pages=1739–1749 |doi=10.1016/B978-0-12-415853-5.00074-1 |isbn=9780124158535 |quote=Red clover is a wild plant belonging to the legume family and is often used to relieve symptoms of menopause, high cholesterol, and osteoporosis.}}

|

|

|

|

|2022{{Cite journal |vauthors=Bickhart DM, Koch LM, Smith TP, Riday H, Sullivan ML |date=2022-02-18 |title=Chromosome-scale assembly of the highly heterozygous genome of red clover (Trifolium pratense L.), an allogamous forage crop species |journal=Gigabyte |language=en |volume=2022 |pages=1–13 |doi=10.46471/gigabyte.42 |pmid=36824517 |pmc=9650271 |s2cid=246987248 |doi-access=free}}

|

Vicia sativa L. (Common vetch)

|Fabaceae

|grain to livestock

|

|

|

|

|2022{{Cite journal |vauthors=Xi H, Nguyen V, Ward C, Liu Z, Searle IR |date=2022-01-31 |title=Chromosome-level assembly of the common vetch (Vicia sativa) reference genome |journal=Gigabyte |language=en |volume=2022 |pages=1–20 |doi=10.46471/gigabyte.38 |pmid=36824524 |pmc=9650280 |s2cid=246453086 |doi-access=free}}

|

Macrotyloma uniflorum (Horse gram)

|Fabaceae

|horsefeed

|

|

|

|

|2021{{Cite journal |vauthors=Shirasawa K, Chahota R, Hirakawa H, Nagano S, Nagasaki H, Sharma T, Isobe S |date=2021-10-08 |title=A chromosome-scale draft genome sequence of horsegram (Macrotyloma uniflorum) |journal=Gigabyte |language=en |volume=2021 |pages=1–23 |doi=10.46471/gigabyte.30 |pmid=36824333 |pmc=9650294 |doi-access=free}}

|

Castanea mollissima (Chinese chestnut)

|Fagaceae

|cultivated nut

|785.53 Mb

|36,479

|

|Beijing University of Agriculture

|2019{{cite journal |vauthors=Xing Y, Liu Y, Zhang Q, Nie X, Sun Y, Zhang Z, Li H, Fang K, Wang G, Huang H, Bisseling T, Cao Q, Qin L |title=Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima) |journal=GigaScience |volume=8 |issue=9 |date=September 2019 |pmid=31513707 |pmc=6741814 |doi=10.1093/gigascience/giz112 |url=}}

|Illumina: ~42.7×

PacBio: ~87×

contig N50: 944,000bp

Quercus robur (European oak)

|Fagaceae

|Pedunculate oak,

large diversity,

somatic mutation studies

|736 Mb

|25,808

|12

|[https://www6.bordeaux-aquitaine.inrae.fr/biogeco Biogeco lab, Inrae, University of Bordeaux]

|2018{{cite journal |vauthors=Plomion C, Aury JM, Amselem J, Leroy T, Murat F, Duplessis S, Faye S, Francillonne N, Labadie K, Le Provost G, Lesur I, Bartholomé J, Faivre-Rampant P, Kohler A, Leplé JC, Chantret N, Chen J, Diévart A, Alaeitabar T, Barbe V, Belser C, Bergès H, Bodénès C, Bogeat-Triboulot MB, Bouffaud ML, Brachi B, Chancerel E, Cohen D, Couloux A, Da Silva C, Dossat C, Ehrenmann F, Gaspin C, Grima-Pettenati J, Guichoux E, Hecker A, Herrmann S, Hugueney P, Hummel I, Klopp C, Lalanne C, Lascoux M, Lasserre E, Lemainque A, Desprez-Loustau ML, Luyten I, Madoui MA, Mangenot S, Marchal C, Maumus F, Mercier J, Michotey C, Panaud O, Picault N, Rouhier N, Rué O, Rustenholz C, Salin F, Soler M, Tarkka M, Velt A, Zanne AE, Martin F, Wincker P, Quesneville H, Kremer A, Salse J |title=Oak genome reveals facets of long lifespan |journal=Nature Plants |volume=4 |issue=7 |date=July 2018 |pages=440–452 |pmid=29915331 |pmc=6086335 |doi=10.1038/s41477-018-0172-3 |bibcode=2018NatPl...4..440P |url=}}

|https://www.oakgenome.fr/?page_id=587

Carya illinoinensis

Pecan

|Junglandaceae

|snacks in various recipes

|651.31 Mb

|

|

|

|2019{{cite journal |vauthors=Huang Y, Xiao L, Zhang Z, Zhang R, Wang Z, Huang C, Huang R, Luan Y, Fan T, Wang J, Shen C, Zhang S, Wang X, Randall J, Zheng B, Wu J, Zhang Q, Xia G, Xu C, Chen M, Zhang L, Jiang W, Gao L, Chen Z, Leslie CA, Grauke LJ, Huang J |title=The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition |journal=GigaScience |volume=8 |issue=5 |date=May 2019 |pmid=31049561 |pmc=6497033 |doi=10.1093/gigascience/giz036}}

|

Juglans mandshurica Maxim. (Manchurian walnut)

|Junglandaceae

|cultivated nut

|548.7 Mb

|

|

|

|2022{{cite journal |vauthors=Li X, Cai K, Zhang Q, Pei X, Chen S, Jiang L, Han Z, Zhao M, Li Y, Zhang X, Li Y, Zhang S, Chen S, Qu G, Tigabu M, Chiang VL, Sederoff R, Zhao X |title=The Manchurian Walnut Genome: Insights into Juglone and Lipid Biosynthesis |journal=GigaScience |volume=11 |date=June 2022 |pmid=35764602 |pmc=9239856 |doi=10.1093/gigascience/giac057}}

|

Juglans regia (Persian walnut)

|Junglandaceae

|cultivated nut

|540 Mb

|

|

|Chinese Academy of Forestry

|2020{{cite journal |vauthors=Zhang J, Zhang W, Ji F, Qiu J, Song X, Bu D, Pan G, Ma Q, Chen J, Huang R, Chang Y, Pei D |title=A high-quality walnut genome assembly reveals extensive gene expression divergences after whole-genome duplication |journal=Plant Biotechnology Journal |date=January 2020 |volume=18 |issue=9 |pages=1848–1850 |pmid=32004401 |doi=10.1111/pbi.13350 |pmc=7415773 |doi-access=free}}

|

Juglans sigillata (Iron walnut)

|Junglandaceae

|cultivated nut

|536.50 Mb

|

|

|Nanjing Forestry University

|2020{{cite journal |vauthors=Ning DL, Wu T, Xiao LJ, Ma T, Fang WL, Dong RQ, Cao FL |title=Chromosomal-level assembly of Juglans sigillata genome using Nanopore, BioNano, and Hi-C analysis |journal=GigaScience |volume=9 |issue=2 |date=February 2020 |pmid=32101299 |pmc=7043058 |doi=10.1093/gigascience/giaa006}}

|Illumina+Nanopore+bionano

scaffold N50: 16.43 Mb, contig N50: 4.34 Mb

Linum usitatissimum (flax)LinaceaeCrop~350 Mbp43,384

|

BGI et al.2012{{cite journal |vauthors=Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith DW, Grassa CJ, Geraldes A, Cronk QC, Cullis C, Dash PK, Kumar PA, Cloutier S, Sharpe AG, Wong GK, Wang J, Deyholos MK |title=The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads |journal=The Plant Journal |volume=72 |issue=3 |pages=461–73 |date=November 2012 |pmid=22757964 |doi=10.1111/j.1365-313X.2012.05093.x |url=https://zenodo.org/record/897213 |doi-access=free}}
Bombax ceiba

(red silk cotton tree)

|Malvaceae

|capsules with white fibre like cotton

|895 Mb

|

|

|

|2018{{cite journal |vauthors=Gao Y, Wang H, Liu C, Chu H, Dai D, Song S, Yu L, Han L, Fu Y, Tian B, Tang L |title=De novo genome assembly of the red silk cotton tree (Bombax ceiba) |journal=GigaScience |volume=7 |issue=5 |date=May 2018 |pmid=29757382 |pmc=5967522 |doi=10.1093/gigascience/giy051}}

|

Durio zibethinus (Durian)MalvaceaeTropical fruit tree~738 Mbp|2017{{cite journal |vauthors=Teh BT, Lim K, Yong CH, Ng CC, Rao SR, Rajasegaran V, Lim WK, Ong CK, Chan K, Cheng VK, Soh PS, Swarup S, Rozen SG, Nagarajan N, Tan P |title=The draft genome of tropical fruit durian (Durio zibethinus) |journal=Nature Genetics |volume=49 |issue=11 |pages=1633–1641 |date=November 2017 |pmid=28991254 |doi=10.1038/ng.3972 |doi-access=free}}
Gossypium raimondiiMalvaceaeOne of the putative progenitor species of tetraploid cotton|2013?{{cite web |url=http://www.phytozome.net/cotton.php |work=Phytozome v9.1 |title=Gossypium raimondii v2.1 |access-date=2013-07-10 |archive-url=https://web.archive.org/web/20150218034143/http://www.phytozome.net/cotton.php |archive-date=2015-02-18 |url-status=dead}}
Theobroma cacao (cocoa tree)MalvaceaeFlavouring crop|2010{{cite journal |vauthors=Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN, Abrouk M, Murat F, Fouet O, Poulain J, Ruiz M, Roguet Y, Rodier-Goud M, Barbosa-Neto JF, Sabot F, Kudrna D, Ammiraju JS, Schuster SC, Carlson JE, Sallet E, Schiex T, Dievart A, Kramer M, Gelley L, Shi Z, Bérard A, Viot C, Boccara M, Risterucci AM, Guignon V, Sabau X, Axtell MJ, Ma Z, Zhang Y, Brown S, Bourge M, Golser W, Song X, Clement D, Rivallan R, Tahi M, Akaza JM, Pitollat B, Gramacho K, D'Hont A, Brunel D, Infante D, Kebe I, Costet P, Wing R, McCombie WR, Guiderdoni E, Quetier F, Panaud O, Wincker P, Bocs S, Lanaud C |title=The genome of Theobroma cacao |journal=Nature Genetics |volume=43 |issue=2 |pages=101–8 |date=February 2011 |pmid=21186351 |doi=10.1038/ng.736 |s2cid=4685532 |doi-access=free}}{{cite journal |vauthors=Pennisi E |author-link=Elizabeth Pennisi |title=Scientific publishing. Genomics researchers upset by rivals' publicity |journal=Science |volume=329 |issue=5999 |pages=1585 |date=September 2010 |pmid=20929817 |doi=10.1126/science.329.5999.1585 |bibcode=2010Sci...329.1585P |doi-access=free}}
Theobroma cacao (cocoa tree) cv. Matina 1-6MalvaceaeMost widely cultivated cacao type|2013{{cite journal |vauthors=Motamayor JC, Mockaitis K, Schmutz J, Haiminen N, Livingstone D, Cornejo O, Findley SD, Zheng P, Utro F, Royaert S, Saski C, Jenkins J, Podicheti R, Zhao M, Scheffler BE, Stack JC, Feltus FA, Mustiga GM, Amores F, Phillips W, Marelli JP, May GD, Shapiro H, Ma J, Bustamante CD, Schnell RJ, Main D, Gilbert D, Parida L, Kuhn DN |title=The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color |journal=Genome Biology |volume=14 |issue=6 |pages=r53 |date=June 2013 |pmid=23731509 |pmc=4053823 |doi=10.1186/gb-2013-14-6-r53 |doi-access=free}}
Theobroma cacao (200 accessions)

|Malvaceae

|domestication history of cacao

|

|

|

|

|2018{{cite journal |vauthors=Cornejo OE, Yee MC, Dominguez V, Andrews M, Sockell A, Strandberg E, Livingstone D, Stack C, Romero A, Umaharan P, Royaert S, Tawari NR, Ng P, Gutierrez O, Phillips W, Mockaitis K, Bustamante CD, Motamayor JC |title=Theobroma cacao L., provide insights into its domestication process |journal=Communications Biology |volume=1 |issue=1 |pages=167 |date=2018-10-16 |pmid=30345393 |pmc=6191438 |doi=10.1038/s42003-018-0168-6}}

|

Theobroma grandiflorum (cupuaçu)

|Malvaceae

|Cacao family tropical fruit

|423 Mbp

|31,381

|

|

|2024{{Cite journal |last1=Alves |first1=Rafael Moysés |last2=de Abreu |first2=Vinicius A C |last3=Oliveira |first3=Rafaely Pantoja |last4=Almeida |first4=João Victor dos Anjos |last5=de Oliveira |first5=Mauro de Medeiros |last6=Silva |first6=Saura R |last7=Paschoal |first7=Alexandre R |last8=de Almeida |first8=Sintia S |last9=de Souza |first9=Pedro A F |last10=Ferro |first10=Jesus A |last11=Miranda |first11=Vitor F O |last12=Figueira |first12=Antonio |last13=Domingues |first13=Douglas S |last14=Varani |first14=Alessandro M |date=2024-01-01 |title=Genomic decoding of Theobroma grandiflorum (cupuassu) at chromosomal scale: evolutionary insights for horticultural innovation |journal=GigaScience |volume=13 |pages=giae027 |doi=10.1093/gigascience/giae027 |issn=2047-217X |pmc=11152179 |pmid=38837946}}

|

Azadirachta indica (neem)MeliaceaeSource of number of Terpenoids, including biopesticide azadirachtin, Used in Traditional Medicine364 Mbp~20000

|

[http://www.ganitlabs.in GANIT Labs] {{Webarchive|url=https://web.archive.org/web/20140108082627/http://ganitlabs.in/ |date=2014-01-08 }}2012{{cite journal |vauthors=Krishnan NM, Pattnaik S, Jain P, Gaur P, Choudhary R, Vaidyanathan S, Deepak S, Hariharan AK, Krishna PB, Nair J, Varghese L, Valivarthi NK, Dhas K, Ramaswamy K, Panda B |title=A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica |journal=BMC Genomics |volume=13 |pages=464 |date=September 2012 |pmid=22958331 |pmc=3507787 |doi=10.1186/1471-2164-13-464 |doi-access=free}} and 2011{{cite journal |title=De novo sequencing and assembly ofAzadirachta indica fruit transcriptome |vauthors=Krishnan NM, Pattnaik S, Deepak SA, Hariharan AK, Gaur P, Chaudhary R, Jain P, Vaidyanathan S, Bharath Krishna PG, Panda B |journal=Current Science |volume=101 |issue=12 |pages=1553–61 |date=25 December 2011 |url=http://www.currentscience.ac.in/Volumes/101/12/1553.pdf}}Illumina GAIIx, scaffold N50 of 452028bp, Transcriptome data from Shoot, Root, Leaf, Flower and Seed
Artocarpus nanchuanensis (Bayberry)

|Moraceae

|Extremely endangered fruit tree

|769.44 Mbp

|39,596

|28

|

|2022{{cite journal |vauthors=He J, Bao S, Deng J, Li Q, Ma S, Liu Y, Cui Y, Zhu Y, Wei X, Ding X, Ke K, Chen C |title=A chromosome-level genome assembly of Artocarpus nanchuanensis (Moraceae), an extremely endangered fruit tree |journal=GigaScience |volume=11 |date=June 2022 |pmid=35701376 |pmc=9197682 |doi=10.1093/gigascience/giac042}}

|

Moringa oleifera

(Horseradish Tree)

|Moringaceae

|traditional herbal medicine

|

|18,451

|

|

|2018{{Cite book |title=GigaDB Dataset |chapter=Genomic data of the Horseradish Tree (Moringa oleifera) |doi=10.5524/101058 |year=2018 |vauthors=Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, Song B, Cheng S, Kariba R, Muthemba S, Hendre PS, Mayes S, Ho WK, Kendabie P, Wang S, Li L, Muchugi A, Jamnadass R, Lu H, Peng S, Deynze AV, Simons A, Yana-Shapiro H, Xu X, Yang H, Wang J, Liu X |publisher=GigaScience Database}}

|

Eucalyptus caleyi (Caley's ironbark)

|Myrtaceae

|

|589.32 Mb

|

|

|

|2024{{cite journal | vauthors = Ferguson S, Jones A, Murray K, Andrew R, Schwessinger B, Borevitz J | title = Plant genome evolution in the genus Eucalyptus is driven by structural rearrangements that promote sequence divergence | journal = Genome Research | volume = 34 | issue = 4 | pages = 606–619 | date = May 2024 | pmid = 38589251 | pmc = 11146599 | doi = 10.1101/gr.277999.123 }}

|

Eucalyptus urophylla (Timor white gum)

|Myrtaceae

|Fibre and timber crop

|544.5 Mb

|

|

|

|2023{{cite journal | vauthors = Lötter A, Duong TA, Candotti J, Mizrachi E, Wegrzyn JL, Myburg AA | title = Haplogenome assembly reveals structural variation in Eucalyptus interspecific hybrids | journal = GigaScience | volume = 12 | date = December 2022 | pmid = 37632754 | pmc = 10460159 | doi = 10.1093/gigascience/giad064 }}

|

Eucalyptus grandis (Rose gum)MyrtaceaeFibre and timber crop691.43 Mb

|

|

2011{{cite journal |vauthors=Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan AR, Hussey SG, Pinard D, van der Merwe K, Singh P, van Jaarsveld I, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang X, Ranjan P, Tschaplinski TJ, Ye CY, Li T, Sterck L, Vanneste K, Murat F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Külheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Van de Peer Y, Rokhsar DS, Schmutz J |title=The genome of Eucalyptus grandis |journal=Nature |volume=510 |issue=7505 |pages=356–62 |date=June 2014 |pmid=24919147 |doi=10.1038/nature13308 |bibcode=2014Natur.510..356M |doi-access=free |hdl=1854/LU-5655667 |hdl-access=free}}
Eucalyptus lansdowneana (crimson mallee)

|Myrtaceae

|

|633.52 Mb

|

|

|

|2024

|

Eucalyptus marginata (Jarrah)

|Myrtaceae

|

|512.89 Mb

|

|

|

|2024

|

Eucalyptus pauciflora (Snow gum)

|Myrtaceae

|Fibre and timber crop

|594.87 Mb

|

|

|ANU

|2020{{cite journal |vauthors=Wang W, Das A, Kainer D, Schalamun M, Morales-Suarez A, Schwessinger B, Lanfear R |title=The draft nuclear genome assembly of Eucalyptus pauciflora: a pipeline for comparing de novo assemblies |journal=GigaScience |volume=9 |issue=1 |date=January 2020 |pmid=31895413 |pmc=6939829 |doi=10.1093/gigascience/giz160}}

|Nanopore + Illumina; contig N50: 3.23 Mb

Melaleuca alternifolia (tea tree)Myrtaceaeterpene-rich essential oil with therapeutic and cosmetic uses around the world362 Mb37,226

|

Gigabyte, NCBI GenBank, GigaScience2021{{cite journal |vauthors=Voelker J, Shepherd M, Mauleon R |title=A high-quality draft genome for Melaleuca alternifolia (tea tree): a new platform for evolutionary genomics of myrtaceous terpene-rich species |journal=Gigabyte |volume=1 |date=2021 |pages=1–15 |doi=10.46471/gigabyte.28 |pmid=36824337 |pmc=9650293 |s2cid=238720658 |doi-access=free}}3128 scaffolds with a total length of 362 Mb (N50 = 1.9 Mb)
Averrhoa carambola (Star Fruit)

|Oxalidales

|fruit crop

|335.49 Mb

|

|

|

|2020{{cite journal | vauthors = Wu S, Sun W, Xu Z, Zhai J, Li X, Li C, Zhang D, Wu X, Shen L, Chen J, Ren H, Dai X, Dai Z, Zhao Y, Chen L, Cao M, Xie X, Liu X, Peng D, Dong J, Hsiao YY, Chen SL, Tsai WC, Lan S, Liu ZJ | title = The genome sequence of star fruit (Averrhoa carambola) | journal = Horticulture Research | volume = 7 | issue = 1 | pages = 95 | date = 2020-06-01 | pmid = 32528707 | pmc = 7261771 | doi = 10.1038/s41438-020-0307-3 | bibcode = 2020HorR....7...95W }}

|

Carya cathayensis (Chinese hickory)

|Rosaceae

|fruit crop

|706.43 Mb

|

|

|

|2019

|

Eriobotrya japonica (Loquat)

|Rosaceae

|Fruit tree

|760.1 Mb

|45,743

|

|Shanghai Academy of Agricultural Sciences

|2020{{cite journal |vauthors=Jiang S, An H, Xu F, Zhang X |title=Chromosome-level genome assembly and annotation of the loquat (Eriobotrya japonica) genome |journal=GigaScience |volume=9 |issue=3 |date=March 2020 |pmid=32141509 |pmc=7059265 |doi=10.1093/gigascience/giaa015}}

|Illumina+Nanopore+Hi-C

17 chromosomes, scaffold N50: 39.7 Mb

Fragaria vesca (wild strawberry)RosaceaeFruit crop240 Mbp34,809

|

2011{{cite journal |vauthors=Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP, Burns P, Davis TM, Slovin JP, Bassil N, Hellens RP, Evans C, Harkins T, Kodira C, Desany B, Crasta OR, Jensen RV, Allan AC, Michael TP, Setubal JC, Celton JM, Rees DJ, Williams KP, Holt SH, Ruiz Rojas JJ, Chatterjee M, Liu B, Silva H, Meisel L, Adato A, Filichkin SA, Troggio M, Viola R, Ashman TL, Wang H, Dharmawardhana P, Elser J, Raja R, Priest HD, Bryant DW, Fox SE, Givan SA, Wilhelm LJ, Naithani S, Christoffels A, Salama DY, Carter J, Lopez Girona E, Zdepski A, Wang W, Kerstetter RA, Schwab W, Korban SS, Davik J, Monfort A, Denoyes-Rothan B, Arus P, Mittler R, Flinn B, Aharoni A, Bennetzen JL, Salzberg SL, Dickerman AW, Velasco R, Borodovsky M, Veilleux RE, Folta KM |title=The genome of woodland strawberry (Fragaria vesca) |journal=Nature Genetics |volume=43 |issue=2 |pages=109–16 |date=February 2011 |pmid=21186353 |pmc=3326587 |doi=10.1038/ng.740}}scaffold N50: 1.3 Mbp

454/Illumina/solid

39x coverage

WGS

Gillenia trifoliataRosaceaeApple Tribe320.17±4.22 Mb26,16618

|

2021{{cite journal |vauthors=Su W, Jing Y, Lin S, Yue Z, Yang X, Xu J, Wu J, Zhang Z, Xia R, Zhu J, An N, Chen H, Hong Y, Yuan Y, Long T, Zhang L, Jiang Y, Liu Z, Zhang H, Gao Y, Liu Y, Lin H, Wang H, Yant L, Lin S, Liu Z |title=Polyploidy underlies co-option and diversification of biosynthetic triterpene pathways in the apple tribe |journal=PNAS |volume=118 |issue=20 |date=May 2021 |pages=e2101767118 |pmid=33986115 |pmc=8157987 |doi=10.1073/pnas.2101767118 |bibcode=2021PNAS..11801767S |issn=0027-8424 |doi-access=free}}Number of scaffolds(>2kb): 789, scaffold N50: 30,093,771 bp, Contig N50 (bp): 828,523
Malus domestica (apple) "Golden Delicious"RosaceaeFruit crop~742.3 Mbp57,386

|

2010{{cite journal |vauthors=Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R |title=The genome of the domesticated apple (Malus × domestica Borkh.) |journal=Nature Genetics |volume=42 |issue=10 |pages=833–9 |date=October 2010 |pmid=20802477 |doi=10.1038/ng.654 |doi-access=free}}contig N50 13.4 (kbp??)

scaffold N50 1,542.7 (kbp??)

total coverage ~16.9x (Sanger + 454)

71.2% anchored

Prunus amygdalus (almond)RosaceaeFruit crop|2013?{{cite web |url=http://news.gramene.org/node/195 |title=Four Rosaceae Genomes Released |date=11 June 2013 |work=Gramene: A Resource for Comparative Plant Genomics}}
Prunus avium (sweet cherry) cv. StellaRosaceaeFruit crop|2013?
Prunus mume (Chinese plum or Japanese apricot)RosaceaeFruit crop|2012{{cite journal |vauthors=Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, Tao Y, Wang J, Yuan Z, Fan G, Xing Z, Han C, Pan H, Zhong X, Shi W, Liang X, Du D, Sun F, Xu Z, Hao R, Lv T, Lv Y, Zheng Z, Sun M, Luo L, Cai M, Gao Y, Wang J, Yin Y, Xu X, Cheng T, Wang J |title=The genome of Prunus mume |journal=Nature Communications |volume=3 |pages=1318 |date=2012 |pmid=23271652 |pmc=3535359 |doi=10.1038/ncomms2290 |bibcode=2012NatCo...3.1318Z}}
Prunus persica (peach)RosaceaeFruit crop265 Mbp27,852

|

2013{{cite journal |vauthors=Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan P, Del Fabbro C, Aramini V, Copetti D, Gonzalez S, Horner DS, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arús P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar DS |title=The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution |journal=Nature Genetics |volume=45 |issue=5 |pages=487–94 |date=May 2013 |pmid=23525075 |doi=10.1038/ng.2586 |hdl=2434/218547 |doi-access=free |hdl-access=free}}Sanger coverage:8.47x

WGS

ca 99% ESTs mapped

215.9 Mbp in pseudomolecules

Prunus salicina (Japanese plum)

|Rosaceae

|Fruit crop

|284.2 Mbp

|24,448

|8

|

|2020{{cite journal |vauthors=Liu C, Feng C, Peng W, Hao J, Wang J, Pan J, He Y |title=Chromosome-level draft genome of a diploid plum (Prunus salicina) |journal=GigaScience |volume=9 |issue=12 |date=December 2020 |pmid=33300949 |pmc=7727024 |doi=10.1093/gigascience/giaa130}}

|PacBio/Hi-C, with contig N50 of 1.78 Mb and scaffold N50 of 32.32 Mb.

Pyrus bretschneideri (ya pear or Chinese white pear) cv. DangshansuliRosaceaeFruit crop|2012{{cite journal |vauthors=Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S |title=The genome of the pear (Pyrus bretschneideri Rehd.) |journal=Genome Research |volume=23 |issue=2 |pages=396–408 |date=February 2013 |pmid=23149293 |pmc=3561880 |doi=10.1101/gr.144311.112}}
Pyrus communis (European pear) cv. Doyenne du ComiceRosaceaeFruit crop|2013?
Rosa roxburghii (Chestnut Rose)

|Rosaceae

|Fruit crop

|504 Mbp

|

|

|

|2023{{cite journal | vauthors = Zong D, Liu H, Gan P, Ma S, Liang H, Yu J, Li P, Jiang T, Sahu SK, Yang Q, Zhang D, Li L, Qiu X, Shao W, Yang J, Li Y, Guang X, He C | title = Chromosomal-scale genomes of two Rosa species provide insights into genome evolution and ascorbate accumulation | journal = The Plant Journal | volume = 117 | issue = 4 | pages = 1264–1280 | date = February 2024 | pmid = 37964640 | doi = 10.1111/tpj.16543 | s2cid = 265210737 }}

|

Rosa sterilis

|Rosaceae

|Fruit crop

|981.2 Mb

|

|

|

|2023{{cite journal | vauthors = Zong D, Liu H, Gan P, Ma S, Liang H, Yu J, Li P, Jiang T, Sahu SK, Yang Q, Zhang D, Li L, Qiu X, Shao W, Yang J, Li Y, Guang X, He C | title = Chromosomal-scale genomes of two Rosa species provide insights into genome evolution and ascorbate accumulation | journal = The Plant Journal | volume = 117 | issue = 4 | pages = 1264–1280 | date = February 2024 | pmid = 37964640 | doi = 10.1111/tpj.16543 | s2cid = 265210737 }}

|

Rubus occidentalis

(Black raspberry)

|Rosaceae

|Fruit crop

|290 Mbp

|

|

|

|2018{{cite journal |vauthors=VanBuren R, Wai CM, Colle M, Wang J, Sullivan S, Bushakra JM, Liachko I, Vining KJ, Dossett M, Finn CE, Jibran R, Chagné D, Childs K, Edger PP, Mockler TC, Bassil NV |title=A near complete, chromosome-scale assembly of the black raspberry (Rubus occidentalis) genome |journal=GigaScience |volume=7 |issue=8 |date=August 2018 |pmid=30107523 |pmc=6131213 |doi=10.1093/gigascience/giy094}}

|

Citrus clementina (Clementine)RutaceaeFruit crop|2013?{{cite web |url=http://www.phytozome.net/clementine.php |work=Phytozome v9.1 |title=Citrus clementina |access-date=2013-07-10 |archive-url=https://web.archive.org/web/20150219072340/http://www.phytozome.net/clementine.php |archive-date=2015-02-19 |url-status=dead}}
Citrus sinensis (Sweet orange)RutaceaeFruit crop|2013?, 2013{{cite journal |vauthors=Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao WB, Hao BH, Lyon MP, Chen J, Gao S, Xing F, Lan H, Chang JW, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas MK, Zeng W, Guo F, Cao H, Yang X, Xu XW, Cheng YJ, Xu J, Liu JH, Luo OJ, Tang Z, Guo WW, Kuang H, Zhang HY, Roose ML, Nagarajan N, Deng XX, Ruan Y |title=The draft genome of sweet orange (Citrus sinensis) |journal=Nature Genetics |volume=45 |issue=1 |pages=59–66 |date=January 2013 |pmid=23179022 |doi=10.1038/ng.2472 |doi-access=free}}
Clausena lansium (Wampee)

|Rutaceae

|Fruit crop

|

|

|

|

|2021{{cite journal |vauthors=Fan Y, Sahu SK, Yang T, Mu W, Wei J, Cheng L, Yang J, Liu J, Zhao Y, Lisby M, Liu H |title=The Clausena lansium (Wampee) genome reveal new insights into the carbazole alkaloids biosynthesis pathway |journal=Genomics |volume=113 |issue=6 |pages=3696–3704 |date=November 2021 |pmid=34520805 |doi=10.1016/j.ygeno.2021.09.007 |s2cid=237515315 |doi-access=free}}

|

Populus trichocarpa (poplar)SalicaceaeCarbon sequestration, model tree, timber510 Mbp (cytogenetic) 485 Mbp (coverage)73,013 [Phytozome]

|

2006{{cite journal |vauthors=Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D |title=The genome of black cottonwood, Populus trichocarpa (Torr. & Gray) |journal=Science |volume=313 |issue=5793 |pages=1596–604 |date=September 2006 |pmid=16973872 |doi=10.1126/science.1128691 |bibcode=2006Sci...313.1596T |osti=901819 |s2cid=7717980 |url=https://escholarship.org/content/qt3101x2rn/qt3101x2rn.pdf?t=li5dgw}}Scaffold N50: 19.5 Mbp

Contig N50:552.8 Kbp [phytozome]

WGS

>=95 % cDNA found

Populus pruinosa

(desert tree)

|Salicaceae

|farming and ranching

|479.3 Mbp

|35,131

|

|

|2017{{cite journal |vauthors=Yang W, Wang K, Zhang J, Ma J, Liu J, Ma T |title=The draft genome sequence of a desert tree Populus pruinosa |journal=GigaScience |volume=6 |issue=9 |pages=1–7 |date=September 2017 |pmid=28938721 |pmc=5603765 |doi=10.1093/gigascience/gix075}}

|

Acer truncatum (purpleblow maple)

|Sapindaceae

|Tree producing nervonic acid

|633.28 Mb

|28,438

|

|

|2020{{cite journal |vauthors=Ma Q, Sun T, Li S, Wen J, Zhu L, Yin T, Yan K, Xu X, Li S, Mao J, Wang YN, Jin S, Zhao X, Li Q |title=The Acer truncatum genome provides insights into the nervonic acid biosynthesis |journal=The Plant Journal |date=August 2020 |volume=104 |issue=3 |pages=662–678 |pmid=32772482 |doi=10.1111/tpj.14954 |pmc=7702125 |doi-access=free}}

|contig N50 = 773.17 Kb; scaffold N50 = 46.36 Mb

Acer yangbiense

|Sapindaceae

|Plant species with extremely small populations

|110 Gb

|28,320

|13

|

|2019{{cite journal |vauthors=Yang J, Wariss HM, Tao L, Zhang R, Yun Q, Hollingsworth P, Dao Z, Luo G, Guo H, Ma Y, Sun W |title=De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China |journal=GigaScience |volume=8 |issue=7 |date=July 2019 |pmid=31307060 |pmc=6629541 |doi=10.1093/gigascience/giz085}}

|scaffold N50 = 45 Mb

Dimocarpus longan (Longan)

|Sapindaceae

|Fruit crop

|471.88 Mb

|

|

|

|2017{{cite journal |vauthors=Lin Y, Min J, Lai R, Wu Z, Chen Y, Yu L, Cheng C, Jin Y, Tian Q, Liu Q, Liu W, Zhang C, Lin L, Zhang D, Thu M, Zhang Z, Liu S, Zhong C, Fang X, Wang J, Yang H, Varshney RK, Yin Y, Lai Z |title=Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics |journal=GigaScience |volume=6 |issue=5 |pages=1–14 |date=May 2017 |pmid=28368449 |pmc=5467034 |doi=10.1093/gigascience/gix023}}

|

Xanthoceras sorbifolium Bunge (Yellowhorn)

|Sapindaceae

|Fruit Crop

|504.2 Mb

|24,672

|

|

|2019{{cite journal |vauthors=Bi Q, Zhao Y, Du W, Lu Y, Gui L, Zheng Z, Yu H, Cui Y, Liu Z, Cui T, Cui D, Liu X, Li Y, Fan S, Hu X, Fu G, Ding J, Ruan C, Wang L |title=Pseudomolecule-level assembly of the Chinese oil tree yellowhorn (Xanthoceras sorbifolium) genome |journal=GigaScience |volume=8 |issue=6 |date=June 2019 |pmid=31241154 |pmc=6593361 |doi=10.1093/gigascience/giz070}}{{cite journal |vauthors=Liang Q, Li H, Li S, Yuan F, Sun J, Duan Q, Li Q, Zhang R, Sang YL, Wang N, Hou X, Yang KQ, Liu JN, Yang L |title=The genome assembly and annotation of yellowhorn (Xanthoceras sorbifolium Bunge) |journal=GigaScience |volume=8 |issue=6 |date=June 2019 |pmid=31241155 |pmc=6593362 |doi=10.1093/gigascience/giz071}}

|

Aquilaria sinensis (Agarwood)

|Thymelaeaceae

|Fragrant wood

|726.5 Mb

|29,203

|

|

|2020{{cite journal |vauthors=Ding X, Mei W, Lin Q, Wang H, Wang J, Peng S, Li H, Zhu J, Li W, Wang P, Chen H, Dong W, Guo D, Cai C, Huang S, Cui P, Dai H |title=Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family |journal=GigaScience |volume=9 |issue=3 |date=March 2020 |pmid=32118265 |pmc=7050300 |doi=10.1093/gigascience/giaa013}}

|Illumina+nanopore+Hi-C, scaffold N50: 88.78 Mb

Vitis vinifera (grape) genotype PN40024Vitaceaefruit crop|2007{{cite journal |vauthors=Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P |title=The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla |journal=Nature |volume=449 |issue=7161 |pages=463–7 |date=September 2007 |pmid=17721507 |doi=10.1038/nature06148 |bibcode=2007Natur.449..463J |doi-access=free |hdl=11577/2430527 |hdl-access=free}}

=== [[Asterids]] ===

class="wikitable sortable" style="border:1px solid #aaa;"

! Organism strain !! Family !! Relevance !!Genome size !! Number of genes predicted !! Organization !! Year of completion !! Assembly status

Asclepias syriaca, (common milkweed)

|Apocynaceae

|Exudes milky latex

|420 Mbp

|14,474

|Oregon State University

|2019{{cite journal |vauthors=Weitemier K, Straub SC, Fishbein M, Bailey CD, Cronn RC, Liston A |title=A draft genome and transcriptome of common milkweed (Asclepias syriaca) as resources for evolutionary, ecological, and molecular studies in milkweeds and Apocynaceae |journal=PeerJ |volume=7 |pages=e7649 |date=2019-09-20 |pmid=31579586 |pmc=6756140 |doi=10.7717/peerj.7649 |doi-access=free}}

|80.4× depth

N50 = 3,415 bp

Erigeron breviscapus (Chinese herbal fleabane)

|Asteraceae

|Chinese medicine

|

|37,505

|

|2017{{cite journal |vauthors=Yang J, Zhang G, Zhang J, Liu H, Chen W, Wang X, Li Y, Dong Y, Yang S |title=Hybrid de novo genome assembly of the Chinese herbal fleabane Erigeron breviscapus |journal=GigaScience |volume=6 |issue=6 |pages=1–7 |date=June 2017 |pmid=28431028 |pmc=5449645 |doi=10.1093/gigascience/gix028}}

|

Helianthus annuus (sunflower)AsteraceaeOil crop3.6 Gbb52,232INRA and The Sunflower Genome Database{{cite web |url=https://www.sunflowergenome.org/ |title=The Sunflower Genome Database}}2017{{cite journal |vauthors=Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L, Lelandais-Brière C, Owens GL, Carrère S, Mayjonade B, Legrand L, Gill N, Kane NC, Bowers JE, Hubner S, Bellec A, Bérard A, Bergès H, Blanchet N, Boniface MC, Brunel D, Catrice O, Chaidir N, Claudel C, Donnadieu C, Faraut T, Fievet G, Helmstetter N, King M, Knapp SJ, Lai Z, Le Paslier MC, Lippi Y, Lorenzon L, Mandel JR, Marage G, Marchand G, Marquand E, Bret-Mestries E, Morien E, Nambeesan S, Nguyen T, Pegot-Espagnet P, Pouilly N, Raftis F, Sallet E, Schiex T, Thomas J, Vandecasteele C, Varès D, Vear F, Vautrin S, Crespi M, Mangin B, Burke JM, Salse J, Muños S, Vincourt P, Rieseberg LH, Langlade NB |title=The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution |journal=Nature |volume=546 |issue=7656 |pages=148–152 |date=2017 |doi=10.1038/nature22380 |pmid=28538728 |bibcode=2017Natur.546..148B |doi-access=free |hdl=1828/12772 |hdl-access=free}}N50 contig: 13.7 kb
Lactuca sativa (lettuce)AsteraceaeVegetable crop2.5 Gbb38,9192017{{cite journal |vauthors=Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, Song C, Xia L, Froenicke L, Lavelle DO, Truco MJ, Xia R, Zhu S, Xu C, Xu H, Xu X, Cox K, Korf I, Meyers BC, Michelmore RW |title=Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce |journal=Nature Communications |volume=8 |pages=14953 |date=2017 |doi=10.1038/ncomms14953 |pmid=28401891 |bibcode=2017NatCo...814953R |pmc=5394340}}N50 contig: 12 kb; N50 scaffold: 476 kb
Handroanthus impetiginosus, Bignoniaceae

(Pink Ipê)

|Bignoniaceae

|Common tree

|503.7 Mb

|31,668

|

|2017{{cite journal |vauthors=Silva-Junior OB, Grattapaglia D, Novaes E, Collevatti RG |title=Genome assembly of the Pink Ipê (Handroanthus impetiginosus, Bignoniaceae), a highly valued, ecologically keystone Neotropical timber forest tree |journal=GigaScience |volume=7 |issue=1 |pages=1–16 |date=January 2018 |pmid=29253216 |pmc=5905499 |doi=10.1093/gigascience/gix125}}

|

Diospyros oleifera Cheng (Oil persimmon)

|Ebenaceae

|Fruit tree

|849.53 Mb

|28,580

|Zhejiang University & Chinese Academy of Forestry

|2019{{cite journal |vauthors=Zhu QG, Xu Y, Yang Y, Guan CF, Zhang QY, Huang JW, Grierson D, Chen KS, Gong BC, Yin XR |title=Diospyros oleifera Cheng) genome provides new insights into the inheritance of astringency and ancestral evolution |journal=Horticulture Research |volume=6 |issue=1 |pages=138 |date=2019-12-18 |pmid=31871686 |doi=10.1038/s41438-019-0227-2 |doi-access=free |pmc=6917749}} & 2020{{cite journal |vauthors=Suo Y, Sun P, Cheng H, Han W, Diao S, Li H, Mai Y, Zhao X, Li F, Fu J |title=A high-quality chromosomal genome assembly of Diospyros oleifera Cheng |journal=GigaScience |volume=9 |issue=1 |date=January 2020 |pmid=31944244 |pmc=6964648 |doi=10.1093/gigascience/giz164}}

|Two genomes both chromosome scale & assigned to 15 pseudochromosomes

Salvia miltiorrhiza Bunge

(Chinese red sage)

|Lamiaceae

|TCM treatment for COPD

|641 Mb

|34,598

|

|2015{{cite journal |vauthors=Zhang G, Tian Y, Zhang J, Shu L, Yang S, Wang W, Sheng J, Dong Y, Chen W |title=Hybrid de novo genome assembly of the Chinese herbal plant danshen (Salvia miltiorrhiza Bunge) |journal=GigaScience |volume=4 |issue=1 |pages=62 |date=2015-12-01 |pmid=26673920 |pmc=4678694 |doi=10.1186/s13742-015-0104-3 |doi-access=free}}

|

Callicarpa americana (American beautyberry)

|Lamiaceae

|Ornamental shrub and insect-repellent

|506 Mb

|32,164

|Michigan State University

|2020{{cite journal |vauthors=Hamilton JP, Godden GT, Lanier E, Bhat WW, Kinser TJ, Vaillancourt B, Wang H, Wood JC, Jiang J, Soltis PS, Soltis DE, Hamberger B, Buell CR |title=Generation of a chromosome-scale genome assembly of the insect-repellent terpenoid-producing Lamiaceae species, Callicarpa americana |journal=GigaScience |volume=9 |issue=9 |date=September 2020 |pmid=32893861 |doi=10.1093/gigascience/giaa093 |pmc=7476102 |doi-access=free}}

|17 pseudomolecules Contig N50: 7.5Mb Scaffold N50: and 29.0 Mb

Mentha x piperita (Peppermint)

|Lamiaceae

|Oil crop

|353 Mb

|35,597

|Oregon State University

|2017{{cite journal |vauthors=Vining KJ, Johnson SR, Ahkami A, Lange I, Parrish AN, Trapp SC, Croteau RB, Straub SC, Pandelova I, Lange BM |title=Draft Genome Sequence of Mentha longifolia and Development of Resources for Mint Cultivar Improvement |language=en |journal=Molecular Plant |volume=10 |issue=2 |pages=323–339 |date=February 2017 |pmid=27867107 |doi=10.1016/j.molp.2016.10.018 |doi-access=free|bibcode=2017MPlan..10..323V }}

|

Tectona grandis

(Teak)

|Lamiaceae

|Durability and water resistance

|

|31,168

|

|2019{{cite journal |vauthors=Zhao D, Hamilton JP, Bhat WW, Johnson SR, Godden GT, Kinser TJ, Boachon B, Dudareva N, Soltis DE, Soltis PS, Hamberger B, Buell CR |title=A chromosomal-scale genome assembly of Tectona grandis reveals the importance of tandem gene duplication and enables discovery of genes in natural product biosynthetic pathways |journal=GigaScience |volume=8 |issue=3 |date=March 2019 |pmid=30698701 |pmc=6394206 |doi=10.1093/gigascience/giz005}}

|

Utricularia gibba (humped bladderwort)Lentibulariaceaemodel system for studying genome size evolution; a carnivorous plant81.87 Mb28,494LANGEBIO, CINVESTAV2013{{cite journal |vauthors=Ibarra-Laclette E, Lyons E, Hernández-Guzmán G, Pérez-Torres CA, Carretero-Paulet L, Chang TH, Lan T, Welch AJ, Juárez MJ, Simpson J, Fernández-Cortés A, Arteaga-Vázquez M, Góngora-Castillo E, Acevedo-Hernández G, Schuster SC, Himmelbauer H, Minoche AE, Xu S, Lynch M, Oropeza-Aburto A, Cervantes-Pérez SA, de Jesús Ortega-Estrada M, Cervantes-Luevano JI, Michael TP, Mockler T, Bryant D, Herrera-Estrella A, Albert VA, Herrera-Estrella L |title=Architecture and evolution of a minute plant genome |journal=Nature |volume=498 |issue=7452 |pages=94–8 |date=June 2013 |pmid=23665961 |pmc=4972453 |doi=10.1038/nature12132 |bibcode=2013Natur.498...94I}}Scaffold N50: 80.839 Kb
Camptotheca acuminata Decne

(Chinese happy tree)

|Nyssaceae

|chemical drugs for cancer treatment

|403 Mb

|31,825

|

|2017{{cite journal |vauthors=Zhao D, Hamilton JP, Pham GM, Crisovan E, Wiegert-Rininger K, Vaillancourt B, DellaPenna D, Buell CR |title=De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin |journal=GigaScience |volume=6 |issue=9 |pages=1–7 |date=September 2017 |pmid=28922823 |pmc=5737489 |doi=10.1093/gigascience/gix065}}

|

Davidia involucrata Baill (Dove tree)

|Nyssaceae

|Living fossil

|1,169 Mb

|42,554

|

|2020{{cite journal |vauthors=Chen Y, Ma T, Zhang L, Kang M, Zhang Z, Zheng Z, Sun P, Shrestha N, Liu J, Yang Y |title=Genomic analyses of a "living fossil": The endangered dove-tree |journal=Molecular Ecology Resources |date=January 2020 |volume=20 |issue=3 |pages=756–769 |pmid=31970919 |doi=10.1111/1755-0998.13138 |s2cid=210865226}}

|

Mimulus guttatusPhrymaceaemodel system for studying ecological and evolutionary geneticsca 430 Mbp26,718JGI2013?{{cite web |url=http://www.phytozome.net/mimulus.php |work=Phytozome v9.1 |title=Mimulus guttatus |archive-url=https://web.archive.org/web/20150216142016/http://www.phytozome.net/mimulus.php |archive-date=16 February 2015 |url-status=dead}}Scaffold N50 = 1.1 Mbp

Contig N50 = 45.5 Kbp

Primula vulgaris (Common primrose)

|Primulaceae

|Used for cooking

|474 Mb

|

|

|2018{{cite journal |vauthors=Cocker JM, Wright J, Li J, Swarbreck D, Dyer S, Caccamo M, Gilmartin PM |title=Primula vulgaris (primrose) genome assembly, annotation and gene expression, with comparative genomics on the heterostyly supergene |journal=Scientific Reports |volume=8 |issue=1 |pages=17942 |date=December 2018 |pmid=30560928 |pmc=6299000 |doi=10.1038/s41598-018-36304-4 |bibcode=2018NatSR...817942C}}

|

Cinchona pubescens Vahl. (Fever tree)

|Rubiaceae

|Anti-malarial

|1.1 Gb

|

|

|2022{{Cite journal |vauthors=Canales NA, Pérez-Escobar OA, Powell RF, Töpel M, Kidner C, Nesbitt M, Maldonado C, Barnes CJ, Rønsted N, Przelomska NA, Leitch IJ, Antonelli A |date=2022-10-06 |title=A highly contiguous, scaffold-level nuclear genome assembly for the fever tree (Cinchona pubescens Vahl) as a novel resource for Rubiaceae research |journal=Gigabyte |language=en |volume=2022 |pages=1–16 |doi=10.46471/gigabyte.71 |pmid=36950143 |pmc=10027117 |s2cid=252810685 |doi-access=free}}

|

Solanum lycopersicum (tomato) cv. Heinz 1706SolanaceaeFood cropca 900 Mbp34,727SGN2011{{cite web |url=http://solgenomics.net/organism/1/view/ |title=Details for species Solanum lycopersicum |work=Sol Genomics Network}} 2012{{cite journal |author=Tomato Genome Consortium |title=The tomato genome sequence provides insights into fleshy fruit evolution |journal=Nature |volume=485 |issue=7400 |pages=635–41 |date=May 2012 |pmid=22660326 |pmc=3378239 |doi=10.1038/nature11119 |bibcode=2012Natur.485..635T}}Sanger/454/Illumina/Solid

Pseudomolecules spanning 91 scaffolds (760Mbp of which 594Mbp have been oriented )

over 98% ESTs mappable

Solanum aethiopicum (Ethiopian eggplant)SolanaceaeFood crop1.02 Gbp34,906BGI2019{{Cite journal |vauthors=Song B, Song Y, Fu Y, Kizito EB, Kamenya SN, Kabod PN, Liu H, Muthemba S, Kariba R, Njuguna J, Maina S |date=2019-10-01 |title=Draft genome sequence of Solanum aethiopicum provides insights into disease resistance, drought tolerance, and the evolution of the genome |url= |journal=GigaScience |volume=8 |issue=10 |doi=10.1093/gigascience/giz115 |pmid=31574156 |pmc=6771550}}Illumina

scaffold N50: 516,100bp

contig N50: 25,200 bp

~109× coverage

Solanum pimpinellifolium (Currant Tomato)Solanaceaeclosest wild relative to tomato2012Illumina

contig N50: 5100bp

~40x coverage

Solanum tuberosum (Potato)SolanaceaeFood crop726 Mbp{{Cite web |url=http://solanaceae.plantbiology.msu.edu/index.shtml |title=Spud DB |website=solanaceae.plantbiology.msu.edu |access-date=2019-03-20}}39,031Potato Genome Sequencing Consortium (PGSC)2011{{cite journal |vauthors=Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J, Orjeda G, Guzman F, Torres M, Lozano R, Ponce O, Martinez D, De la Cruz G, Chakrabarti SK, Patil VU, Skryabin KG, Kuznetsov BB, Ravin NV, Kolganova TV, Beletsky AV, Mardanov AV, Di Genova A, Bolser DM, Martin DM, Li G, Yang Y, Kuang H, Hu Q, Xiong X, Bishop GJ, Sagredo B, Mejía N, Zagorski W, Gromadka R, Gawor J, Szczesny P, Huang S, Zhang Z, Liang C, He J, Li Y, He Y, Xu J, Zhang Y, Xie B, Du Y, Qu D, Bonierbale M, Ghislain M, Herrera M, Giuliano G, Pietrella M, Perrotta G, Facella P, O'Brien K, Feingold SE, Barreiro LE, Massa GA, Diambra L, Whitty BR, Vaillancourt B, Lin H, Massa AN, Geoffroy M, Lundback S, DellaPenna D, Buell CR, Sharma SK, Marshall DF, Waugh R, Bryan GJ, Destefanis M, Nagy I, Milbourne D, Thomson SJ, Fiers M, Jacobs JM, Nielsen KL, Sønderkær M, Iovene M, Torres GA, Jiang J, Veilleux RE, Bachem CW, de Boer J, Borm T, Kloosterman B, van Eck H, Datema E, Hekkert B, Goverse A, van Ham RC, Visser RG |title=Genome sequence and analysis of the tuber crop potato |journal=Nature |volume=475 |issue=7355 |pages=189–95 |date=July 2011 |pmid=21743474 |doi=10.1038/nature10158 |doi-access=free}}{{cite journal |vauthors=Hardigan MA, Crisovan E, Hamilton JP, Kim J, Laimbeer P, Leisner CP, Manrique-Carpintero NC, Newton L, Pham GM, Vaillancourt B, Yang X, Zeng Z, Douches DS, Jiang J, Veilleux RE, Buell CR |title=Genome Reduction Uncovers a Large Dispensable Genome and Adaptive Role for Copy Number Variation in Asexually Propagated Solanum tuberosum |journal=The Plant Cell |volume=28 |issue=2 |pages=388–405 |date=February 2016 |pmid=26772996 |pmc=4790865 |doi=10.1105/tpc.15.00538|bibcode=2016PlanC..28..388H }}Sanger/454/Illumina

79.2x coverage

contig N50: 31,429bp

scaffold N50: 1,318,511bp

Solanum commersonii (commerson's nightshade)SolanaceaeWild potato relative838 Mbp kmer (840 Mbp)37,662UNINA, UMN, UNIVR, Sequentia Biotech, CGR2015{{cite journal |vauthors=Aversano R, Contaldi F, Ercolano MR, Grosso V, Iorizzo M, Tatino F, Xumerle L, Dal Molin A, Avanzato C, Ferrarini A, Delledonne M, Sanseverino W, Cigliano RA, Capella-Gutierrez S, Gabaldón T, Frusciante L, Bradeen JM, Carputo D |title=The Solanum commersonii Genome Sequence Provides Insights into Adaptation to Stress Conditions and Genome Evolution of Wild Potato Relatives |journal=The Plant Cell |volume=27 |issue=4 |pages=954–68 |date=April 2015 |pmid=25873387 |pmc=4558694 |doi=10.1105/tpc.114.135954|bibcode=2015PlanC..27..954A }}Illumina

105x coverage

contig N50: 6,506bp

scaffold N50: 44,298bp

Cuscuta campestris

(field dodder)

|Solanaceae

|model system for parasitic plants

|556 Mbp kmer (581 Mbp)

|44,303

|RWTH Aachen University, Research Center Jülich, University of Tromsø, Helmholtz Zentrum München, Technical University Munich, University of Vienna

|2018{{cite journal |vauthors=Vogel A, Schwacke R, Denton AK, Usadel B, Hollmann J, Fischer K, Bolger A, Schmidt MH, Bolger ME, Gundlach H, Mayer KF, Weiss-Schneeweiss H, Temsch EM, Krause K |title=Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris |journal=Nature Communications |volume=9 |issue=1 |pages=2515 |date=June 2018 |pmid=29955043 |pmc=6023873 |doi=10.1038/s41467-018-04344-z |bibcode=2018NatCo...9.2515V}}

|scaffold N50 = 1.38 Mbp

Cuscuta australis (Southern dodder)

|Solanaceae

|model system for parasitic plants

|265 Mbp

kmer (273 Mbp)

|19,671

|Kunming Institute of Botany, Chinese Academy of Sciences

|2018{{cite journal |vauthors=Sun G, Xu Y, Liu H, Sun T, Zhang J, Hettenhausen C, Shen G, Qi J, Qin Y, Li J, Wang L, Chang W, Guo Z, Baldwin IT, Wu J |title=Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis |journal=Nature Communications |volume=9 |issue=1 |pages=2683 |date=July 2018 |pmid=29992948 |pmc=6041341 |doi=10.1038/s41467-018-04721-8 |bibcode=2018NatCo...9.2683S}}

|scaffold N50 = 5.95 Mbp

contig N50 = 3.63 Mbp

Nicotiana benthamianaSolanaceaeClose relative of tobaccoca 3 Gbp2012{{cite journal |vauthors=Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller LA, Martin GB |title=A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research |journal=Molecular Plant-Microbe Interactions |volume=25 |issue=12 |pages=1523–30 |date=December 2012 |pmid=22876960 |doi=10.1094/MPMI-06-12-0148-TA |doi-access=free |bibcode=2012MPMI...25.1523B |hdl=2434/618758 |hdl-access=free}}Illumina

63x coverage

contig N50: 16,480bp

scaffold N50:89,778bp

>93% unigenes found

Nicotiana sylvestris (Tobacco plant)Solanaceaemodel system for studies of terpenoid production2.636 GbpPhilip Morris International2013{{cite journal |vauthors=Sierro N, Battey JN, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch MC, Ivanov NV |title=Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis |journal=Genome Biology |volume=14 |issue=6 |pages=R60 |date=June 2013 |pmid=23773524 |pmc=3707018 |doi=10.1186/gb-2013-14-6-r60 |doi-access=free}}94x coverage

scaffold N50: 79.7 kbp

194kbp superscaffolds using physical Nicotiana map

Nicotiana tomentosiformisSolanaceaeTobacco progenitor2.682 GbPhilip Morris International2013146x coverage

scaffold N50: 82.6 kb

166kbp superscaffolds using physical Nicotiana map

Capsicum annuum (Pepper)

(a) cv. CM334 (b) cv. Zunla-1

SolanaceaeFood crop~3.48 Gbp(a) 34,903

(b) 35,336

(a) 2014{{cite journal |vauthors=Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK, Bae C, Kim SB, Lee HY, Kim SY, Kim MS, Kang BC, Jo YD, Yang HB, Jeong HJ, Kang WH, Kwon JK, Shin C, Lim JY, Park JH, Huh JH, Kim JS, Kim BD, Cohen O, Paran I, Suh MC, Lee SB, Kim YK, Shin Y, Noh SJ, Park J, Seo YS, Kwon SY, Kim HA, Park JM, Kim HJ, Choi SB, Bosland PW, Reeves G, Jo SH, Lee BW, Cho HT, Choi HS, Lee MS, Yu Y, Do Choi Y, Park BS, van Deynze A, Ashrafi H, Hill T, Kim WT, Pai HS, Ahn HK, Yeam I, Giovannoni JJ, Rose JK, Sørensen I, Lee SJ, Kim RW, Choi IY, Choi BS, Lim JS, Lee YH, Choi D |title=Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species |journal=Nature Genetics |volume=46 |issue=3 |pages=270–8 |date=March 2014 |pmid=24441736 |doi=10.1038/ng.2877 |doi-access=free}}

(b) 2014{{cite journal |vauthors=Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y, Yang Y, Wu Z, Mao L, Wu H, Ling-Hu C, Zhou H, Lin H, González-Morales S, Trejo-Saavedra DL, Tian H, Tang X, Zhao M, Huang Z, Zhou A, Yao X, Cui J, Li W, Chen Z, Feng Y, Niu Y, Bi S, Yang X, Li W, Cai H, Luo X, Montes-Hernández S, Leyva-González MA, Xiong Z, He X, Bai L, Tan S, Tang X, Liu D, Liu J, Zhang S, Chen M, Zhang L, Zhang L, Zhang Y, Liao W, Zhang Y, Wang M, Lv X, Wen B, Liu H, Luan H, Zhang Y, Yang S, Wang X, Xu J, Li X, Li S, Wang J, Palloix A, Bosland PW, Li Y, Krogh A, Rivera-Bustamante RF, Herrera-Estrella L, Yin Y, Yu J, Hu K, Zhang Z |title=Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=111 |issue=14 |pages=5135–40 |date=April 2014 |pmid=24591624 |pmc=3986200 |doi=10.1073/pnas.1400975111 |bibcode=2014PNAS..111.5135Q |doi-access=free}}

N50 contig: (a) 30.0 kb (b) 55.4 kb

N50 scaffold: (a) 2.47 Mb (b) 1.23 Mb

Capsicum annuum var. glabriusculum (Chiltepin)SolanaceaeProgenitor of cultivated pepper~3.48 Gbp34,4762014N50 contig: 52.2 kb

N50 scaffold: 0.45 Mb

Petunia hybridaSolanaceaeEconomically important flower2011{{cite web |url=http://www.petuniaplatform.net/ |archive-url=https://web.archive.org/web/20110109103429/http://www.petuniaplatform.net/ |archive-date=9 January 2011 |title=The Petunia Platform}}

== [[Monocotyledon|Monocots]] ==

=== Grasses ===

class="wikitable sortable" style="border:1px solid #aaa;"
Organism strainFamilyRelevanceGenome sizeNumber of genes predictedOrganizationYear of completionAssembly status
Setaria italica (Foxtail millet)PoaceaeModel of C4 metabolism400 Mb (approx)2012{{cite journal |vauthors=Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye CY, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM |title=Reference genome sequence of the model plant Setaria |journal=Nature Biotechnology |volume=30 |issue=6 |pages=555–61 |date=May 2012 |pmid=22580951 |doi=10.1038/nbt.2196 |doi-access=free}}
Aegilops tauschii (Tausch's goatgrass)Poaceaebread wheat D-genome progenitor4,360 Mb (approx)39,6222017{{cite journal |vauthors=Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, Huo N, Zhu T, Wang L, Wang Y, McGuire PE, Liu S, Long H, Ramasamy RK, Rodriguez JC, Van SL, Yuan L, Wang Z, Xia Z, Xiao L, Anderson OD, Ouyang S, Liang Y, Zimin AV, Pertea G, Qi P, Bennetzen JL, Dai X, Dawson MW, Müller HG, Kugler K, Rivarola-Duarte L, Spannagl M, Mayer KF, Lu FH, Bevan MW, Leroy P, Li P, You FM, Sun Q, Liu Z, Lyons E, Wicker T, Salzberg SL, Devos KM, Dvořák J |title=Genome sequence of the progenitor of the wheat D genome Aegilops tauschii |journal=Nature |volume=551 |issue=7443 |pages=498–502 |date=November 2017 |pmid=29143815 |doi=10.1038/nature24486 |pmc=7416625 |bibcode=2017Natur.551..498L |doi-access=free}}pseudomolecule assembly
Bothriochloa decipiens (Australian bluestem grass)PoaceaeBCD clade and polyploid1,218.22 Mb60,6522023{{cite journal |vauthors=De Silva NP, Lee C, Battlay P, Fournier-Level A, Moore JL, Hodgins KA |title=Genome assembly of an Australian native grass species reveals a recent whole-genome duplication and biased gene retention of genes involved in stress response |journal=GigaScience |volume=12 |date=December 2022 |pmid=37171129 |pmc=10176504 |doi=10.1093/gigascience/giad034}}Scaffold N50: 42.637 Mb
Brachypodium distachyon (purple false brome)PoaceaeModel monocot272 Mb2010{{cite journal |author=The International Brachypodium Initiative |title=Genome sequencing and analysis of the model grass Brachypodium distachyon |journal=Nature |volume=463 |issue=7282 |pages=763–8 |date=February 2010 |pmid=20148030 |doi=10.1038/nature08747 |bibcode=2010Natur.463..763T |doi-access=free}}
Coix lacryma-jobi L. (Job's tears)

|Poaceae

|Crop & used in medicine & ornamentation

|1,619 Mb

|39,629

|

|2019{{cite journal |vauthors=Guo C, Wang Y, Yang A, He J, Xiao C, Lv S, Han F, Yuan Y, Yuan Y, Dong X, Guo J, Yang Y, Liu H, Zuo N, Hu Y, Zhao K, Jiang Z, Wang X, Jiang T, Shen Y, Cao M, Wang Y, Long Z, Rong T, Huang L, Zhou S |title=The Coix Genome Provides Insights into Panicoideae Evolution and Papery Hull Domestication |journal=Molecular Plant |volume=13 |issue=2 |pages=309–320 |date=February 2020 |pmid=31778843 |doi=10.1016/j.molp.2019.11.008 |doi-access=free|bibcode=2020MPlan..13..309G }}

|

Dichanthelium oligosanthes (Heller's rosette grass)PoaceaeC3 grass closely related to C4 species960 MbDDPSC2016{{cite journal |vauthors=Studer AJ, Schnable JC, Weissmann S, Kolbe AR, McKain MR, Shao Y, Cousins AB, Kellogg EA, Brutnell TP |title=3 panicoid grass species Dichanthelium oligosanthes |journal=Genome Biology |volume=17 |issue=1 |pages=223 |date=October 2016 |pmid=27793170 |pmc=5084476 |doi=10.1186/s13059-016-1080-3 |doi-access=free}}
Digitaria exilis (white fonio)

|Poaceae

|African orphan crop

|761 Mb

|

|ICRISAT, UC Davis

|2021{{cite journal |vauthors=Wang X, Chen S, Ma X, Yssel AE, Chaluvadi SR, Johnson MS, Gangashetty P, Hamidou F, Sanogo MD, Zwaenepoel A, Wallace J, Van de Peer Y, Bennetzen JL, Van Deynze A |title=Genome sequence and genetic diversity analysis of an under-domesticated orphan crop, white fonio (Digitaria exilis) |journal=GigaScience |volume=10 |issue=3 |date=March 2021 |pmid=33710327 |pmc=7953496 |doi=10.1093/gigascience/giab013}}

|3,329 contigs. N50: 1.73 Mb; L50, 126)

Eragrostis curvula

|Poaceae

| Forage & erosion control

|602 Mb

|56,469

|

|2019{{cite journal |vauthors=Carballo J, Santos BA, Zappacosta D, Garbus I, Selva JP, Gallo CA, Díaz A, Albertini E, Caccamo M, Echenique V |title=A high-quality genome of Eragrostis curvula grass provides insights into Poaceae evolution and supports new strategies to enhance forage quality |journal=Scientific Reports |volume=9 |issue=1 |pages=10250 |date=July 2019 |pmid=31308395 |pmc=6629639 |doi=10.1038/s41598-019-46610-0 |bibcode=2019NatSR...910250C}}

|

Hordeum vulgare (barley)PoaceaeCrop & model of ecological adoption5,100 MbIBSC2012,{{cite journal |vauthors=Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, Platzer M, Fincher GB, Muehlbauer GJ, Sato K, Close TJ, Wise RP, Stein N |title=A physical, genetic and functional sequence assembly of the barley genome |journal=Nature |volume=491 |issue=7426 |pages=711–6 |date=November 2012 |pmid=23075845 |doi=10.1038/nature11543 |bibcode=2012Natur.491..711T |hdl=2440/76951 |s2cid=10170672 |url=http://ousar.lib.okayama-u.ac.jp/files/public/4/49077/20160528095302759502/Nature_491_711–716.pdf |doi-access=free}} 2017{{cite journal |vauthors=Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang XQ, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, ((Mayer KFX)), Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N |title=A chromosome conformation capture ordered sequence of the barley genome |journal=Nature |volume=544 |issue=7651 |pages=427–433 |date=April 2017 |pmid=28447635 |doi=10.1038/nature22043 |bibcode=2017Natur.544..427M |doi-access=free |hdl=2440/106563 |hdl-access=free}}
Oryza brachyantha (wild rice)PoaceaeDisease resistant wild relative of rice362 Mb2013{{cite journal |vauthors=Chen J, Huang Q, Gao D, Wang J, Lang Y, Liu T, Li B, Bai Z, Luis Goicoechea J, Liang C, Chen C, Zhang W, Sun S, Liao Y, Zhang X, Yang L, Song C, Wang M, Shi J, Liu G, Liu J, Zhou H, Zhou W, Yu Q, An N, Chen Y, Cai Q, Wang B, Liu B, Min J, Huang Y, Wu H, Li Z, Zhang Y, Yin Y, Song W, Jiang J, Jackson SA, Wing RA, Wang J, Chen M |title=Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution |journal=Nature Communications |volume=4 |pages=1595 |date=2013 |pmid=23481403 |pmc=3615480 |doi=10.1038/ncomms2596 |bibcode=2013NatCo...4.1595C}}
Oryza glaberrima (African rice) var CG14PoaceaeWest-African species of rice358 Mb2010{{cite journal |vauthors=Hurwitz BL, Kudrna D, Yu Y, Sebastian A, Zuccolo A, Jackson SA, Ware D, Wing RA, Stein L |s2cid=8637330 |title=Rice structural variation: a comparative analysis of structural variation between rice and three of its closest relatives in the genus Oryza |journal=The Plant Journal |volume=63 |issue=6 |pages=990–1003 |date=September 2010 |pmid=20626650 |doi=10.1111/j.1365-313X.2010.04293.x |doi-access=free}}
Oryza rufipogon (red rice)PoaceaeAncestor to Oryza sativa406 Mb37,071SIBS2012{{cite journal |vauthors=Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B |title=A map of rice genome variation reveals the origin of cultivated rice |journal=Nature |volume=490 |issue=7421 |pages=497–501 |date=October 2012 |pmid=23034647 |doi=10.1038/nature11532 |pmc=7518720 |bibcode=2012Natur.490..497H |doi-access=free}}Illumina HiSeq2000

100x coverage

Oryza sativa (long grain rice) ssp indicaPoaceaeCrop and model cereal430 Mb{{cite journal |vauthors=Eckardt NA |title=Sequencing the rice genome |journal=The Plant Cell |volume=12 |issue=11 |pages=2011–7 |date=November 2000 |pmid=11090205 |pmc=526008 |doi=10.1105/tpc.12.11.2011|bibcode=2000PlanC..12.2011E }}

|

International Rice Genome Sequencing Project (IRGSP)

| 2002{{cite journal |vauthors=Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H |title=A draft sequence of the rice genome (Oryza sativa L. ssp. indica) |journal=Science |volume=296 |issue=5565 |pages=79–92 |date=April 2002 |pmid=11935017 |doi=10.1126/science.1068037 |bibcode=2002Sci...296...79Y |s2cid=208529258}}

Oryza sativa (Short grain rice) ssp japonicaPoaceaeCrop and model cereal430 Mb

|

International Rice Genome Sequencing Project (IRGSP)

| 2002{{cite journal |vauthors=Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S |s2cid=2960202 |title=A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) |journal=Science |volume=296 |issue=5565 |pages=92–100 |date=April 2002 |pmid=11935018 |doi=10.1126/science.1068275 |bibcode=2002Sci...296...92G}}

Panicum virgatum (switchgrass)Poaceaebiofuel1,129.9 Mb2013?{{cite web |url=http://www.phytozome.net/panicumvirgatum.php |work=Phytozome v9.1 |title=Panicum virgatum |access-date=2013-07-10 |archive-url=https://web.archive.org/web/20150219072754/http://www.phytozome.net/panicumvirgatum.php |archive-date=2015-02-19 |url-status=dead}}
Poa annua (annual bluegrass)

|Poaceae

|weed

|3,560 Mb

|76,420

|USDA ARS, Forage and Range Research

|2023{{cite journal | vauthors = Robbins MD, Bushman BS, Huff DR, Benson CW, Warnke SE, Maughan CA, Jellen EN, Johnson PG, Maughan PJ | title = Chromosome-Scale Genome Assembly and Annotation of Allotetraploid Annual Bluegrass (Poa annua L.) | journal = Genome Biology and Evolution | volume = 15 | issue = 1 | date = January 2023 | pmid = 36574983 | pmc = 9838796 | doi = 10.1093/gbe/evac180 }}

|unphased (haploid) pseudomolecules

Poa infirma (weak bluegrass)

|Poaceae

|diploid progenitor to Poa annua

|2,250 Mb

|39,420

|Penn State University

|2023{{cite journal | vauthors = Benson CW, Sheltra MR, Maughan PJ, Jellen EN, Robbins MD, Bushman BS, Patterson EL, Hall ND, Huff DR | title = Homoeologous evolution of the allotetraploid genome of Poa annua L | journal = BMC Genomics | volume = 24 | issue = 1 | pages = 350 | date = June 2023 | pmid = 37365554 | pmc = 10291818 | doi = 10.1186/s12864-023-09456-5 | doi-access = free }}

|unphased (haploid) pseudomolecules

Poa pratensis (Kentucky bluegrass)

|Poaceae

|Lawn grass

|6,090 Mb

|

|

|2023{{cite journal |vauthors=Phillips AR, Seetharam AS, Albert PS, AuBuchon-Elder T, Birchler JA, Buckler ES, Gillespie LJ, Hufford MB, Llaca V, Romay MC, Soreng RJ, Kellogg EA, Ross-Ibarra J |title=A happy accident: a novel turfgrass reference genome |journal=G3 |volume=13 |issue=6 |date=June 2023 |pmid=37002915 |pmc=10234399 |doi=10.1093/g3journal/jkad073}}

|Scaffold N50: 65.1 Mbp

Poa supina (supine bluegrass)

|Poaceae

|diploid progenitor to Poa annua

|1,270 Mb

|37,935

|Penn State University

|2023

|unphased (haploid) pseudomolecules

Phyllostachys edulis (moso bamboo)PoaceaeBamboo textile industry

|603.3 Mb

|25,225

|

2013{{cite journal |vauthors=Peng Z, Lu Y, Li L, Zhao Q, Feng Q, Gao Z, Lu H, Hu T, Yao N, Liu K, Li Y, Fan D, Guo Y, Li W, Lu Y, Weng Q, Zhou C, Zhang L, Huang T, Zhao Y, Zhu C, Liu X, Yang X, Wang T, Miao K, Zhuang C, Cao X, Tang W, Liu G, Liu Y, Chen J, Liu Z, Yuan L, Liu Z, Huang X, Lu T, Fei B, Ning Z, Han B, Jiang Z |title=The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla) |journal=Nature Genetics |volume=45 |issue=4 |pages=456–61, 461e1-2 |date=April 2013 |pmid=23435089 |doi=10.1038/ng.2569 |doi-access=free}} 2018{{cite journal |vauthors=Zhao H, Gao Z, Wang L, Wang J, Wang S, Fei B, Chen C, Shi C, Liu X, Zhang H, Lou Y, Chen L, Sun H, Zhou X, Wang S, Zhang C, Xu H, Li L, Yang Y, Wei Y, Yang W, Gao Q, Yang H, Zhao S, Jiang Z |title=Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis) |journal=GigaScience |volume=7 |issue=10 |date=October 2018 |pmid=30202850 |pmc=6204424 |doi=10.1093/gigascience/giy115}}

|

Sorghum bicolor genotype BTx623PoaceaeCrop730 Mb (approx)34,4962009{{cite journal |vauthors=Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS |title=The Sorghum bicolor genome and the diversification of grasses |journal=Nature |volume=457 |issue=7229 |pages=551–6 |date=January 2009 |pmid=19189423 |doi=10.1038/nature07723 |bibcode=2009Natur.457..551P |s2cid=4382410 |doi-access=free}}contig N50:195.4kbp

scaffold N50: 62.4Mbp

Sanger, 8.5x coverage

WGS

Triticum aestivum (bread wheat)Poaceae20% of global nutrition14,500 Mb107,891IWGSC2018{{cite journal |collaboration=International Wheat Genome Sequencing Consortium |vauthors=Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ, Choulet F, Distelfeld A, Poland J, Sharpe AG, Barad O, Baruch K, Keeble-Gagnère G, Mascher M, Ben-Zvi G, Josselin AA, Himmelbach A, Balfourier F, Gutierrez-Gonzalez J, Hayden M, Koh C, Muehlbauer G, Pasam RK, Paux E, Rigault P, Tibbits J, Tiwari V, Spannagl M, Lang D, Gundlach H, Haberer G, Mayer KF, Ormanbekova D, Prade V, Šimková H, Wicker T, Swarbreck D, Rimbert H, Felder M, Guilhot N, Kaithakottil G, Keilwagen J, Leroy P, Lux T, Twardziok S, Venturini L, Juhász A, Abrouk M, Fischer I, Uauy C, Borrill P, Ramirez-Gonzalez RH, Arnaud D, Chalabi S, Chalhoub B, Cory A, Datla R, Davey MW, Jacobs J, Robinson SJ, Steuernagel B, van Ex F, Wulff BB, Benhamed M, Bendahmane A, Concia L, Latrasse D, Alaux M, Bartoš J, Bellec A, Berges H, Doležel J, Frenkel Z, Gill B, Korol A, Letellier T, Olsen OA, Singh K, Valárik M, van der Vossen E, Vautrin S, Weining S, Fahima T, Glikson V, Raats D, Číhalíková J, Toegelová H, Vrána J, Sourdille P, Darrier B, Barabaschi D, Cattivelli L, Hernandez P, Galvez S, Budak H, Jones JD, Witek K, Yu G, Small I, Melonek J, Zhou R, Belova T, Kanyuka K, King R, Nilsen K, Walkowiak S, Cuthbert R,, Knox R, Wiebe K, Xiang D, Rohde A, Golds T, Čížková J, Akpinar BA, Biyiklioglu S, Gao L, N'Daiye A, Kubaláková M, Šafář J, Alfama F, Adam-Blondon AF, Flores R, Guerche C, Loaec M, Quesneville H, Condie J, Ens J, Maclachlan R, Tan Y, Alberti A, Aury JM, Barbe V, Couloux A, Cruaud C, Labadie K, Mangenot S, Wincker P, Kaur G, Luo M, Sehgal S, Chhuneja P, Gupta OP, Jindal S, Kaur P, Malik P, Sharma P, Yadav B, Singh NK, Khurana J, Chaudhary C, Khurana P, Kumar V, Mahato A, Mathur S, Sevanthi A, Sharma N, Tomar RS, Kaur G, Luo M, Sehgal S, Holušová K, Plíhal O, Clark MD, Heavens D, Kettleborough G, Wright J, Balcárková B, Holušová K, Hu Y, Luo M, Salina E, Ravin N, Skryabin K, Beletsky A, Kadnikov V, Mardanov A, Nesterov M, Rakitin A, Sergeeva E, Handa H, Kanamori H, Katagiri S, Kobayashi F, Nasuda S, Tanaka T, Wu J, Cattonaro F, Jiumeng M, Kugler K, Pfeifer M, Sandve S, Xun X, Zhan B, Batley J, Bayer PE, Edwards D, Hayashi S, Tulpová Z, Visendi P, Cui L, Du X, Feng K, Nie X, Tong W, Wang L |title=Shifting the limits in wheat research and breeding using a fully annotated reference genome |journal=Science |volume=361 |issue=6403 |pages=705 |date=August 2018 |pmid=30115783 |doi=10.1126/science.aar7191 |hdl=10261/169166 |url=http://research-repository.uwa.edu.au/en/publications/shifting-the-limits-in-wheat-research-and-breeding-using-a-fully-annotated-reference-genome(8883a580-b33c-4558-b37f-291af8c61c84).html |doi-access=free |hdl-access=free}}pseudomolecule assembly
Triticum urartuPoaceaeBread wheat A-genome progenitor4,940 Mb (approx)BGI2013{{cite journal |vauthors=Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo MC, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J |title=Draft genome of the wheat A-genome progenitor Triticum urartu |journal=Nature |volume=496 |issue=7443 |pages=87–90 |date=April 2013 |pmid=23535596 |doi=10.1038/nature11997 |bibcode=2013Natur.496...87L |doi-access=free}}Non-repetitive sequence assembled

Illumina WGS

Zea mays (maize) ssp mays B73PoaceaeCereal crop2,300 Mb39,656{{cite web |url=http://www.maizesequence.org/Zea_mays/Info/Index?db=core |title=Maize Sequence |work=Gramene}}2009{{cite journal |vauthors=Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK |title=The B73 maize genome: complexity, diversity, and dynamics |journal=Science |volume=326 |issue=5956 |pages=1112–5 |date=November 2009 |pmid=19965430 |doi=10.1126/science.1178534 |bibcode=2009Sci...326.1112S |s2cid=21433160 |url=https://dr.lib.iastate.edu/bitstreams/deb93473-1f37-4179-9c23-14c9efe2ec9e/download}}contig N50 40kbp

scaffold N50: 76kbp

Sanger, 4-6x coverage per BAC

Pennisetum glaucum (pearl millet)PoaceaeSub-Saharan and Sahelian millet species1,790 Mb (approx)38,5792017{{cite journal |vauthors=Varshney RK, Shi C, Thudi M, Mariac C, etal |title=Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments |journal=Nature Biotechnology |volume=35 |issue=10 |pages=969–976 |date=September 2017 |doi=10.1038/nbt.3943 |pmid=28922347 |pmc=6871012}}WGS and bacterial artificial chromosome (BAC) sequencing

=== Other non-grasses ===

class="wikitable sortable" style="border:1px solid #aaa;"
Organism strainFamilyRelevanceGenome sizeNumber of genes predicted

!No of chromosomes

OrganizationYear of completionAssembly status
Ananas bracteatus accession CB5

|Bromeliaceae

|Wild pineapple relative

|382 Mb

|27,024

|25

|

|2015{{cite journal |vauthors=Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, Lyons E, Wang ML, Chen J, Biggers E, Zhang J, Huang L, Zhang L, Miao W, Zhang J, Ye Z, Miao C, Lin Z, Wang H, Zhou H, Yim WC, Priest HD, Zheng C, Woodhouse M, Edger PP, Guyot R, Guo HB, Guo H, Zheng G, Singh R, Sharma A, Min X, Zheng Y, Lee H, Gurtowski J, Sedlazeck FJ, Harkess A, McKain MR, Liao Z, Fang J, Liu J, Zhang X, Zhang Q, Hu W, Qin Y, Wang K, Chen LY, Shirley N, Lin YR, Liu LY, Hernandez AG, Wright CL, Bulone V, Tuskan GA, Heath K, Zee F, Moore PH, Sunkar R, Leebens-Mack JH, Mockler T, Bennetzen JL, Freeling M, Sankoff D, Paterson AH, Zhu X, Yang X, Smith JA, Cushman JC, Paull RE, Yu Q |title=The pineapple genome and the evolution of CAM photosynthesis |journal=Nature Genetics |volume=47 |issue=12 |pages=1435–42 |date=December 2015 |pmid=26523774 |pmc=4867222 |doi=10.1038/ng.3435}}

|100× coverage using Illumina paired-end reads of libraries with different insert sizes.

Ananas comosus (L.) Merr. (Pineapple), varieties F153 and MD2

|Bromeliaceae

|The most economically valuable crop possessing crassulacean acid metabolism (CAM)

|382 Mb

|27,024

|25

|

|2015

|400× Illumina reads, 2× Moleculo synthetic long reads, 1× 454 reads, 5× PacBio single-molecule long reads and 9,400 BACs.

Ottelia alismoides (Duck lettuce)

|Hydrocharitaceae

|Aquatic plant

|6450 Mb

|

|

|

|2024{{cite journal | vauthors = Wang ZF, Wu LF, Chen L, Zhu WG, Yu EP, Xu FX, Cao HL | title = Genome assembly of Ottelia alismoides, a multiple-carbon utilisation aquatic plant | journal = BMC Genomic Data | volume = 25 | issue = 1 | pages = 48 | date = May 2024 | pmid = 38783174 | pmc = 11118731 | doi = 10.1186/s12863-024-01230-0 | doi-access = free }}

|11,923 scaffolds/contigs and an N50 of 790,733 bp

Pontederia crassipes (Water hyacinth)

|Pontederiaceae

|Aquatic plant

|1220 Mb

|

|8

|65,299

|2024{{cite journal | vauthors = Huang Y, Guo L, Xie L, Shang N, Wu D, Ye C, Rudell EC, Okada K, Zhu QH, Song BK, Cai D, Junior AM, Bai L, Fan L | title = A reference genome of Commelinales provides insights into the commelinids evolution and global spread of water hyacinth (Pontederia crassipes) | journal = GigaScience | volume = 13 | date = January 2024 | pmid = 38486346 | pmc = 10938897 | doi = 10.1093/gigascience/giae006 }}

|Scaffold N50 = 77.2Mb

Musa acuminata (Banana)MusaceaeA-genome of modern banana cultivars523 Mb36,542

|

2012{{cite journal |vauthors=D'Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, Da Silva C, Jabbari K, Cardi C, Poulain J, Souquet M, Labadie K, Jourda C, Lengellé J, Rodier-Goud M, Alberti A, Bernard M, Correa M, Ayyampalayam S, Mckain MR, Leebens-Mack J, Burgess D, Freeling M, Mbéguié-A-Mbéguié D, Chabannes M, Wicker T, Panaud O, Barbosa J, Hribova E, Heslop-Harrison P, Habas R, Rivallan R, Francois P, Poiron C, Kilian A, Burthia D, Jenny C, Bakry F, Brown S, Guignon V, Kema G, Dita M, Waalwijk C, Joseph S, Dievart A, Jaillon O, Leclercq J, Argout X, Lyons E, Almeida A, Jeridi M, Dolezel J, Roux N, Risterucci AM, Weissenbach J, Ruiz M, Glaszmann JC, Quétier F, Yahiaoui N, Wincker P |title=The banana (Musa acuminata) genome and the evolution of monocotyledonous plants |journal=Nature |volume=488 |issue=7410 |pages=213–7 |date=August 2012 |pmid=22801500 |doi=10.1038/nature11241 |bibcode=2012Natur.488..213D |doi-access=free}}N50 contig: 43.1 kb

N50 scaffold: 1.3 Mb

Musa balbisiana (Wild banana) (PKW)MusaceaeB-genome of modern banana cultivars438 Mb36,638

|

2013{{cite journal |vauthors=Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J |title=A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids |journal=BMC Genomics |volume=14 |pages=683 |date=October 2013 |pmid=24094114 |pmc=3852598 |doi=10.1186/1471-2164-14-683 |doi-access=free}}N50 contig: 7.9 kb
Musa balbisiana (DH-PKW)MusaceaeB-genome (B-subgenome to cultivated allotriploid bananas)430 Mb35,14811

|CATAS, BGI, CIRAD

2019{{cite journal |vauthors=Wang Z, Miao H, Liu J, Yao X, Xu C, Zhao S, Fang X, Xu B, Jia C, Wang J, Zhang J, Li J, Xu Y, Wang J, Ma W, Wu Z, Yu L, Yang Y, Liu C, Guo Y, Sun S, Baurens FC, Martin G, Salmon F, Garsmeur O, Yahiaoui N, Hervouet C, Rouard M, Laboureau N, Habas R, Ricci S, Peng M, Guo A, Xie J, Li Y, Ding Z, Yan Y, Tie W, D'Hont A, Hu W, Jin Z |title=Musa balbisiana genome reveals subgenome evolution and functional divergence |journal=Nature Plants |volume=1 |pages=810–821 |date=July 2019 |issue=8 |pmid=31308504 |pmc=6784884 |doi=10.1038/s41477-019-0452-6|bibcode=2019NatPl...5..810W }}N50 contig: 1.83 Mb
Musa beccarii (Red ornamental banana)

|Musaceae

|Ornamental, aids understanding Musaceae genomes evolution

|567 Mb

|39,112

|9

|

|2023{{cite journal | vauthors = Wang ZF, Rouard M, Droc G, Heslop-Harrison PJ, Ge XJ | title = Genome assembly of Musa beccarii shows extensive chromosomal rearrangements and genome expansion during evolution of Musaceae genomes | journal = GigaScience | volume = 12 | date = December 2022 | pmid = 36807539 | pmc = 9941839 | doi = 10.1093/gigascience/giad005 }}

|

Calamus simplicifolius

|Arecaceae

|native to tropical and subtropical regions

|1980 Mb

|51,235

|

|

|2018{{cite journal |vauthors=Zhao H, Wang S, Wang J, Chen C, Hao S, Chen L, Fei B, Han K, Li R, Shi C, Sun H, Wang S, Xu H, Yang K, Xu X, Shan X, Shi J, Feng A, Fan G, Liu X, Zhao S, Zhang C, Gao Q, Gao Z, Jiang Z |title=The chromosome-level genome assemblies of two rattans (Calamus simplicifolius and Daemonorops jenkinsiana) |journal=GigaScience |volume=7 |issue=9 |date=September 2018 |pmid=30101322 |pmc=6117794 |doi=10.1093/gigascience/giy097}}

|

Cocos nucifera (Coconut palm)

|Arecaceae

|used in food and cosmetics

|2420 Mb (approx)

|

|

|

|2017{{cite journal |vauthors=Xiao Y, Xu P, Fan H, Baudouin L, Xia W, Bocs S, Xu J, Li Q, Guo A, Zhou L, Li J, Wu Y, Ma Z, Armero A, Issali AE, Liu N, Peng M, Yang Y |title=The genome draft of coconut (Cocos nucifera) |journal=GigaScience |volume=6 |issue=11 |pages=1–11 |date=November 2017 |pmid=29048487 |pmc=5714197 |doi=10.1093/gigascience/gix095}}

|

Daemonorops jenkinsiana

|Arecaceae

|native to tropical and subtropical regions.

|1610 Mb

|52,342

|

|

|2018

|

Phoenix dactylifera (Date palm)ArecaceaeWoody crop in arid regions658 Mbp28,800

|

2011{{cite journal |vauthors=Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, Al-Azwani EK, Chaluvadi S, Pontaroli AC, DeBarry J, Arondel V, Ohlrogge J, Saie IJ, Suliman-Elmeer KM, Bennetzen JL, Kruegger RR, Malek JA |title=De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera) |journal=Nature Biotechnology |volume=29 |issue=6 |pages=521–7 |date=May 2011 |pmid=21623354 |doi=10.1038/nbt.1860 |doi-access=free}}N50 contig: 6.4 kb
Elaeis guineensis (African oil palm)ArecaceaeOil-bearing crop1800 Mb (approx)34,800

|

2013{{cite journal |vauthors=Singh R, Ong-Abdullah M, Low ET, Manaf MA, Rosli R, Nookiah R, Ooi LC, Ooi SE, Chan KL, Halim MA, Azizi N, Nagappan J, Bacher B, Lakey N, Smith SW, He D, Hogan M, Budiman MA, Lee EK, DeSalle R, Kudrna D, Goicoechea JL, Wing RA, Wilson RK, Fulton RS, Ordway JM, Martienssen RA, Sambanthamurthi R |title=Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds |journal=Nature |volume=500 |issue=7462 |pages=335–9 |date=August 2013 |pmid=23883927 |pmc=3929164 |doi=10.1038/nature12309 |bibcode=2013Natur.500..335S}}N50 scaffold: 1.27 Mb
Spirodela polyrhiza (Greater duckweed)AraceaeAquatic plant158 Mbp19,623

|

2014{{cite journal |vauthors=Wang W, Haberer G, Gundlach H, Gläßer C, Nussbaumer T, Luo MC, Lomsadze A, Borodovsky M, Kerstetter RA, Shanklin J, Byrant DW, Mockler TC, Appenroth KJ, Grimwood J, Jenkins J, Chow J, Choi C, Adam C, Cao XH, Fuchs J, Schubert I, Rokhsar D, Schmutz J, Michael TP, Mayer KF, Messing J |title=The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle |journal=Nature Communications |volume=5 |pages=3311 |year=2014 |pmid=24548928 |pmc=3948053 |doi=10.1038/ncomms4311 |bibcode=2014NatCo...5.3311W}}N50 scaffold: 3.76 Mb
Dendrobium hybrid cultivar ‘Emma White’

|Orchidaceae

|Commercialised hybrid orchid

|678 Mbp

|

|

|

|2022{{Cite journal |vauthors=Sherpa R, Devadas R, Suprasanna P, Bolbhat SN, Nikam TD |date=2022-08-09 |title=First De novo whole genome sequencing and assembly of mutant Dendrobium hybrid cultivar 'Emma White' |journal=Gigabyte |language=en |volume=2022 |pages=1–8 |doi=10.46471/gigabyte.66 |pmid=36824506 |pmc=9694038 |doi-access=free}}

|

Phalaenopsis equestris (Schauer) Rchb.f. (Moth orchid)OrchidaceaeBreeding parent of many modern moth orchid cultivars and hybrids.

Plant with crassulacean acid metabolism (CAM).

1600 Mb29,431

|

2014{{cite journal |vauthors=Cai J, Liu X, Vanneste K, Proost S, Tsai WC, Liu KW, Chen LJ, He Y, Xu Q, Bian C, Zheng Z, Sun F, Liu W, Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Dievart A, Dufayard JF, Xu X, Wang JY, Wang J, Xiao XJ, Zhao XM, Du R, Zhang GQ, Wang M, Su YY, Xie GC, Liu GH, Li LQ, Huang LQ, Luo YB, Chen HH, Van de Peer Y, Liu ZJ |title=The genome sequence of the orchid Phalaenopsis equestris |journal=Nature Genetics |volume=47 |issue=1 |pages=65–72 |date=January 2015 |pmid=25420146 |doi=10.1038/ng.3149 |doi-access=free|hdl=1854/LU-5835763 |hdl-access=free }}N50 scaffold: 359,115 kb
Iris pallida Lam. (Dalmatian Iris)

|Iridaceae

|Ornamental and, commercial interest in secondary metabolites

|10040 Mb

|63,944

|

|Novartis

|2023{{Cite journal |vauthors=Bruccoleri RE, Oakeley EJ, Faust AM, Altorfer M, Dessus-Babus S, Burckhardt D, Oertli M, Naumann U, Petersen F, Wong J |date=2023-10-05 |title=Genome assembly of the bearded iris, Iris pallida Lam. |url=https://gigabytejournal.com/articles/94 |journal=Gigabyte |language=en |volume=2023 |pages=1–10 |doi=10.46471/gigabyte.94 |pmid=37829656 |pmc=10565908 |issn=2709-4715}}

|Scaffold N50: 14.34 Mbp

Iris sibirica (Siberian Iris)

|Iridaceae

|Ornamental flower

| 226.6 Mb

|

|

|

|2023{{cite journal |vauthors=Chin KJ, Pirro S |title=The Complete Genome Sequences of Iris sibirica and Iris virginica (Iridaceae, Asparagales) |journal=Biodiversity Genomes |volume=2023 |date=2023-03-05 |pmid=36936674 |pmc=10019338 |doi=10.56179/001c.72791}}

|

Iris virginica (Southern Blue Flag Iris)

|Iridaceae

|Ornamental flower

| 390.9 Mb

|

|

|

|2023

|

Press releases announcing sequencing

Not meeting criteria of the first paragraph of this article in being nearly full sequences with high quality, published, assembled and publicly available. This list includes species where sequences are announced in press releases or websites, but not in a data-rich publication in a refereed peer-review journal with DOI.

  • Corchorus olitorius (Jute mallow), fibre plant 2017{{cite journal |vauthors=Islam MS, Saito JA, Emdad EM, Ahmed B, Islam MM, Halim A, Hossen QM, Hossain MZ, Ahmed R, Hossain MS, Kabir SM, Khan MS, Khan MM, Hasan R, Aktar N, Honi U, Islam R, Rashid MM, Wan X, Hou S, Haque T, Azam MS, Moosa MM, Elias SM, Hasan AM, Mahmood N, Shafiuddin M, Shahid S, Shommu NS, Jahan S, Roy S, Chowdhury A, Akhand AI, Nisho GM, Uddin KS, Rabeya T, Hoque SM, Snigdha AR, Mortoza S, Matin SA, Islam MK, Lashkar MZ, Zaman M, Yuryev A, Uddin MK, Rahman MS, Haque MS, Alam MM, Khan H, Alam M |title=Comparative genomics of two jute species and insight into fibre biogenesis |journal=Nature Plants |volume=3 |issue=2 |pages=16223 |date=January 2017 |pmid=28134914 |doi=10.1038/nplants.2016.223 |doi-access=free|bibcode=2017NatPl...316223I }}{{cite journal |vauthors=Sarkar D, Mahato AK, Satya P, Kundu A, Singh S, Jayaswal PK, Singh A, Bahadur K, Pattnaik S, Singh N, Chakraborty A, Mandal NA, Das D, Basu T, Sevanthi AM, Saha D, Datta S, Kar CS, Mitra J, Datta K, Karmakar PG, Sharma TR, Mohapatra T, Singh NK |title=Corchorus olitorius cv. JRO-524 (Navin) |journal=Genomics Data |volume=12 |pages=151–154 |date=June 2017 |pmid=28540183 |pmc=5432662 |doi=10.1016/j.gdata.2017.05.007}}
  • Corchorus capsularis 2017
  • Fraxinus excelsior, European ash (2013 draft{{cite web |url=http://www.ashgenome.org |title=Welcome to the British Ash Tree Genome Project |work=The British Ash Tree Genome Project |publisher=The School of Biological & Chemical Sciences}}{{cite news |url=https://www.bbc.co.uk/news/science-environment-22913111 |newspaper=BBC News |title=Ash genome reveals fungus resistance |date=2013-06-16 |vauthors=Heap T}})

See also

References

{{reflist|32em}}

{{DEFAULTSORT:Sequenced plant genomes}}

Category:Biology-related lists

Plant