quenching (astronomy)

{{Short description|A phenomenon whereby a galaxy shuts down its star formation.}}

File:Elliptical Galaxy NGC 4150.jpg, a quiescent elliptical galaxy in the Coma Berenices constellation.{{Cite web |title=HST image of elliptical galaxy NGC 4150 {{!}} The Royal Astronomical Society |url=https://ras.ac.uk/media/874 |access-date=2025-05-12 |website=ras.ac.uk}}]]

In astronomy, quenching refers to the shutting-down of star formation within a galaxy. A galaxy where star formation has quenched is known as a quenched or quiescent galaxy. Quenching is an important phenomenon in the study of galaxy evolution, as all galaxies can be divided into two fundamental types: actively star-forming or quenched.

Compared to a star-forming counterpart, a quenched galaxy tends to be redder in the visible spectrum and contain older stellar populations, a direct consequence of its star formation being shut off.{{Cite journal |last1=Bluck |first1=Asa F. L. |last2=Piotrowska |first2=Joanna M. |last3=Maiolino |first3=Roberto |date=2023-02-01 |title=The Fundamental Signature of Star Formation Quenching from AGN Feedback: A Critical Dependence of Quiescence on Supermassive Black Hole Mass, Not Accretion Rate |journal=The Astrophysical Journal |volume=944 |issue=1 |pages=108 |doi=10.3847/1538-4357/acac7c |doi-access=free |arxiv=2301.03677 |bibcode=2023ApJ...944..108B |issn=0004-637X}} Most elliptical and lenticular galaxies known to date have these features, which, along with their weak star formation, qualify them as quiescent.{{Cite journal |last=Jr |first=Robert C. Kennicutt |date=1998-09-01 |title=Star Formation in Galaxies Along the Hubble Sequence |url=https://www.annualreviews.org/content/journals/10.1146/annurev.astro.36.1.189 |journal=Annual Review of Astronomy and Astrophysics |language=en |volume=36 |issue= |pages=189–231 |doi=10.1146/annurev.astro.36.1.189 |arxiv=astro-ph/9807187 |bibcode=1998ARA&A..36..189K |issn=0066-4146}}{{Citation |last1=Cimatti |first1=Andrea |title=Introduction to Galaxy Formation and Evolution. From Primordial Gas to Present-Day Galaxies |date=2019-12-03 |arxiv=1912.06216 |last2=Fraternali |first2=Filippo |last3=Nipoti |first3=Carlo}} Additionally, quenched galaxies also exist in more massive dark matter halos and can be found in denser environments, such as clusters or groups.{{Cite journal |last1=Kurinchi-Vendhan |first1=Shalini |last2=Farcy |first2=Marion |last3=Hirschmann |first3=Michaela |last4=Valentino |first4=Francesco |date=2024-11-11 |title=On the origin of star formation quenching in massive galaxies at z ≳ 3 in the cosmological simulations IllustrisTNG |url=https://academic.oup.com/mnras/article/534/4/3974/7831691 |journal=Monthly Notices of the Royal Astronomical Society |volume=534 |issue=4 |pages=3974–3988 |doi=10.1093/mnras/stae2297 |doi-access=free |issn=0035-8711|arxiv=2310.03083 }}

Until recently, most quenched galaxies have been found in the local Universe. Since the late 2010s, deep-field surveys in near-infrared bands, including some by the James Webb Space Telescope, have found a number of quenched galaxies in the early Universe.{{Citation |last1=Graaff |first1=Anna de |title=Efficient formation of a massive quiescent galaxy at redshift 4.9 |date=2024-10-01 |arxiv=2404.05683 |last2=Setton |first2=David J. |last3=Brammer |first3=Gabriel |last4=Cutler |first4=Sam |last5=Suess |first5=Katherine A. |last6=Labbe |first6=Ivo |last7=Leja |first7=Joel |last8=Weibel |first8=Andrea |last9=Maseda |first9=Michael V.|journal=Nature Astronomy |volume=9 |issue=2 |pages=280–292 |doi=10.1038/s41550-024-02424-3 |pmid=39990236 |pmc=11842275 |bibcode=2025NatAs...9..280D }}{{Cite journal |last1=Weibel |first1=Andrea |last2=de Graaff |first2=Anna |last3=Setton |first3=David J. |last4=Miller |first4=Tim B. |last5=Oesch |first5=Pascal A. |last6=Brammer |first6=Gabriel |last7=Lagos |first7=Claudia D. P. |last8=Whitaker |first8=Katherine E. |last9=Williams |first9=Christina C. |last10=Baggen |first10=Josephine F.W. |last11=Bezanson |first11=Rachel |last12=Boogaard |first12=Leindert A. |last13=Cleri |first13=Nikko J. |last14=Greene |first14=Jenny E. |last15=Hirschmann |first15=Michaela |date=2025-04-10 |title=RUBIES Reveals a Massive Quiescent Galaxy at z = 7.3 |journal=The Astrophysical Journal |volume=983 |issue=1 |pages=11 |doi=10.3847/1538-4357/adab7a |doi-access=free |arxiv=2409.03829 |bibcode=2025ApJ...983...11W |issn=0004-637X}}{{Cite journal |last1=Nanayakkara |first1=Themiya |last2=Glazebrook |first2=Karl |last3=Jacobs |first3=Colin |last4=Kawinwanichakij |first4=Lalitwadee |last5=Schreiber |first5=Corentin |last6=Brammer |first6=Gabriel |last7=Esdaile |first7=James |last8=Kacprzak |first8=Glenn G. |last9=Labbe |first9=Ivo |last10=Lagos |first10=Claudia |last11=Marchesini |first11=Danilo |last12=Marsan |first12=Z. Cemile |last13=Oesch |first13=Pascal A. |last14=Papovich |first14=Casey |last15=Remus |first15=Rhea-Silvia |date=2024-02-14 |title=A population of faint, old, and massive quiescent galaxies at $$3 |journal=Scientific Reports |language=en |volume=14 |issue=1 |pages=3724 |doi=10.1038/s41598-024-52585-4 |issn=2045-2322 |pmc=10866911 |pmid=38355772}} Various mechanisms have been proposed as drivers of quenching, but their relevance depends on the age, mass, and environmental conditions of each quenched galaxy. These mechanisms can be divided into two classes based on their origins: internal (coming from within the galaxy being quenched) and environmental (coming from surrounding galaxies). Internal mechanisms, most notably active galactic nucleus (AGN) feedback, are responsible for most of the quenching seen in high-mass galaxies, while environmental mechanisms contribute to the quenching of low-mass galaxies, especially if said galaxies are satellites around a more massive central galaxy.{{Cite journal |last1=Goubert |first1=Paul H |last2=Bluck |first2=Asa F L |last3=Piotrowska |first3=Joanna M |last4=Maiolino |first4=Roberto |date=2024-03-01 |title=The role of environment and AGN feedback in quenching local galaxies: comparing cosmological hydrodynamical simulations to the SDSS |url=https://academic.oup.com/mnras/article/528/3/4891/7590842 |journal=Monthly Notices of the Royal Astronomical Society |volume=528 |issue=3 |pages=4891–4921 |doi=10.1093/mnras/stae269 |doi-access=free |issn=0035-8711|arxiv=2401.12953 }}{{Cite journal |last1=Li |first1=Pengfei |last2=Wang |first2=Huiyuan |last3=Mo |first3=H. J. |last4=Wang |first4=Enci |last5=Hong |first5=Hui |date=2020-10-01 |title=Characteristic Mass in Galaxy Quenching: Environmental versus Internal Effects |journal=The Astrophysical Journal |volume=902 |issue=1 |pages=75 |doi=10.3847/1538-4357/abb66c |doi-access=free |arxiv=2003.09776 |bibcode=2020ApJ...902...75L |issn=0004-637X}}

Quenching threshold

In large surveys of the Universe, galaxies generally display a bi-modality, with distinct populations of blue, star-forming galaxies versus red, quenched ones.{{Cite journal |last1=Gabor |first1=J. M. |last2=Davé |first2=R. |last3=Finlator |first3=K. |last4=Oppenheimer |first4=B. D. |date=2010-09-11 |title=How is star formation quenched in massive galaxies? |journal=Monthly Notices of the Royal Astronomical Society |volume=407 |issue=2 |pages=749–771 |doi=10.1111/j.1365-2966.2010.16961.x |doi-access=free |arxiv=1001.1734 |bibcode=2010MNRAS.407..749G |issn=0035-8711}}{{Cite journal |last1=McGee |first1=Sean L. |last2=Balogh |first2=Michael L. |last3=Wilman |first3=David J. |last4=Bower |first4=Richard G. |last5=Mulchaey |first5=John S. |last6=Parker |first6=Laura C. |last7=Oemler |first7=Augustus |date=2011-05-11 |title=The Dawn of the Red: star formation histories of group galaxies over the past 5 billion years |journal=Monthly Notices of the Royal Astronomical Society |volume=413 |issue=2 |pages=996–1012 |doi=10.1111/j.1365-2966.2010.18189.x |doi-access=free |arxiv=1012.2388 |bibcode=2011MNRAS.413..996M |issn=0035-8711}} To quantify this bi-modality, astronomers use {sSFR}, the specific star formation rate of a galaxy, which can be defined simply as:

sSFR = {SFR \over M_*}
where SFR is the total star formation rate, measured in solar masses per year, and M_* is the total stellar mass, measured in solar masses. A rigid definition of quenching in the local Universe sets the quenching threshold at sSFR < 10^{-11}.{{Cite journal |last1=Wetzel |first1=Andrew R. |last2=Tinker |first2=Jeremy L. |last3=Conroy |first3=Charlie |last4=van den Bosch |first4=Frank C. |date=2013-06-11 |title=Galaxy evolution in groups and clusters: satellite star formation histories and quenching time-scales in a hierarchical Universe |url=http://academic.oup.com/mnras/article/432/1/336/1122580/Galaxy-evolution-in-groups-and-clusters-satellite |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=432 |issue=1 |pages=336–358 |doi=10.1093/mnras/stt469 |doi-access=free |issn=1365-2966|arxiv=1206.3571 }}

File:NASA’s Webb Reveals Cosmic Cliffs, Glittering Landscape of Star Birth.jpg. Across cosmic time, star formation rates in our modern Universe are actually much lower than previous epochs.]]

However, in the grand scheme of cosmic history, the picture becomes more complicated. Across cosmic time, the star formation rate and stellar mass of galaxies have evolved significantly.{{Cite journal |last1=Furlong |first1=M. |last2=Bower |first2=R. G. |last3=Theuns |first3=T. |last4=Schaye |first4=J. |last5=Crain |first5=R. A. |last6=Schaller |first6=M. |last7=Dalla Vecchia |first7=C. |last8=Frenk |first8=C. S. |last9=McCarthy |first9=I. G. |last10=Helly |first10=J. |last11=Jenkins |first11=A. |last12=Rosas-Guevara |first12=Y. M. |date=2015-07-11 |title=Evolution of galaxy stellar masses and star formation rates in the eagle simulations |url=https://academic.oup.com/mnras/article/450/4/4486/1747992 |journal=Monthly Notices of the Royal Astronomical Society |volume=450 |issue=4 |pages=4486–4504 |doi=10.1093/mnras/stv852 |doi-access=free |issn=0035-8711|arxiv=1410.3485 }}{{Cite journal |last1=Pacifici |first1=Camilla |last2=Kassin |first2=Susan A. |last3=Weiner |first3=Benjamin J. |last4=Holden |first4=Bradford |last5=Gardner |first5=Jonathan P. |last6=Faber |first6=Sandra M. |last7=Ferguson |first7=Henry C. |last8=Koo |first8=David C. |last9=Primack |first9=Joel R. |last10=Bell |first10=Eric F. |last11=Dekel |first11=Avishai |last12=Gawiser |first12=Eric |last13=Giavalisco |first13=Mauro |last14=Rafelski |first14=Marc |last15=Simons |first15=Raymond C. |date=2016-11-20 |title=The Evolution of Star Formation Histories of Quiescent Galaxies |journal=The Astrophysical Journal |volume=832 |issue=1 |pages=79 |doi=10.3847/0004-637X/832/1/79 |doi-access=free |arxiv=1609.03572 |bibcode=2016ApJ...832...79P |issn=0004-637X}}{{Cite journal |last1=Whitaker |first1=Katherine E. |last2=van Dokkum |first2=Pieter G. |last3=Brammer |first3=Gabriel |last4=Franx |first4=Marijn |date=2012-08-01 |title=THE STAR FORMATION MASS SEQUENCE OUT TO z = 2.5 |url=https://iopscience.iop.org/article/10.1088/2041-8205/754/2/L29 |journal=The Astrophysical Journal |volume=754 |issue=2 |pages=L29 |doi=10.1088/2041-8205/754/2/L29 |arxiv=1205.0547 |bibcode=2012ApJ...754L..29W |issn=2041-8205}} For example, the Universe is theorized to have had elevated rates of star formation around two to three billion years after the Big Bang, a period also known as "Cosmic Noon". This is unlike our current epoch, which is called "Cosmic Twilight" as today's galaxies are forming stars at much lower rates. To accommodate for these evolving galaxy properties across different epochs, the quenching threshold has also been defined in more flexible terms. One such definition parameterizes the threshold as:

sSFR = {0.2 \over t_H(z)}
where t_H is the age of the Universe, and depends on the corresponding redshift z at that epoch. With this definition, a massive galaxy in the early Universe like GS-9209, with sSFR=10^{-10.3}, can be classified as quenched, because at its redshift, the quenching threshold is actually sSFR < 10^{-9.8}.{{Cite journal |last1=Carnall |first1=Adam C. |last2=McLure |first2=Ross J. |last3=Dunlop |first3=James S. |last4=McLeod |first4=Derek J. |last5=Wild |first5=Vivienne |last6=Cullen |first6=Fergus |last7=Magee |first7=Dan |last8=Begley |first8=Ryan |last9=Cimatti |first9=Andrea |last10=Donnan |first10=Callum T. |last11=Hamadouche |first11=Massissilia L. |last12=Jewell |first12=Sophie M. |last13=Walker |first13=Sam |date=2023 |title=A massive quiescent galaxy at redshift 4.658 |journal=Nature |language=en |volume=619 |issue=7971 |pages=716–719 |doi=10.1038/s41586-023-06158-6 |issn=1476-4687 |pmc=10371866 |pmid=37216978|arxiv=2301.11413 |bibcode=2023Natur.619..716C }}

Internal quenching

= Active galactic nucleus (AGN) feedback =

File:Optical Image of M87 Jet (2001-0134-more-2).tiff. Astrophysical jets are a type of active galactic nucleus (AGN) feedback that can heat up previously cold gas and prevent quenching.]]

The most prominent driver of quenching in a galaxy is feedback from its active galactic nucleus (AGN).{{Cite journal |last1=Terrazas |first1=Bryan A |last2=Bell |first2=Eric F |last3=Pillepich |first3=Annalisa |last4=Nelson |first4=Dylan |last5=Somerville |first5=Rachel S |last6=Genel |first6=Shy |last7=Weinberger |first7=Rainer |last8=Habouzit |first8=Mélanie |last9=Li |first9=Yuan |last10=Hernquist |first10=Lars |last11=Vogelsberger |first11=Mark |date=2020-04-01 |title=The relationship between black hole mass and galaxy properties: examining the black hole feedback model in IllustrisTNG |url=https://academic.oup.com/mnras/article/493/2/1888/5740724 |journal=Monthly Notices of the Royal Astronomical Society |volume=493 |issue=2 |pages=1888–1906 |doi=10.1093/mnras/staa374 |doi-access=free |issn=0035-8711|arxiv=1906.02747 }} When gas and dust spiral towards a supermassive black hole inside an AGN, this process can release a lot of energy and heat up the gas of the entire galaxy, which takes away the amount of cold gas that the galaxy needs for star formation.

In cosmological simulations such as Illustris, quenching can only happen in massive galaxies when there is some type of AGN-driven heating.{{Cite journal |last1=Piotrowska |first1=Joanna M |last2=Bluck |first2=Asa F L |last3=Maiolino |first3=Roberto |last4=Peng |first4=Yingjie |date=2022-05-01 |title=On the quenching of star formation in observed and simulated central galaxies: evidence for the role of integrated AGN feedback |url=https://academic.oup.com/mnras/article/512/1/1052/6482843 |journal=Monthly Notices of the Royal Astronomical Society |volume=512 |issue=1 |pages=1052–1090 |doi=10.1093/mnras/stab3673 |doi-access=free |issn=0035-8711|arxiv=2112.07672 }} There are at least two scenarios by which an AGN can heat up gas in a galaxy. In one scenario, a lot of gas accretes onto the AGN at once, which leads to violent feedback, including astrophysical jets, which can heat up entire galaxies at a rapid pace.{{Cite journal |last1=Maiolino |first1=R. |last2=Gallerani |first2=S. |last3=Neri |first3=R. |last4=Cicone |first4=C. |last5=Ferrara |first5=A. |last6=Genzel |first6=R. |last7=Lutz |first7=D. |last8=Sturm |first8=E. |last9=Tacconi |first9=L. J. |last10=Walter |first10=F. |last11=Feruglio |first11=C. |last12=Fiore |first12=F. |last13=Piconcelli |first13=E. |date=2012-09-01 |title=Evidence of strong quasar feedback in the early Universe |journal=Monthly Notices of the Royal Astronomical Society: Letters |volume=425 |issue=1 |pages=L66–L70 |doi=10.1111/j.1745-3933.2012.01303.x |doi-access=free |arxiv=1204.2904 |bibcode=2012MNRAS.425L..66M |issn=1745-3925}} This is known as the "quasar mode". In another scenario called the "preventative mode", the heating occurs in a slower, less violent way: the AGN provides energy that prevents cold gas from accreting in the interstellar medium, which over time will reduce star formation.{{Cite journal |last1=Brownson |first1=Simcha |last2=Bluck |first2=Asa F L |last3=Maiolino |first3=Roberto |last4=Jones |first4=Gareth C |date=2022-04-01 |title=What drives galaxy quenching? A deep connection between galaxy kinematics and quenching in the local Universe |url=https://academic.oup.com/mnras/article/511/2/1913/6524206 |journal=Monthly Notices of the Royal Astronomical Society |volume=511 |issue=2 |pages=1913–1941 |doi=10.1093/mnras/stab3749 |doi-access=free |issn=0035-8711|arxiv=2201.02484 }} Observations of the local Universe have shown that both pathways can lead to the heating of cold gas, and eventually quenching.{{Cite journal |last=Fabian |first=A. C. |date=2012-09-22 |title=Observational Evidence of Active Galactic Nuclei Feedback |url=https://www.annualreviews.org/content/journals/10.1146/annurev-astro-081811-125521 |journal=Annual Review of Astronomy and Astrophysics |language=en |volume=50 |issue= |pages=455–489 |doi=10.1146/annurev-astro-081811-125521 |arxiv=1204.4114 |bibcode=2012ARA&A..50..455F |issn=0066-4146}}

= Shock heating =

Another mechanism for quenching is shock heating, which begins when intergalactic gas falls into a galaxy's dark matter halo at a rate much faster than the local speed of sound.{{Cite journal |last1=Birnboim |first1=Yuval |last2=Dekel |first2=Avishai |date=2003 |title=Virial shocks in galactic haloes? |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=345 |issue=1 |pages=349–364 |doi=10.1046/j.1365-8711.2003.06955.x|doi-access=free |arxiv=astro-ph/0302161 |bibcode=2003MNRAS.345..349B }}{{Cite journal |last1=Dekel |first1=Avishai |last2=Birnboim |first2=Yuval |date=2006-05-01 |title=Galaxy bimodality due to cold flows and shock heating |journal=Monthly Notices of the Royal Astronomical Society |volume=368 |issue=1 |pages=2–20 |doi=10.1111/j.1365-2966.2006.10145.x |doi-access=free |arxiv=astro-ph/0412300 |bibcode=2006MNRAS.368....2D |issn=0035-8711}} This creates a shock that not only halts the in-falling material, but also generates a hot, virialized halo of gas which propagates towards the virial radius (the radius of the dark matter halo itself) and, in some cases, can extend even further than said radius. Under the effect of this hot medium, the cold gas in the galaxy can be heated up, thus preventing star formation.

File:Eridanus II color cutout hst 14224 03 acs wfc f814w f475w sci.jpg, a dwarf galaxy quenched solely by supernova feedback.|left]]

Shock heating is not possible across all ranges of galaxy halo mass, but is restricted to halos with masses above 1012 solar masses.{{Cite journal |last1=Dekel |first1=Avishai |last2=Birnboim |first2=Yuval |date=2008-01-01 |title=Gravitational quenching in massive galaxies and clusters by clumpy accretion |journal=Monthly Notices of the Royal Astronomical Society |volume=383 |issue=1 |pages=119–138 |doi=10.1111/j.1365-2966.2007.12569.x |doi-access=free |arxiv=0707.1214 |bibcode=2008MNRAS.383..119D |issn=0035-8711}} This is because at lower masses, the gas pressure generated by the shock is curtailed by radiative cooling and cannot prevent the shock from gravitational collapse. Moreover, even in cases where the shock is supported and successfully generates a hot medium, there may still be gas filaments within the halo that are too cold and dense to be heated up. These filaments will provide critical gas supply to the post-shock galaxy, which is now dominated by the hot medium. In such scenarios, a full quenching of the galaxy will require supplementary factors, including AGN feedback.{{Cite journal |last1=Ocvirk |first1=P. |last2=Pichon |first2=C. |last3=Teyssier |first3=R. |date=2008 |title=Bimodal gas accretion in the Horizon-MareNostrum galaxy formation simulation |journal=Monthly Notices of the Royal Astronomical Society |volume=390 |issue=4 |page=1326 |language=en |doi=10.1111/j.1365-2966.2008.13763.x|doi-access=free |arxiv=0803.4506 |bibcode=2008MNRAS.390.1326O }}{{Cite journal |last1=Kereš |first1=Dušan |last2=Katz |first2=Neal |last3=Fardal |first3=Mark |last4=Davé |first4=Romeel |last5=Weinberg |first5=David H. |date=2009-05-01 |title=Galaxies in a simulated ΛCDM Universe - I. Cold mode and hot cores |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=395 |issue=1 |pages=160–179 |doi=10.1111/j.1365-2966.2009.14541.x|doi-access=free |arxiv=0809.1430 |bibcode=2009MNRAS.395..160K }}

= Other mechanisms =

There are additional processes within a galaxy that can contribute to its quenching in limited cases. One such process is supernovae, which can indeed heat up cold gas but is too distributed to singlehandedly quench galaxies inside massive dark matter halos.{{Cite journal |last1=Pontzen |first1=Andrew |last2=Tremmel |first2=Michael |last3=Roth |first3=Nina |last4=Peiris |first4=Hiranya V. |last5=Saintonge |first5=Amélie|author5-link=Amélie Saintonge |last6=Volonteri |first6=Marta |author6-link=Marta Volonteri|last7=Quinn |first7=Tom |last8=Governato |first8=Fabio |date=2017-02-11 |title=How to quench a galaxy |url=https://academic.oup.com/mnras/article/465/1/547/2617667 |journal=Monthly Notices of the Royal Astronomical Society |volume=465 |issue=1 |pages=547–558 |doi=10.1093/mnras/stw2627 |doi-access=free |issn=0035-8711|arxiv=1607.02507 }} However, in the case of ultra-faint dwarf galaxy Eridanus II, whose halo is only 107 solar masses, supernova feedback alone has been shown to be capable of driving out star-forming gas, thereby quenching the system.{{Cite journal |last1=Gallart |first1=C. |last2=Monelli |first2=M. |last3=Ruiz-Lara |first3=T. |last4=Calamida |first4=A. |last5=Cassisi |first5=S. |last6=Cignoni |first6=M. |last7=Anderson |first7=J. |last8=Battaglia |first8=G. |last9=Bermejo-Climent |first9=J. R. |last10=Bernard |first10=E. J. |last11=Martínez-Vázquez |first11=C. E. |last12=Mayer |first12=L. |last13=Salvadori |first13=S. |last14=Monachesi |first14=A. |last15=Navarro |first15=J. F. |date=2021-03-01 |title=The Star Formation History of Eridanus II: On the Role of Supernova Feedback in the Quenching of Ultrafaint Dwarf Galaxies* |journal=The Astrophysical Journal |volume=909 |issue=2 |pages=192 |doi=10.3847/1538-4357/abddbe |doi-access=free |arxiv=2101.04464 |bibcode=2021ApJ...909..192G |issn=0004-637X}}

Environmental quenching

= Mergers =

A merging event between two star-forming galaxies can create a quenched galaxy. In this scenario, the merger drastically alters the morphology of the galaxies, thus redistributing their material and causing a starburst. This starburst then quickly uses up the cold gas reservoir and leaves behind a single galaxy with reduced star formation rates. In addition, if the merging galaxies host an AGN, the starburst can also feed that AGN, which heats up any remaining cold gas and results in a completely quenched elliptical galaxy.{{Cite journal |last1=Springel |first1=Volker |last2=White |first2=Simon D. M. |last3=Jenkins |first3=Adrian |last4=Frenk |first4=Carlos S. |last5=Yoshida |first5=Naoki |last6=Gao |first6=Liang |last7=Navarro |first7=Julio |last8=Thacker |first8=Robert |last9=Croton |first9=Darren |last10=Helly |first10=John |last11=Peacock |first11=John A. |last12=Cole |first12=Shaun |last13=Thomas |first13=Peter |last14=Couchman |first14=Hugh |last15=Evrard |first15=August |date=2005 |title=Simulations of the formation, evolution and clustering of galaxies and quasars |url=https://www.nature.com/articles/nature03597 |journal=Nature |language=en |volume=435 |issue=7042 |pages=629–636 |doi=10.1038/nature03597 |pmid=15931216 |arxiv=astro-ph/0504097 |bibcode=2005Natur.435..629S |issn=0028-0836}}{{Cite journal |last1=Quai |first1=Salvatore |last2=Byrne-Mamahit |first2=Shoshannah |last3=Ellison |first3=Sara L |last4=Patton |first4=David R |last5=Hani |first5=Maan H |date=2023-02-21 |title=The interconnection between galaxy mergers, AGN activity, and rapid quenching of star formation in simulated post-merger galaxies |url=https://academic.oup.com/mnras/article/519/2/2119/6939847 |journal=Monthly Notices of the Royal Astronomical Society |volume=519 |issue=2 |pages=2119–2137 |doi=10.1093/mnras/stac3713 |doi-access=free |issn=0035-8711|arxiv=2212.10598 }}

= Galaxy-galaxy interactions =

File:NGC 4388 - HST - Potw1649a.tif, a spiral galaxy whose reduced star formation rate is due to ram pressure stripping as it passes through the Virgo Cluster.]]

In the case of low-mass dwarf galaxies, quenching is also caused by interactions that do not require galaxies merging as one. One such phenomenon is ram pressure stripping, which happens when a dwarf galaxy passes through the dense, hot medium in the center of a galaxy cluster. Acting as a fluid, this intracluster medium will exert a drag force surpassing the gravitational potential of the passing galaxy and remove its gas through elongated tails.{{Cite journal |last=Bekki |first=Kenji |date=2009-11-11 |title=Ram-pressure stripping of halo gas in disc galaxies: implications for galactic star formation in different environments |journal=Monthly Notices of the Royal Astronomical Society |volume=399 |issue=4 |pages=2221–2230 |doi=10.1111/j.1365-2966.2009.15431.x |doi-access=free |arxiv=0907.4409 |bibcode=2009MNRAS.399.2221B |issn=0035-8711}}{{Cite journal |last1=Roediger |first1=E. |last2=Brüggen |first2=M. |last3=Owers |first3=M. S. |last4=Ebeling |first4=H. |last5=Sun |first5=M. |date=2014-09-01 |title=Star formation in shocked cluster spirals and their tails |url=https://academic.oup.com/mnrasl/article/443/1/L114/1054937 |journal=Monthly Notices of the Royal Astronomical Society: Letters |volume=443 |issue=1 |pages=L114–L118 |doi=10.1093/mnrasl/slu087 |doi-access=free |issn=1745-3925|arxiv=1405.1033 }} Ram pressure stripping has been observed in clusters like Virgo. Cosmological simulations show that this procedure has a rapid timescale of 200 million years,{{Cite journal |last1=Mao |first1=Zhiying |last2=Kodama |first2=Tadayuki |last3=Pérez-Martínez |first3=Jose Manuel |last4=Suzuki |first4=Tomoko L. |last5=Yamamoto |first5=Naoaki |last6=Adachi |first6=Kouta |date=2022-10-01 |title=Revealing impacts of stellar mass and environment on galaxy quenching |url=https://www.aanda.org/articles/aa/full_html/2022/10/aa43733-22/aa43733-22.html |journal=Astronomy & Astrophysics |language=en |volume=666 |pages=A141 |doi=10.1051/0004-6361/202243733 |arxiv=2208.00722 |bibcode=2022A&A...666A.141M |issn=0004-6361}} and can take out all the gas in dwarf galaxies whose stellar mass is less than 107 solar masses.{{Cite journal |last1=Simpson |first1=Christine M |last2=Grand |first2=Robert J J |last3=Gómez |first3=Facundo A |last4=Marinacci |first4=Federico |last5=Pakmor |first5=Rüdiger |last6=Springel |first6=Volker |last7=Campbell |first7=David J R |last8=Frenk |first8=Carlos S |date=2018-07-21 |title=Quenching and ram pressure stripping of simulated Milky Way satellite galaxies |url=https://academic.oup.com/mnras/article/478/1/548/4952015 |journal=Monthly Notices of the Royal Astronomical Society |volume=478 |issue=1 |pages=548–567 |doi=10.1093/mnras/sty774 |doi-access=free |issn=0035-8711|arxiv=1705.03018 }}

Another mechanism involves a cutoff of the gas supply that comes from the hot corona around a dwarf galaxy.{{Cite journal |last1=Kawata |first1=Daisuke |last2=Mulchaey |first2=John S. |date=2008-01-10 |title=Strangulation in Galaxy Groups |url=https://iopscience.iop.org/article/10.1086/526544 |journal=The Astrophysical Journal |language=en |volume=672 |issue=2 |pages=L103–L106 |doi=10.1086/526544 |arxiv=0707.3814 |bibcode=2008ApJ...672L.103K |issn=0004-637X}} In theory, the gas in this corona can cool off, fall into the galactic disk, and fuel star formation. However, as the galaxy passes through a dense environment, ram pressure can remove this hot gas from the galaxy at a slower pace than stripping.{{Cite journal |last1=Vijayaraghavan |first1=Rukmani |last2=Ricker |first2=Paul M. |date=2015-05-21 |title=Ram pressure stripping of hot coronal gas from group and cluster galaxies and the detectability of surviving X-ray coronae |url=https://academic.oup.com/mnras/article/449/3/2312/1133846 |journal=Monthly Notices of the Royal Astronomical Society |volume=449 |issue=3 |pages=2312–2335 |doi=10.1093/mnras/stv476 |doi-access=free |issn=0035-8711|arxiv=1503.01121 }} As a result, the gas supply will be cut off over a prolonged period of a few billion years. This phenomenon has multiple names in the literature, including slow quenching, starvation, and strangulation.{{Cite journal |last1=Bekki |first1=Kenji |last2=Couch |first2=Warrick J. |last3=Shioya |first3=Yasuhiro |date=October 2002 |title=Passive Spiral Formation from Halo Gas Starvation: Gradual Transformation into S0s |url=https://iopscience.iop.org/article/10.1086/342221 |journal=The Astrophysical Journal |language=en |volume=577 |issue=2 |pages=651–657 |doi=10.1086/342221 |arxiv=astro-ph/0206207 |bibcode=2002ApJ...577..651B |issn=0004-637X}}{{Cite journal |last1=Larson |first1=R. B. |last2=Tinsley |first2=B. M. |last3=Caldwell |first3=C. N. |date=1980 |title=The evolution of disk galaxies and the origin of S0 galaxies |url=http://adsabs.harvard.edu/doi/10.1086/157917 |journal=The Astrophysical Journal |language=en |volume=237 |pages=692 |doi=10.1086/157917 |bibcode=1980ApJ...237..692L |issn=0004-637X}}{{Cite journal |last1=Man |first1=Allison |last2=Belli |first2=Sirio |date=2018 |title=Star formation quenching in massive galaxies |url=https://www.nature.com/articles/s41550-018-0558-1 |journal=Nature Astronomy |language=en |volume=2 |issue=9 |pages=695–697 |doi=10.1038/s41550-018-0558-1 |arxiv=1809.00722 |bibcode=2018NatAs...2..695M |issn=2397-3366}}

Dwarf galaxies can also lose gas via harassment.{{Cite journal |last1=Moore |first1=Ben |last2=Katz |first2=Neal |last3=Lake |first3=George |last4=Dressler |first4=Alan |last5=Oemler |first5=Augustus |date=1996 |title=Galaxy harassment and the evolution of clusters of galaxies |url=https://www.nature.com/articles/379613a0 |journal=Nature |language=en |volume=379 |issue=6566 |pages=613–616 |doi=10.1038/379613a0 |arxiv=astro-ph/9510034 |bibcode=1996Natur.379..613M |issn=1476-4687}} This is when a galaxy falls into the center of a cluster and experiences frequent high-speed close encounters with the galaxies therein. Disturbed by these encounters, the in-falling galaxy can change shape and redistribute its material (much like the merger case), leading to a starburst that eventually drains it of its gas contents.{{Cite journal |last1=Boselli |first1=Alessandro |last2=Gavazzi |first2=Giuseppe |date=2006 |title=Environmental Effects on Late-Type Galaxies in Nearby Clusters |url=http://iopscience.iop.org/article/10.1086/500691 |journal=Publications of the Astronomical Society of the Pacific |language=en |volume=118 |issue=842 |pages=517–559 |doi=10.1086/500691 |arxiv=astro-ph/0601108 |bibcode=2006PASP..118..517B |issn=0004-6280}}

== Criticisms of language use ==

The application of words like stripping, starvation, strangulation, and harassment to galactic mechanisms has been criticized among astronomers for its unnecessary connotations of domestic and gender-based violence.{{Cite web |last=Madrid |first=Juan P. |title=The Language of Astronomy Is Needlessly Violent and Inaccurate |url=https://www.scientificamerican.com/article/the-language-of-astronomy-is-needlessly-violent-and-inaccurate/ |access-date=2025-05-13 |website=Scientific American |language=en}}{{Cite web |last1=June 21 |last2=Vallejo |first2=2018 {{!}} Jessie M. |last3=Comments |first3=Jorge G. F. Moreno Soto {{!}} |title=Intergalactic Pachamama: Kichwa Cosmology vs. Western Astrophysics |url=https://folklife.si.edu/magazine/intergalactic-pachamama-kichwa-cosmology-vs-western-astrophysics |access-date=2025-05-13 |website=Smithsonian Center for Folklife and Cultural Heritage |language=en-US}}{{Cite web |last1=Claremont |first1=Pomona College 333 N. College Way |last2=Ca 91711 |date=2022-02-14 |title=Pomona Professor Leads Research Into Galaxies Lacking Dark Matter {{!}} Pomona College in Claremont, California - Pomona College |url=https://www.pomona.edu/news/2022/02/14-pomona-professor-leads-research-galaxies-lacking-dark-matter |access-date=2025-05-13 |website=www.pomona.edu |language=en}} Additionally, terms like starvation and strangulation are seen as inaccurate, because the human processes that they originally describe often lead to death, while the dwarf galaxies that undergo these phenomena do not "die", but simply form stars at a more reduced rate.

Terminology

Other than quenched or quiescent, a galaxy that has shut down its star formation can also be called passive or early-type. The latter description came from the Hubble tuning-fork diagram, where ellipticals and lenticulars, which are typically quenched, are placed on the left side, hence their classification as early (as opposed to late-type spiral galaxies, which are on the right side). There are misconceptions that Edwin Hubble arranged the diagram and named the galaxy types in such ways because he thought early-type ellipticals would evolve into late-type spirals;{{Cite web |date=2023-12-15 |title=Hubble Looks at a Late-type Galaxy - NASA Science |url=https://science.nasa.gov/missions/hubble/hubble-looks-at-a-late-type-galaxy/ |access-date=2025-05-12 |language=en-US}} however, he had warned in a paper from 1927 that the positioning on the diagram was not meant to show any evolution, and that “temporal connotations are made at one's peril.”{{Cite journal |last=Hubble |first=Edwin |date=1927 |title=The classification of spiral nebulae |url=https://adsabs.harvard.edu/full/1927Obs....50..276H |journal=The Observatory |volume=50 |pages=276–281 |bibcode=1927Obs....50..276H |via=SAO/NASA Astrophysics Data System (ADS)}}

References