polyhedral group

{{Short description|Geometric polyhedral group}}

{{3d point group navigator}}

In geometry, the polyhedral groups are the symmetry groups of the Platonic solids.

Groups

There are three polyhedral groups:

  • The tetrahedral group of order 12, rotational symmetry group of the regular tetrahedron. It is isomorphic to A4.
  • The conjugacy classes of T are:
  • identity
  • 4 × rotation by 120°, order 3, cw
  • 4 × rotation by 120°, order 3, ccw
  • 3 × rotation by 180°, order 2
  • The octahedral group of order 24, rotational symmetry group of the cube and the regular octahedron. It is isomorphic to S4.
  • The conjugacy classes of O are:
  • identity
  • 6 × rotation by ±90° around vertices, order 4
  • 8 × rotation by ±120° around triangle centers, order 3
  • 3 × rotation by 180° around vertices, order 2
  • 6 × rotation by 180° around midpoints of edges, order 2
  • The icosahedral group of order 60, rotational symmetry group of the regular dodecahedron and the regular icosahedron. It is isomorphic to A5.
  • The conjugacy classes of I are:
  • identity
  • 12 × rotation by ±72°, order 5
  • 12 × rotation by ±144°, order 5
  • 20 × rotation by ±120°, order 3
  • 15 × rotation by 180°, order 2

These symmetries double to 24, 48, 120 respectively for the full reflectional groups. The reflection symmetries have 6, 9, and 15 mirrors respectively. The octahedral symmetry, [4,3] can be seen as the union of 6 tetrahedral symmetry [3,3] mirrors, and 3 mirrors of dihedral symmetry Dih2, [2,2]. Pyritohedral symmetry is another doubling of tetrahedral symmetry.

The conjugacy classes of full tetrahedral symmetry, {{nowrap|TdS4}}, are:

  • identity
  • 8 × rotation by 120°
  • 3 × rotation by 180°
  • 6 × reflection in a plane through two rotation axes
  • 6 × rotoreflection by 90°

The conjugacy classes of pyritohedral symmetry, Th, include those of T, with the two classes of 4 combined, and each with inversion:

  • identity
  • 8 × rotation by 120°
  • 3 × rotation by 180°
  • inversion
  • 8 × rotoreflection by 60°
  • 3 × reflection in a plane

The conjugacy classes of the full octahedral group, {{nowrap|OhS4 × C2}}, are:

  • inversion
  • 6 × rotoreflection by 90°
  • 8 × rotoreflection by 60°
  • 3 × reflection in a plane perpendicular to a 4-fold axis
  • 6 × reflection in a plane perpendicular to a 2-fold axis

The conjugacy classes of full icosahedral symmetry, {{nowrap|IhA5 × C2}}, include also each with inversion:

  • inversion
  • 12 × rotoreflection by 108°, order 10
  • 12 × rotoreflection by 36°, order 10
  • 20 × rotoreflection by 60°, order 6
  • 15 × reflection, order 2

Chiral polyhedral groups

class=wikitable

|+ Chiral polyhedral groups

valign=top

!rowspan=2|Name{{br}}(Orb.)

!rowspan=2|Coxeter{{br}}notation

!rowspan=2|Order

!rowspan=2|Abstract{{br}}structure

!rowspan=2|Rotation{{br}}points{{br}}#valence

!colspan=4|Diagrams

Orthogonal

!colspan=3|Stereographic

align=center

!T{{br}}(332)

{{CDD|node_h2|3|node_h2|3|node_h2}}{{br}}[3,3]+12A44312px 12px{{br}}3212px120px120px120px120px
align=center

!Th{{br}}(3*2)

{{CDD|node|4|node_h2|3|node_h2}}{{br}}{{CDD|node_c2|4|node_h2|3|node_h2}}{{br}}[4,3+]24A4 × C24312px{{br}}3*2{{CDD|node_c2}}120px

|120px

|120px

|120px

align=center

!O{{br}}(432)

{{CDD|node_h2|4|node_h2|3|node_h2}}{{br}}[4,3]+24S43412px{{br}}4312px{{br}}6212px120px

|120px

|120px

|120px

align=center

!I{{br}}(532)

{{CDD|node_h2|5|node_h2|3|node_h2}}{{br}}[5,3]+60A5|6512px{{br}}10312px{{br}}15212px120px

|120px

|120px

|120px

Full polyhedral groups

class=wikitable

|+ Full polyhedral groups

valign=top

!rowspan=2|Weyl{{br}}Schoe.{{br}}(Orb.)

!rowspan=2|Coxeter{{br}}notation

!rowspan=2|Order

!rowspan=2|Abstract{{br}}structure

!rowspan=2|Coxeter{{br}}number{{br}}(h)

!rowspan=2|Mirrors{{br}}(m)

!colspan=4|Mirror diagrams

Orthogonal

!colspan=3|Stereographic

align=center

!A3{{br}}Td{{br}}(*332)

{{CDD|node|3|node|3|node}}{{br}}{{CDD|node_c1|3|node_c1|3|node_c1}}{{br}}[3,3]24S446{{CDD|node_c1}}120px120px120px120px
align=center

!B3{{br}}Oh{{br}}(*432)

{{CDD|node|4|node|3|node}}{{br}}{{CDD|node_c2|4|node_c1|3|node_c1}}{{br}}[4,3]48S4 × C283{{CDD|node_c2}}{{br}}>6{{CDD|node_c1}}120px120px120px120px
align=center

!H3{{br}}Ih{{br}}(*532)

{{CDD|node|5|node|3|node}}{{br}}{{CDD|node_c1|5|node_c1|3|node_c1}}{{br}}[5,3]120A5 × C21015{{CDD|node_c1}}120px120px120px120px

See also

References