potassium channel opener

{{Short description|Type of drug}}

{{refimprove|date=July 2019}}

A potassium channel opener is a type of drug which facilitates ion transmission through potassium channels.

Examples

Some examples include:

  • Diazoxide{{cite journal|vauthors=Mizutani S, Prasad SM, Sellitto AD, Schuessler RB, Damiano RJ, Lawton JS|date=August 2005|title=Myocyte volume and function in response to osmotic stress: observations in the presence of an adenosine triphosphate-sensitive potassium channel opener|journal=Circulation|volume=112|issue=9 Suppl|pages=I219–23|doi=10.1161/CIRCULATIONAHA.104.523746|pmid=16159820|doi-access=free}} vasodilator used for hypertension, smooth muscle relaxing activity
  • Minoxidil{{cite journal|author=Wang T|date=February 2003|title=The effects of the potassium channel opener minoxidil on renal electrolytes transport in the loop of henle|journal=J. Pharmacol. Exp. Ther.|volume=304|issue=2|pages=833–40|doi=10.1124/jpet.102.043380|pmid=12538840|s2cid=6948410}} vasodilator used for hypertension, also used to treat hair loss
  • Nicorandil{{cite journal|vauthors=Sudo H, Yogo K, Ishizuka N, Otsuka H, Horie S, Saito K|date=November 2008|title=Nicorandil, a potassium channel opener and nitric oxide donor, improves the frequent urination without changing the blood pressure in rats with partial bladder outlet obstruction|journal=Biol. Pharm. Bull.|volume=31|issue=11|pages=2079–82|doi=10.1248/bpb.31.2079|pmid=18981577|doi-access=free|url=https://ir.lib.hiroshima-u.ac.jp/29543/files/4014}} vasodilator used to treat angina
  • Pinacidil{{cite journal|vauthors=Stojnic N, Gojkovic-Bukarica L, Peric M, etal|date=June 2007|title=Potassium channel opener pinacidil induces relaxation of the isolated human radial artery|journal=J. Pharmacol. Sci.|volume=104|issue=2|pages=122–9|doi=10.1254/jphs.FP0061434|pmid=17538231|doi-access=free}} {{dead link|date=May 2010}}
  • Retigabine,{{cite journal|author=Rundfeldt C|date=October 1997|title=The new anticonvulsant retigabine (D-23129) acts as an opener of K+ channels in neuronal cells|journal=European Journal of Pharmacology|volume=336|issue=2–3|pages=243–9|doi=10.1016/S0014-2999(97)01249-1|pmid=9384239}}{{cite journal|vauthors=Main MJ, Cryan JE, Dupere JR, Cox B, Clare JJ, Burbidge SA|date=August 2000|title=Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine|journal=Molecular Pharmacology|volume=58|issue=2|pages=253–62|doi=10.1124/mol.58.2.253|pmid=10908292|s2cid=11112809 }} an anticonvulsant
  • Flupirtine, analgesic with muscle relaxant and anticonvulsant properties

class="wikitable"

!Class

!Subclasses

!Activators

Calcium-activated

6T & 1P

|

|{{citation needed|date=May 2019}}

rowspan="3" |Inwardly rectifying

2T & 1P

|

|{{Citation needed|date=May 2019}}

  • none
* GPCR regulated (Kir3.x)

|{{Citation needed|date=May 2019}}

* ATP-sensitive (Kir6.x)

|{{Citation needed|date=May 2019}}

Tandem pore domain

4T & 2P

|

  • TWIK (TWIK-1, TWIK-2, KCNK7){{cite journal|vauthors=Enyedi P, Czirják G|date=Apr 2010|title=Molecular background of leak K+ currents: two-pore domain potassium channels|journal=Physiological Reviews|volume=90|issue=2|pages=559–605|doi=10.1152/physrev.00029.2009|pmid=20393194|s2cid=9358238|url=http://repo.lib.semmelweis.hu//bitstream/123456789/8205/1/2010PhysiolRev_K2P.pdf|url-access=|url-status=|archive-url=|archive-date=}}{{cite journal|vauthors=Lotshaw DP|year=2007|title=Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels|journal=Cell Biochemistry and Biophysics|volume=47|issue=2|pages=209–56|doi=10.1007/s12013-007-0007-8|pmid=17652773|s2cid=12759521}}
  • TREK (TREK-1, TREK-2, TRAAK{{cite journal|vauthors=Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, Lazdunski M|date=Jun 1998|title=A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids|journal=The EMBO Journal|volume=17|issue=12|pages=3297–308|doi=10.1093/emboj/17.12.3297|pmc=1170668|pmid=9628867}})
  • TASK (TASK-1, TASK-3, TASK-5)
  • TALK (TASK-2,{{cite journal|vauthors=Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N|date=Mar 2001|title=Potassium leak channels and the KCNK family of two-P-domain subunits|journal=Nature Reviews. Neuroscience|volume=2|issue=3|pages=175–84|doi=10.1038/35058574|pmid=11256078|s2cid=9682396|url=https://escholarship.org/uc/item/9z7112ns}} TALK-1, TALK-2)
  • THIK (THIK-1, THIK-2)
  • TRESK{{cite journal|vauthors=Sano Y, Inamura K, Miyake A, Mochizuki S, Kitada C, Yokoi H, Nozawa K, Okada H, Matsushime H, Furuichi K|date=Jul 2003|title=A novel two-pore domain K+ channel, TRESK, is localized in the spinal cord|journal=The Journal of Biological Chemistry|volume=278|issue=30|pages=27406–12|doi=10.1074/jbc.M206810200|pmid=12754259|s2cid=22656809|doi-access=free}}{{cite journal|vauthors=Czirják G, Tóth ZE, Enyedi P|date=Apr 2004|title=The two-pore domain K+ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin|journal=The Journal of Biological Chemistry|volume=279|issue=18|pages=18550–8|doi=10.1074/jbc.M312229200|pmid=14981085|s2cid=21219622|doi-access=free|url=http://repo.lib.semmelweis.hu//bitstream/123456789/8201/1/2004JBC_TRESK.pdf}}

|{{citation needed|date=May 2019}}

  • halothane{{cite journal|vauthors=Meadows HJ, Randall AD|date=Mar 2001|title=Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel|journal=Neuropharmacology|volume=40|issue=4|pages=551–9|doi=10.1016/S0028-3908(00)00189-1|pmid=11249964|s2cid=20181576}}{{cite journal|vauthors=Patel AJ, Honoré E, Lesage F, Fink M, Romey G, Lazdunski M|date=May 1999|title=Inhalational anesthetics activate two-pore-domain background K+ channels|journal=Nature Neuroscience|volume=2|issue=5|pages=422–6|doi=10.1038/8084|pmid=10321245|s2cid=23092576}}{{cite journal|vauthors=Gray AT, Zhao BB, Kindler CH, Winegar BD, Mazurek MJ, Xu J, Chavez RA, Forsayeth JR, Yost CS|date=Jun 2000|title=Volatile anesthetics activate the human tandem pore domain baseline K+ channel KCNK5|journal=Anesthesiology|volume=92|issue=6|pages=1722–30|doi=10.1097/00000542-200006000-00032|pmid=10839924|s2cid=45487917}}
  • Riluzole
  • Arachidonic acid
Voltage-gated

6T & 1P

|

|

  • KCNQ (Kv7)-specific:
  • Flupirtine
  • Retigabine (Kv7){{cite journal|vauthors=Rogawski MA, Bazil CW|date=Jul 2008|title=New molecular targets for antiepileptic drugs: alpha(2)delta, SV2A, and K(v)7/KCNQ/M potassium channels|journal=Current Neurology and Neuroscience Reports|volume=8|issue=4|pages=345–52|doi=10.1007/s11910-008-0053-7|pmc=2587091|pmid=18590620}}
  • XEN1101{{cite journal |vauthors=Premoli I, Rossini PG, Goldberg PY, Posadas K, Green L, Yogo N, Pimstone S, Abela E, Beatch GN, Richardson MP |title=TMS as a pharmacodynamic indicator of cortical activity of a novel anti-epileptic drug, XEN1101 |journal=Annals of Clinical and Translational Neurology |volume=6 |issue=11 |pages=2164–2174 |date=November 2019 |pmid=31568714 |pmc=6856596 |doi=10.1002/acn3.50896 |quote=XEN1101 is a novel positive allosteric modulator (“opener”) of the potassium channel KCNQ2/3 (Kv7.2/7.3) currently being developed by Xenon Pharmaceuticals Inc. for the treatment of focal epilepsy.}}

See also

References

{{Reflist}}

{{Neuromodulation}}

{{Channel openers}}

{{pharmacology-stub}}