squamata

{{Short description|Order of reptiles}}

{{About|the Squamata order of reptiles|the Roman scale armour|Lorica squamata}}

{{Use dmy dates|date=July 2016}}

{{Automatic taxobox

| name = Squamates

| image = Squamata-01.jpg

| image_caption =

| fossil_range = {{Fossilrange|Bathonian|Present|earliest=Rhaetian|refs=}}

| taxon = Squamata

| authority = Oppel, 1811

| subdivision_ranks = Subgroups{{cite journal |last1=Wiens |first1=J. J. |last2=Hutter |first2=C. R. |last3=Mulcahy |first3=D. G. |last4=Noonan |first4=B. P. |last5=Townsend |first5=T. M. |last6=Sites |first6=J. W. |last7=Reeder |first7=T. W. |year=2012 |title=Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species |journal=Biology Letters |volume=8 |issue=6 |pages=1043–1046 |doi=10.1098/rsbl.2012.0703 |pmid=22993238 |pmc=3497141}}

| subdivision = * Dibamidae

}}

Squamata ({{IPAc-en|s|k|w|ae|'|m|ei|t|ə}}, Latin squamatus, 'scaly, having scales') is the largest order of reptiles; most members of which are commonly known as lizards, with the group also including snakes. With over 11,991 species,{{cite web |url=http://www.reptile-database.org/db-info/SpeciesStat.html |title=Species Numbers (as of January 2025) |website=reptile-database.org |access-date=15 March 2025}} it is also the second-largest order of extant (living) vertebrates, after the perciform fish. Squamates are distinguished by their skins, which bear horny scales or shields, and must periodically engage in molting. They also possess movable quadrate bones, making possible movement of the upper jaw relative to the neurocranium. This is particularly visible in snakes, which are able to open their mouths very widely to accommodate comparatively large prey. Squamates are the most variably sized living reptiles, ranging from the {{convert|16|mm|in|adj=on|abbr=on}} dwarf gecko (Sphaerodactylus ariasae) to the {{convert|6.5|m|ft|adj=on|abbr=on}} reticulated python (Malayopython reticulatus). The now-extinct mosasaurs reached lengths over {{convert|14|m|ft|abbr=on}}.

Among other reptiles, squamates are most closely related to the tuatara, the last surviving member of the once diverse Rhynchocephalia, with both groups being placed in the clade Lepidosauria.

Evolution

File:Slavoia darevskii.jpg of Slavoia darevskii, a fossil squamate]]

Squamates are a monophyletic sister group to the rhynchocephalians, members of the order Rhynchocephalia. The only surviving member of the Rhynchocephalia is the tuatara. Squamata and Rhynchocephalia form the superorder Lepidosauria, which is the sister group to the Archosauria, the clade that contains crocodiles and birds, and their extinct relatives. Fossils of rhynchocephalians first appear in the Early Triassic, meaning that the lineage leading to squamates must have also existed at the time.{{Cite journal |last1=Jones |first1=Marc E. |last2=Anderson |first2=Cajsa Lipsa |last3=Hipsley |first3=Christy A. |last4=Müller |first4=Johannes |last5=Evans |first5=Susan E. |last6=Schoch |first6=Rainer R. |title=Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara) |journal=BMC Evolutionary Biology |date=25 September 2013 |volume=13 |issue=1 |page=208 |doi=10.1186/1471-2148-13-208 |pmid=24063680 |pmc=4016551 |doi-access=free |bibcode=2013BMCEE..13..208J }}{{cite journal |doi=10.7554/eLife.66511 |title=The Jurassic rise of squamates as supported by lepidosaur disparity and evolutionary rates |year=2022 |last1=Bolet |first1=Arnau |last2=Stubbs |first2=Thomas L. |last3=Herrera-Flores |first3=Jorge A. |last4=Benton |first4=Michael J. |journal=eLife |volume=11 |pmid=35502582 |pmc=9064307 |doi-access=free }}

A study in 2018 found that Megachirella, an extinct genus of lepidosaurs that lived about 240 million years ago during the Middle Triassic, was a stem-squamate, making it the oldest known squamate. The phylogenetic analysis was conducted by performing high-resolution microfocus X-ray computed tomography (micro-CT) scans on the fossil specimen of Megachirella to gather detailed data about its anatomy. These data were then compared with a phylogenetic dataset combining the morphological and molecular data of 129 extant and extinct reptilian taxa. The comparison revealed Megachirella had certain features that are unique to squamates. The study also found that geckos are the earliest crown group squamates, not iguanians.{{Cite journal |last1=Simōes |first1=Tiago R. |last2=Caldwell |first2=Michael W. |last3=Talanda |first3=Mateusz |last4=Bernardi |first4=Massimo |last5=Palci |first5=Alessandro |last6=Vernygora |first6=Oksana |last7=Bernardini |first7=Federico |last8=Mancini |first8=Lucia |last9=Nydam |first9=Randall L. |date=30 May 2018 |title=The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps |journal=Nature |volume=557 |issue=7707 |pages=706–709 |bibcode=2018Natur.557..706S |doi=10.1038/s41586-018-0093-3 |pmid=29849156 |s2cid=44108416}}{{Cite web |last=Weisberger |first=Mindy |date=30 May 2018 |title=This 240-Million-Year-Old Reptile Is the 'Mother of All Lizards' |url=https://www.livescience.com/62693-mother-of-lizards-fossil.html |access-date=2 June 2018 |work=Live Science |publisher=Purch Group |archive-date=21 June 2019 |archive-url=https://web.archive.org/web/20190621104947/https://amp.livescience.com/62693-mother-of-lizards-fossil.html |url-status=live }} However, a 2021 study found the genus to be a lepidosaur of uncertain position, in a polytomy with Squamata and Rhynchocephalia.{{Cite journal |last=Ford |first=David P. |last2=Evans |first2=Susan E. |last3=Choiniere |first3=Jonah N. |last4=Fernandez |first4=Vincent |last5=Benson |first5=Roger B. J. |date=2021-08-25 |title=A reassessment of the enigmatic diapsid Paliguana whitei and the early history of Lepidosauromorpha |url=https://royalsocietypublishing.org/doi/10.1098/rspb.2021.1084 |journal=Proceedings of the Royal Society B: Biological Sciences |language=en |volume=288 |issue=1957 |pages=20211084 |doi=10.1098/rspb.2021.1084 |issn=0962-8452 |pmc=8385343 |pmid=34428965}}

In 2022, the extinct genus Cryptovaranoides was described from the Late Triassic (Rhaetian age) of England as a highly derived squamate belonging to the group Anguimorpha, which contains many extant lineages such as monitor lizards, beaded lizards and anguids. The presence of an essentially modern crown group squamate so far back in time was unexpected, as their diversification was previously thought to have occurred during the Jurassic and Cretaceous.{{Cite journal |last1=Whiteside |first1=David I. |last2=Chambi-Trowell |first2=Sofía A. V. |last3=Benton |first3=Michael J. |author3-link=Michael Benton |date=2022-12-02 |title=A Triassic crown squamate |journal=Science Advances |language=en |volume=8 |issue=48 |pages=eabq8274 |bibcode=2022SciA....8.8274W |doi=10.1126/sciadv.abq8274 |issn=2375-2548 |pmid=36459546 |pmc=10936055 |s2cid=254180027 |hdl-access=free |hdl=1983/a3c7a019-cfe6-4eb3-9ac0-d50c61c5319e }} A 2023 study found that Cryptovaranoides most likely represents an archosauromorph with no apparent squamate affinities,{{Cite journal |last1=Brownstein |first1=Chase D. |last2=Simões |first2=Tiago R. |last3=Caldwell |first3=Michael W. |last4=Lee |first4=Michael S. Y. |last5=Meyer |first5=Dalton L. |last6=Scarpetta |first6=Simon G. |date=October 2023 |title=The affinities of the Late Triassic Cryptovaranoides and the age of crown squamates |journal=Royal Society Open Science |language=en |volume=10 |issue=10 |doi=10.1098/rsos.230968 |pmid=37830017 |pmc=10565374 |issn=2054-5703 |s2cid=263802572}} though the original describers maintained their original conclusion that this taxon represents a squamate.{{Cite journal|last1=Whiteside |first1=D. I. |last2=Chambi-Trowell |first2=S. A. V. |last3=Benton |first3=M. J. |year=2024 |title=Late Triassic †Cryptovaranoides microlanius is a squamate, not an archosauromorph |journal=Royal Society Open Science |volume=11 |issue=11 |at=231874 |doi=10.1098/rsos.231874 |doi-access=free |pmc=11597406 }} The oldest unambiguous fossils of Squamata date to the Bathonian age of the Middle Jurassic of the Northern Hemisphere, with the first appearance of many modern groups, including snakes, during this period.{{Cite journal |last1=Herrera-Flores |first1=Jorge A. |last2=Stubbs |first2=Thomas L. |last3=Benton |first3=Michael J. |date=March 2021 |title=Ecomorphological diversification of squamates in the Cretaceous |journal=Royal Society Open Science |language=en |volume=8 |issue=3 |pages=rsos.201961, 201961 |doi=10.1098/rsos.201961 |issn=2054-5703 |pmc=8074880 |pmid=33959350|bibcode=2021RSOS....801961H }}

Scientists believe crown group squamates probably originated in the Early Jurassic based on the fossil record, with the oldest unambiguous fossils of squamates dating to the Middle Jurassic.{{Cite journal |last1=Tałanda |first1=Mateusz |last2=Fernandez |first2=Vincent |last3=Panciroli |first3=Elsa |last4=Evans |first4=Susan E. |last5=Benson |first5=Roger J. |date=2022-10-26 |title=Synchrotron tomography of a stem lizard elucidates early squamate anatomy |url=https://www.nature.com/articles/s41586-022-05332-6 |journal=Nature |language=en |volume=611 |issue=7934 |pages=99–104 |doi=10.1038/s41586-022-05332-6 |issn=0028-0836 |pmid=36289329 |bibcode=2022Natur.611...99T |s2cid=253160713 |access-date=13 October 2023 |archive-date=28 December 2023 |archive-url=https://web.archive.org/web/20231228173131/https://www.nature.com/articles/s41586-022-05332-6 |url-status=live }} Squamate morphological and ecological diversity substantially increased over the course of the Cretaceous, including the appeance of groups like iguanians and varanoids, and true snakes. Polyglyphanodontia, an extinct clade of lizards, and mosasaurs, a group of predatory marine lizards that grew to enormous sizes, also appeared in the Cretaceous.{{Cite journal |last1=Gauthier |first1=Jacques |last2=Kearney |first2=Maureen |last3=Maisano |first3=Jessica Anderson |last4=Rieppel |first4=Olivier |last5=Behlke |first5=Adam D. B. |s2cid=86355757 |title=Assembling the squamate tree of life: perspectives from the phenotype and the fossil record |journal=Bulletin of the Peabody Museum of Natural History |date=April 2012 |volume=53 |pages=3–308 |doi=10.3374/014.053.0101}} Squamates suffered a mass extinction at the Cretaceous–Paleogene (K–Pg) boundary, which wiped out polyglyphanodontians, mosasaurs, and many other distinct lineages.{{cite journal |last1=Longrich |first1=Nicholas R. |last2=Bhullar |first2=Bhart-Anjan S. |last3=Gauthier |first3=Jacques |author3-link=Jacques Gauthier |title=Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary |journal=Proceedings of the National Academy of Sciences |date=10 December 2012 |volume=109 |issue=52 |pages=21396–21401 |doi=10.1073/pnas.1211526110 |pmid=23236177 |pmc=3535637 |bibcode=2012PNAS..10921396L |doi-access=free}}

The relationships of squamates are debatable. Although many of the groups originally recognized on the basis of morphology are still accepted, understanding of their relationships to each other has changed radically as a result of studying their genomes. Iguanians were long thought to be the earliest crown group squamates based on morphological data, but genetic data suggest that geckos are the earliest crown group squamates.{{Cite journal |last1=Pyron |first1=R. Alexander |last2=Burbrink |first2=Frank T. |last3=Wiens |first3=John J. |title=A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes |journal=BMC Evolutionary Biology |date=29 April 2013 |volume=13 |issue=1 |page=93 |doi=10.1186/1471-2148-13-93 |pmid=23627680 |pmc=3682911 |doi-access=free |bibcode=2013BMCEE..13...93P }} Iguanians are now united with snakes and anguimorphs in a clade called Toxicofera. Genetic data also suggest that the various limbless groups – snakes, amphisbaenians, and dibamids – are unrelated, and instead arose independently from lizards.

Reproduction

{{See also|Sexual selection in scaled reptiles}}

File:Trachylepis maculilabris mating.jpg mating]]

The male members of the group Squamata have hemipenes, which are usually held inverted within their bodies, and are everted for reproduction via erectile tissue like that in the mammalian penis.{{cite web |url=http://www.greenigsociety.org/anatomy.htm |title=Iguana Anatomy |access-date=28 September 2008 |archive-date=16 March 2010 |archive-url=https://web.archive.org/web/20100316160245/http://www.greenigsociety.org/anatomy.htm |url-status=live }} Only one is used at a time, and some evidence indicates that males alternate use between copulations. The hemipenis has a variety of shapes, depending on the species. Often it bears spines or hooks, to anchor the male within the female. Some species even have forked hemipenes (each hemipenis has two tips). Due to being everted and inverted, hemipenes do not have a completely enclosed channel for the conduction of sperm, but rather a seminal groove that seals as the erectile tissue expands. This is also the only reptile group in which both viviparous and ovoviviparous species are found, as well as the usual oviparous reptiles. The eggs in oviparous species have a parchment-like shell. The only exception is found in blind lizards and three families of geckos (Gekkonidae, Phyllodactylidae and Sphaerodactylidae), where many lay rigid and calcified eggs.{{Cite journal|title=A comparative study of eggshells of Gekkota with morphological, chemical compositional and crystallographic approaches and its evolutionary implications - PMC|date=2018 |pmc=6014675 |last1=Choi |first1=S. |last2=Han |first2=S. |last3=Kim |first3=N. H. |last4=Lee |first4=Y. N. |journal=PLOS ONE |volume=13 |issue=6 |pages=e0199496 |doi=10.1371/journal.pone.0199496 |doi-access=free |pmid=29933400 |bibcode=2018PLoSO..1399496C }}{{Cite web|url=https://www.faculty.biol.vt.edu/andrews/PDF%20files-new/2015AndrewsRSEggs.pdf|title=Rigid Shells Enhance Survival of Gekkotan Eggs}} Some species, such as the Komodo dragon, can reproduce asexually through parthenogenesis.{{cite news |last=Morales |first=Alex |publisher=Bloomberg Television |url=https://www.bloomberg.com/apps/news?pid=20601082&sid=apLYpeppu8ag&refer=canada |title=Komodo Dragons, World's Largest Lizards, Have Virgin Births |access-date=2008-03-28 |date=20 December 2006 |archive-date=8 October 2007 |archive-url=https://web.archive.org/web/20071008112514/http://www.bloomberg.com/apps/news?pid=20601082 |url-status=live }}

File:Elaphe quadrivirgata.JPG

Studies have been conducted on how sexual selection manifests itself in snakes and lizards. Snakes use a variety of tactics in acquiring mates.{{cite journal |doi=10.1016/j.anbehav.2003.05.007 |title=Courtship tactics in garter snakes: How do a male's morphology and behaviour influence his mating success? |year=2004 |last1=Shine |first1=Richard |last2=Langkilde |first2=Tracy |last3=Mason |first3=Robert T |journal=Animal Behaviour |volume=67 |issue=3 |pages=477–83 |s2cid=4830666}}{{dubious|reason=See talk for 'Sexual Selection'|date=December 2015}} Ritual combat between males for the females with which they want to mate includes topping, a behavior exhibited by most viperids, in which one male twists around the vertically elevated fore body of his opponent and forcing it downward. Neck biting commonly occurs while the snakes are entwined.{{cite journal |doi=10.1016/j.anbehav.2004.03.012 |title=Genetic evidence for sexual selection in black ratsnakes, Elaphe obsoleta |year=2005 |last1=Blouin-Demers |first1=Gabriel |last2=Gibbs |first2=H. Lisle |last3=Weatherhead |first3=Patrick J. |journal=Animal Behaviour |volume=69 |issue=1 |pages=225–34 |s2cid=3907523}}

= Facultative parthenogenesis =

File:Central fusion and terminal fusion automixis.svg

Parthenogenesis is a natural form of reproduction in which the growth and development of embryos occur without fertilization. Agkistrodon contortrix (copperhead snake) and Agkistrodon piscivorus (cottonmouth snake) can reproduce by facultative parthenogenesis; they are capable of switching from a sexual mode of reproduction to an asexual mode.{{cite journal |vauthors=Booth W, Smith CF, Eskridge PH, Hoss SK, Mendelson JR, Schuett GW |title=Facultative parthenogenesis discovered in wild vertebrates |journal=Biology Letters |volume=8 |issue=6 |pages=983–5 |year=2012 |pmid=22977071 |pmc=3497136 |doi=10.1098/rsbl.2012.0666}} The type of parthenogenesis that likely occurs is automixis with terminal fusion (see figure), a process in which two terminal products from the same meiosis fuse to form a diploid zygote. This process leads to genome-wide homozygosity, expression of deleterious recessive alleles, and often to developmental abnormalities. Both captive-born and wild-born A. contortrix and A. piscivorus appear to be capable of this form of parthenogenesis.

Reproduction in squamate reptiles is ordinarily sexual, with males having a ZZ pair of sex-determining chromosomes, and females a ZW pair. However, the Colombian rainbow boa, Epicrates maurus, can also reproduce by facultative parthenogenesis, resulting in production of WW female progeny.{{cite journal |author6-link=Coby Schal |vauthors=Booth W, Million L, Reynolds RG, Burghardt GM, Vargo EL, Schal C, Tzika AC, Schuett GW |title=Consecutive virgin births in the new world boid snake, the Colombian rainbow Boa, Epicrates maurus |journal=Journal of Heredity |volume=102 |issue=6 |pages=759–63 |year=2011 |pmid=21868391 |doi=10.1093/jhered/esr080 |doi-access=free}} The WW females are likely produced by terminal automixis.

= Inbreeding avoidance =

When female sand lizards mate with two or more males, sperm competition within the female's reproductive tract may occur. Active selection of sperm by females appears to occur in a manner that enhances female fitness.{{cite journal |vauthors=Olsson M, Shine R, Madsen T, Gullberg A, Tegelström H |title=Sperm choice by females |journal=Trends in Ecology & Evolution |volume=12 |issue=11 |pages=445–6 |year=1997 |pmid=21238151 |doi=10.1016/s0169-5347(97)85751-5|bibcode=1997TEcoE..12..445O }} On the basis of this selective process, the sperm of males that are more distantly related to the female are preferentially used for fertilization, rather than the sperm of close relatives. This preference may enhance the fitness of progeny by reducing inbreeding depression.

Evolution of venom

{{Main|Evolution of snake venom}}

{{See also|Venom}}

Recent research suggests that the evolutionary origin of venom may exist deep in the squamate phylogeny, with 60% of squamates placed in this hypothetical group called Toxicofera. Venom has been known in the clades Caenophidia, Anguimorpha, and Iguania, and has been shown to have evolved a single time along these lineages before the three groups diverged, because all lineages share nine common toxins. The fossil record shows the divergence between anguimorphs, iguanians, and advanced snakes dates back roughly 200 million years ago (Mya) to the Late Triassic/Early Jurassic, but the only good fossil evidence is from the Middle Jurassic.{{Cite journal |last1=Hutchinson |first1=M. N. |last2=Skinner |first2=A. |last3=Lee |first3=M. S. Y. |doi=10.1098/rsbl.2011.1216 |title=Tikiguania and the antiquity of squamate reptiles (lizards and snakes) |journal=Biology Letters |volume=8 |issue=4 |pages=665–669 |year=2012 |pmid=22279152 |pmc=3391445}}

Snake venom has been shown to have evolved via a process by which a gene encoding for a normal body protein, typically one involved in key regulatory processes or bioactivity, is duplicated, and the copy is selectively expressed in the venom gland.{{cite journal |last1=Fry |first1=B. G. |last2=Vidal |first2=N. |last3=Kochva |first3=E. |last4=Renjifo |first4=C. |year=2009 |title=Evolution and diversification of the toxicofera reptile venom system |journal=Journal of Proteomics |volume=72 |issue=2 |pages=127–136 |doi=10.1016/j.jprot.2009.01.009 |pmid=19457354}} Previous literature hypothesized that venoms were modifications of salivary or pancreatic proteins,{{cite journal |last1=Kochva |first1=E |year=1987 |title=The origin of snakes and evolution of the venom apparatus |journal=Toxicon |volume=25 |issue=1 |pages=65–106 |doi=10.1016/0041-0101(87)90150-4 |pmid=3564066|bibcode=1987Txcn...25...65K }} but different toxins have been found to have been recruited from numerous different protein bodies and are as diverse as their functions.{{cite journal |last1=Fry |first1=B. G. |year=2005 |title=From genome to "Venome": Molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins |journal=Genome Research |volume=15 |issue=3 |pages=403–420 |doi=10.1101/gr.3228405 |pmid=15741511 |pmc=551567}}

Natural selection has driven the origination and diversification of the toxins to counter the defenses of their prey. Once toxins have been recruited into the venom proteome, they form large, multigene families and evolve via the birth-and-death model of protein evolution,{{cite journal |last1=Fry |first1=B. G. |last2=Scheib |first2=H. |last3=Young |first3=B. |last4=McNaughtan |first4=J. |last5=Ramjan |first5=S. F. R. |last6=Vidal |first6=N. |year=2008 |title=Evolution of an arsenal |journal=Molecular & Cellular Proteomics |volume=7 |issue=2 |pages=215–246 |doi=10.1074/mcp.m700094-mcp200 |pmid=17855442 |doi-access=free}} which leads to a diversification of toxins that allows the ambush predators the ability to attack a wide range of prey.{{cite journal |last1=Calvete |first1=J. J. |last2=Sanz |first2=L. |last3=Angulo |first3=Y. |last4=Lomonte |first4=B. |last5=Gutierrez |first5=J. M. |year=2009 |title=Venoms, venomics, antivenomics |journal=FEBS Letters |volume=583 |issue=11 |pages=1736–1743 |doi=10.1016/j.febslet.2009.03.029 |pmid=19303875 |s2cid=904161 |doi-access=free|bibcode=2009FEBSL.583.1736C }} The rapid evolution and diversification is thought to be the result of a predator–prey evolutionary arms race, where both are adapting to counter the other.{{cite journal |last1=Barlow |first1=A. |last2=Pook |first2=C. E. |last3=Harrison |first3=R. A. |last4=Wuster |first4=W. |year=2009 |title=Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution |journal=Proceedings of the Royal Society B: Biological Sciences |volume=276 |issue=1666 |pages=2443–2449 |doi=10.1098/rspb.2009.0048 |pmid=19364745 |pmc=2690460}}

Humans and squamates

= Bites and fatalities =

{{See also|Snakebite}}

File:Number of snake envenomings (2007).svg

An estimated 125,000 people a year die from venomous snake bites.{{cite web |title=Snake-bites: appraisal of the global situation |publisher=World Health Organization |url=https://www.who.int/bloodproducts/publications/en/bulletin_1998_76(5)_515-524.pdf |access-date=2007-12-30 |archive-date=27 February 2021 |archive-url=https://web.archive.org/web/20210227041036/http://www.who.int/bloodproducts/publications/en/bulletin_1998_76(5)_515-524.pdf |url-status=live }} In the US alone, more than 8,000 venomous snake bites are reported each year, but only one in 50 million people (five or six fatalities per year in the USA) will die from venomous snake bites.{{cite web |url=http://ufwildlife.ifas.ufl.edu/venomous_snake_faqs.shtml |title=Venomous Snake FAQs |publisher=University of Florida |access-date=17 September 2019 |archive-date=7 December 2020 |archive-url=https://web.archive.org/web/20201207064318/http://ufwildlife.ifas.ufl.edu/venomous_snake_faqs.shtml |url-status=live }}{{cite web |title=First Aid Snake Bites |publisher=University of Maryland Medical Center |url=http://www.umm.edu/non_trauma/snake.htm |access-date=2007-12-30 |archive-date=11 October 2007 |archive-url=https://web.archive.org/web/20071011065938/http://www.umm.edu/non_trauma/snake.htm |url-status=dead }}

Lizard bites, unlike venomous snake bites, are usually not fatal. The Komodo dragon has been known to kill people due to its size, and recent studies show it may have a passive envenomation system. Recent studies also show that the close relatives of the Komodo, the monitor lizards, all have a similar envenomation system, but the toxicity of the bites is relatively low to humans.{{cite web| title = Komodo dragon kills boy, 8, in Indonesia| date = 4 June 2007| publisher = NBC News| url = https://www.nbcnews.com/id/wbna19026658| access-date = 2007-12-30| archive-date = 6 September 2017| archive-url = https://web.archive.org/web/20170906224720/http://www.nbcnews.com/id/19026658/| url-status = live}} The Gila monster and beaded lizards of North and Central America are venomous, but not deadly to humans.

= Conservation =

Though they survived the Cretaceous–Paleogene extinction event, many squamate species are now endangered due to habitat loss, hunting and poaching, illegal wildlife trading, alien species being introduced to their habitats (which puts native creatures at risk through competition, disease, and predation), and other anthropogenic causes. Because of this, some squamate species have recently become extinct, with Africa having the most extinct species. Breeding programs and wildlife parks, though, are trying to save many endangered reptiles from extinction. Zoos, private hobbyists, and breeders help educate people about the importance of snakes and lizards.

Classification and phylogeny

Image:DesertIguana031611.jpg

Historically, the order Squamata has been divided into three suborders:

Of these, the lizards form a paraphyletic group,{{cite journal |last1=Reeder |first1=Tod W. |last2=Townsend |first2=Ted M. |last3=Mulcahy |first3=Daniel G. |last4=Noonan |first4=Brice P. |last5=Wood |first5=Perry L. |last6=Sites |first6=Jack W. |last7=Wiens |first7=John J. |title=Integrated Analyses Resolve Conflicts over Squamate Reptile Phylogeny and Reveal Unexpected Placements for Fossil Taxa |journal=PLOS One |date=2015 |volume=10 |issue=3 |pages=e0118199 |doi=10.1371/journal.pone.0118199 |pmid=25803280 |pmc=4372529|bibcode=2015PLoSO..1018199R |doi-access=free }} since the "lizards" are found in several distinct lineages, with snakes and amphisbaenians recovered as monophyletic groups nested within. Although studies of squamate relationships using molecular biology have found different relationships between some squamata lineages, all recent molecular studies{{cite journal |date=February 2006 |title=Early evolution of the venom system in lizards and snakes |journal=Nature |volume=439 |issue=7076 |pages=584–588 |doi=10.1038/nature04328 |pmid=16292255 |last1=Fry |first1=Brian G. |last2=Vidal |first2=Nicolas |last3=Norman |first3=Janette A. |last4=Vonk |first4=Freek J. |last5=Scheib |first5=Holger |last6=Ramjan |first6=S.F. Ryan |last7=Kuruppu |first7=Sanjaya |last8=Fung |first8=Kim |last9=Hedges |first9=S. Blair |last10=Richardson |first10=Michael K. |last11=Hodgson |first11=Wayne. C. |last12=Ignjatovic |first12=Vera |last13=Summerhayes |first13=Robyn |last14=Kochva |first14=Elazar |bibcode=2006Natur.439..584F |s2cid=4386245 |display-authors=6 }} suggest that the venomous groups are united in a venom clade. Named Toxicofera, it encompasses a majority (nearly 60%) of squamate species and includes Serpentes (snakes), Iguania (agamids, chameleons, iguanids, etc.), and Anguimorpha (monitor lizards, Gila monster, glass lizards, etc.).

One example of a modern classification of the squamates is shown below.{{cite journal |last1=Zheng |first1=Yuchi |author1-link=Yuchi Zheng |last2=Wiens |first2=John J. |title=Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species |journal=Molecular Phylogenetics and Evolution |date=2016 |volume=94 |issue=Part B |pages=537–547 |doi=10.1016/j.ympev.2015.10.009 |pmid=26475614|bibcode=2016MolPE..94..537Z }}

{{clade |style=font-size:85%;line-height:80% |overflow=yes

|label1=Squamata

|1={{clade

|label1=Dibamia

|1=Dibamidae

|label2=Bifurcata

|2={{clade

|label1=Gekkota

|1={{clade

|label1=Pygopodomorpha

|1={{clade

|1=Diplodactylidae Underwood 195470 px

|2={{clade

|1=Pygopodidae Boulenger 188470 px

|2=Carphodactylidae

}}

}}

|label2=Gekkomorpha

|2={{clade

|1=Eublepharidae

|label2=Gekkonoidea

|2={{clade

|1=Sphaerodactylidae Underwood 1954

|2={{clade

|1=Phyllodactylidae 70 px

|2=Gekkonidae

}}

}}

}}

}}

|label2=Unidentata

|2={{clade

|label1=Scinciformata

|1={{clade

|label1=Scincomorpha

|1=Scincidae 70 px

|label2=Cordylomorpha

|2={{clade

|1=Xantusiidae

|2={{clade

|1=Gerrhosauridae 70 px

|2=Cordylidae 70 px

}}

}}

}}

|label2=Episquamata

|2={{clade

|label1=Laterata

|1={{clade

|label1=Teiformata

|1={{clade

|1=Gymnophthalmidae Merrem 182070 px

|2=Teiidae Gray 182790 px

}}

|label2=Lacertibaenia

|2={{clade

|label1=Lacertiformata

|1=Lacertidae 70 px

|label2=Amphisbaenia

|2={{clade

|1=Rhineuridae Vanzolini 1951

|2={{clade

|1=Bipedidae Taylor 195170 px

|2={{clade

|1={{clade

|1=Blanidae Kearney & Stuart 200470 px

|2=Cadeidae Vidal & Hedges 2008

}}

|2={{clade

|1=Trogonophidae Gray 1865

|2=Amphisbaenidae Gray 186570 px

}}

}}

}}

}}

}}

}}

|label2=Toxicofera

|2={{clade

|1={{clade

|label1=Anguimorpha

|1={{clade

|label1=Paleoanguimorpha

|1={{clade

|label1=Shinisauria

|1=Shinisauridae Ahl 1930 sensu Conrad 2006

|label2=Varanoidea

|2={{clade

|1=Lanthanotidae

|2=Varanidae 90 px

}}

}}

|label2=Neoanguimorpha

|2={{clade

|label1=Helodermatoidea

|1=Helodermatidae Gray 183770 px

|2={{clade

|label1=Xenosauroidea

|1=Xenosauridae

|label2=Anguioidea

|2={{clade

|1=Diploglossidae

|2={{clade

|1=Anniellidae

|2=Anguidae Gray 1825

}}

}}

}}

}}

}}

|label2=Iguania

|2={{clade

|label1=Acrodonta

|1={{clade

|1=Chamaeleonidae 70 px

|2=Agamidae Gray 182770 px

}}

|label2=Pleurodonta

|2={{clade

|1=Leiocephalidae

|2={{clade

|1=Iguanidae 70 px

|2={{clade

|1={{clade

|1=Hoplocercidae Frost & Etheridge 1989

|2={{clade

|1=Crotaphytidae

|2=Corytophanidae

}}

}}

|2={{clade

|1=Tropiduridae

|2={{clade

|1={{clade

|1=Phrynosomatidae

|2={{clade

|1=Dactyloidae

|2=Polychrotidae

}}

}}

|2={{clade

|1=Liolaemidae

|2={{clade

|1=Leiosauridae

|2=Opluridae

}}

}}

}}

}}

}}

}}

}}

}}

}}

|label2=Serpentes

|2={{clade

|label1=Scolecophidia

|1={{clade

|1=Leptotyphlopidae Stejneger 189270 px

|2={{clade

|1=Gerrhopilidae Vidal et al. 2010

|2={{clade

|1=Xenotyphlopidae Vidal et al. 2010

|2=Typhlopidae Merrem 182070 px

}}

}}

}}

|2={{clade

|1=Anomalepididae

|label2=Alethinophidia

|2={{clade

|label1=Amerophidia

|1={{clade

|1=Aniliidae

|2=Tropidophiidae Brongersma 1951

}}

|label2=Afrophidia

|2={{clade

|label1=Booidea

|1={{clade

|1={{clade

|1=Uropeltidae 70 px

|2={{clade

|1=Anomochilidae

|2=Cylindrophiidae 70 px

}}

}}

|2={{clade

|1={{clade

|1=Xenopeltidae Bonaparte 1845

|2={{clade

|1=Loxocemidae

|2=Pythonidae Fitzinger 1826120 px

}}

}}

|2={{clade

|1=Boidae 100 px

|2={{clade

|1=Xenophidiidae

|2=Bolyeriidae Hoffstetter 1946

}}

}}

}}

}}

|label2=Caenophidia

|2={{clade

|1=Acrochordidae Bonaparte 1831

|label2=Colubroides

|2={{clade

|1=Xenodermidae

|2={{clade

|1=Pareidae

|2={{clade

|1=Viperidae 70 px

|label2=Proteroglypha

|2={{clade

|1=Homalopsidae

|2={{clade

|1=Colubridae|image1=70 px

|2={{clade

|1=Lamprophiidae

|2=Elapidae|image2=70 px

}}

}}

}}

}}

}}

}}

}}

}}

}}

}}

}}

}}

}}

}}

}}

}}

}}

List of extant families

The over 10,900 extant squamates are divided into 68 families.

class="wikitable"
colspan="100%" align="center" bgcolor="#BBBBFF"|Amphisbaenia
FamilyCommon namesExample speciesExample photo
Amphisbaenidae
Gray, 1865
Tropical worm lizardsDarwin's worm lizard (Amphisbaena darwinii)100px
Bipedidae
Taylor, 1951
Bipes worm lizardsMexican mole lizard (Bipes biporus)100px
Blanidae
Kearney, 2003
Mediterranean worm lizardsMediterranean worm lizard (Blanus cinereus)100px
Cadeidae
Vidal & Hedges, 2007{{cite web |author=S. Blair Hedges |title=Families described |publisher=Hedges Lab {{!}} Evolutionary Biology |url=http://www.hedgeslab.org/pubs_families.php?pubs=families |access-date=18 January 2014 |archive-date=2 February 2014 |archive-url=https://web.archive.org/web/20140202170725/http://www.hedgeslab.org/pubs_families.php?pubs=families |url-status=live }}
Cuban worm lizardsCadea blanoides100px
Rhineuridae
Vanzolini, 1951
North American worm lizardsNorth American worm lizard (Rhineura floridana)100px
Trogonophidae
Gray, 1865
Palearctic worm lizardsCheckerboard worm lizard (Trogonophis wiegmanni)100px
colspan="100%" align="center" bgcolor="#BBBBFF"|Gekkota (geckos, incl. Dibamia)
FamilyCommon namesExample speciesExample photo
Carphodactylidae
Kluge, 1967
Southern padless geckosThick-tailed gecko (Underwoodisaurus milii)100px
Dibamidae
Boulenger, 1884
Blind lizardsDibamus nicobaricum100px
Diplodactylidae
Underwood, 1954
Australasian geckosGolden-tailed gecko (Strophurus taenicauda)100px
Eublepharidae
Boulenger, 1883
Eyelid geckosCommon leopard gecko (Eublepharis macularius)100px
Gekkonidae
Gray, 1825
GeckosMadagascar giant day gecko (Phelsuma grandis)100px
Phyllodactylidae
Gamble et al., 2008
Leaf finger geckosMoorish gecko (Tarentola mauritanica)100px
Pygopodidae
Boulenger, 1884
Flap-footed lizardsBurton's snake lizard (Lialis burtonis)100px
Sphaerodactylidae
Underwood, 1954
Round finger geckosFantastic least gecko (Sphaerodactylus fantasticus)100px
colspan="100%" align="center" bgcolor="#BBBBFF"|Iguania
FamilyCommon namesExample speciesExample photo
Agamidae
Gray, 1827
AgamasEastern bearded dragon (Pogona barbata)100px
Chamaeleonidae
Rafinesque, 1815
ChameleonsVeiled chameleon (Chamaeleo calyptratus)100px
Corytophanidae
Fitzinger, 1843
Casquehead lizardsPlumed basilisk (Basiliscus plumifrons)100px
Crotaphytidae
H.M. Smith & Brodie, 1982
Collared and leopard lizardsCommon collared lizard (Crotaphytus collaris)100px
Dactyloidae
Fitzinger, 1843
AnolesCarolina anole (Anolis carolinensis)100px
Hoplocercidae
Frost & Etheridge, 1989
Wood lizards or clubtailsEnyalioides binzayedi100px
Iguanidae
Oppel, 1811
IguanasMarine iguana (Amblyrhynchus cristatus)100px
Leiocephalidae
Frost & Etheridge, 1989
Curly-tailed lizardsHispaniolan masked curly-tailed lizard (Leiocephalus personatus)100x100px
Leiosauridae
Frost et al., 2001
Leiosaurid lizardsEnyalius bilineatus100px
Liolaemidae
Frost & Etheridge, 1989
Tree iguanas, snow swiftsShining tree iguana (Liolaemus nitidus)100px
Opluridae
Titus & Frost, 1996
Malagasy iguanasChalarodon madagascariensis100px
Phrynosomatidae
Fitzinger, 1843
Earless, spiny, tree, side-blotched and horned lizardsGreater earless lizard (Cophosaurus texanus)100px
Polychrotidae
Frost & Etheridge, 1989
Bush anolesBrazilian bush anole (Polychrus acutirostris)100px
Tropiduridae
Bell, 1843
Neotropical ground lizardsMicrolophus peruvianus100px
colspan="100%" align="center" bgcolor="#BBBBFF"|Lacertoidea (excl. Amphisbaenia)
FamilyCommon NamesExample SpeciesExample Photo
Alopoglossidae
Goicoechea, Frost, De la Riva, Pellegrino, Sites Jr., Rodrigues, & Padial, 2016
Alopoglossid lizardsAlopoglossus vallensis 100px
Gymnophthalmidae
Fitzinger, 1826
Spectacled lizardsBachia bicolor100px
Lacertidae
Oppel, 1811
Wall lizardsOcellated lizard (Lacerta lepida)100px
Teiidae
Gray, 1827
Tegus and whiptailsGold tegu (Tupinambis teguixin)100px
colspan="100%" align="center" bgcolor="#BBBBFF"|Anguimorpha
FamilyCommon namesExample speciesExample photo
Anguidae
Gray, 1825
Glass lizards, alligator lizards and slowwormsSlowworm (Anguis fragilis)100px
Anniellidae
Boulenger, 1885
American legless lizardsCalifornia legless lizard (Anniella pulchra)100px
Diploglossidae
Bocourt, 1873
galliwasps, legless lizardsJamaican giant galliwasp (Celestus occiduus)100px-
Helodermatidae
Gray, 1837
Beaded lizardsGila monster (Heloderma suspectum)100px-
Lanthanotidae
Steindachner, 1877
Earless monitorEarless monitor (Lanthanotus borneensis)100px
Shinisauridae
Ahl, 1930
Chinese crocodile lizardChinese crocodile lizard (Shinisaurus crocodilurus)100px
Varanidae
Merrem, 1820
Monitor lizardsPerentie (Varanus giganteus)100px
Xenosauridae
Cope, 1866
Knob-scaled lizardsMexican knob-scaled lizard (Xenosaurus grandis)100px
colspan="100%" align="center" bgcolor="#BBBBFF"|Scincoidea
FamilyCommon NamesExample SpeciesExample Photo
Cordylidae
Fitzinger, 1826
Girdled lizardsGirdle-tailed lizard (Cordylus warreni)100px
Gerrhosauridae
Fitzinger, 1843
Plated lizardsSudan plated lizard (Gerrhosaurus major)100px
Scincidae
Oppel, 1811
SkinksWestern blue-tongued skink (Tiliqua occipitalis)100px
Xantusiidae
Baird, 1858
Night lizardsGranite night lizard (Xantusia henshawi)100px
colspan="100%" align="center" bgcolor="#BBBBFF"|Alethinophidia
FamilyCommon namesExample speciesExample photo
Acrochordidae
Bonaparte, 1831
File snakesMarine file snake (Acrochordus granulatus)100px
Aniliidae
Stejneger, 1907{{ITIS |id=209611 |taxon=Aniliidae |access-date=12 December 2007}}
Coral pipe snakesBurrowing false coral (Anilius scytale)100px
Anomochilidae
Cundall, Wallach and Rossman, 1993.{{ITIS |id=563894 |taxon=Anomochilidae |access-date=13 December 2007}}
Dwarf pipe snakesLeonard's pipe snake, (Anomochilus leonardi)100px
Atractaspididae
Günther, 1858
Mole vipers, Stiletto snakes, or Burrowing aspsBibron's stiletto snake (Atractaspis bibronii)File:Atractaspis bibronii full body.jpg
Boidae
Gray, 1825Cogger(1991), p.23 (incl. Calabariidae)
BoasAmazon tree boa (Corallus hortulanus)100px
Colubridae
Oppel, 1811 sensu lato (incl. Dipsadidae, Natricidae, Pseudoxenodontidae)
ColubridsGrass snake (Natrix natrix)100px
Cylindrophiidae
Fitzinger, 1843
Asian pipe snakesRed-tailed pipe snake (Cylindrophis ruffus)100px
Elapidae
Boie, 1827
Cobras, coral snakes, mambas, kraits, sea snakes, sea kraits, Australian elapidsKing cobra (Ophiophagus hannah)100px
Homalopsidae
Bonaparte, 1845
Indo-Australian water snakes, mudsnakes, bockadamsNew Guinea bockadam (Cerberus rynchops)100px
Lamprophiidae
Fitzinger, 1843{{ITIS |id=563895 |taxon=Atractaspididae |access-date=13 December 2007}}
Lamprophiid snakesAurora House snake (Lamprophis aurora)File:Lamprophis aurora 165110793.jpg
Loxocemidae
Cope, 1861
Mexican burrowing snakesMexican burrowing snake (Loxocemus bicolor)100px
Micrelapidae
Das et al., 2023
Two-headed snakesSomali Two-headed snake (Micrelaps vaillanti)File:Micrelaps vaillanti 459696.jpg
Pareidae
Romer, 1956
Pareid snakesPerrotet's mountain snake (Xylophis perroteti)100px
Pythonidae
Fitzinger, 1826
PythonsBall python (Python regius)100px
Tropidophiidae
Brongersma, 1951
Dwarf boasNorthern eyelash boa (Trachyboa boulengeri)100px
Uropeltidae
Müller, 1832
Shield-tailed snakes, short-tailed snakesCuvier's shieldtail (Uropeltis ceylanica)100px
Viperidae
Oppel, 1811
Vipers, pitvipers, rattlesnakesEuropean asp (Vipera aspis)100px
Xenodermidae
Fitzinger, 1826
Odd-scaled snakes and relativesKhase earth snake (Stoliczkia khasiensis)100px
Xenopeltidae
Gray, 1849
Sunbeam snakesSunbeam snake (Xenopeltis unicolor)100px
colspan="100%" align="center" bgcolor="#BBBBFF"|Scolecophidia (incl. Anomalepidae)
FamilyCommon namesExample speciesExample photo
Anomalepidae
Taylor, 1939
Dawn blind snakesDawn blind snake (Liotyphlops beui)
Gerrhopilidae
Vidal et al., 2010
Indo-Malayan blindsnakesAndaman worm snake (Gerrhopilus andamanensis)
Leptotyphlopidae
Stejneger, 1892
Slender blind snakesTexas blind snake (Leptotyphlops dulcis)100px
Typhlopidae
Merrem, 1820{{ITIS |id=174338 |taxon=Typhlopidae |access-date=13 December 2007}}
Blind snakesEuropean blind snake (Typhlops vermicularis)100px
Xenotyphlopidae
Vidal et al., 2010
Malagasy blind snakesXenotyphlops grandidieri

References

{{Reflist|30em}}

Further reading

  • {{cite book |last1=Bebler |first1=John L. |last2=King |first2=F. Wayne |title=The Audubon Society Field Guide to Reptiles and Amphibians of North America |publisher=Alfred A. Knopf |location=New York |pages=[https://archive.org/details/audubonsocietyfi00behl/page/581 581] |year=1979 |isbn=978-0-394-50824-5 |url=https://archive.org/details/audubonsocietyfi00behl/page/581 }}
  • {{cite book |last1=Capula |first1=Massimo |last2=Behler |first2=John L. |title=Simon & Schuster's Guide to Reptiles and Amphibians of the World |year=1989 |publisher=Simon & Schuster |location=New York |isbn=978-0-671-69098-4 |url=https://archive.org/details/simonschustersgu00capu}}
  • {{cite book |last1=Cogger |first1=Harold |author-link=Harold Cogger |last2=Zweifel |first2=Richard |title=Reptiles & Amphibians |publisher=Weldon Owen |location=Sydney |year=1992 |isbn=978-0-8317-2786-4 |url=https://archive.org/details/reptilesamphibia00coggrich}}
  • {{cite book |last1=Conant |first1=Roger |last2=Collins |first2=Joseph |author1-link=Roger Conant (herpetologist) |title=A Field Guide to Reptiles and Amphibians Eastern/Central North America |publisher=Houghton Mifflin Company |year=1991 |location=Boston, Massachusetts |isbn=978-0-395-58389-0 |url-access=registration |url=https://archive.org/details/fieldguidetorept00cona}}
  • {{cite book |last=Ditmars |first=Raymond L. |author-link=Raymond Ditmars |title=Reptiles of the World: The Crocodilians, Lizards, Snakes, Turtles and Tortoises of the Eastern and Western Hemispheres |publisher=Macmillan |year=1933 |location=New York |pages=321}}
  • {{cite journal |last1=Evans |first1=SE |year=2003 |title=At the feet of the dinosaurs: the origin, evolution and early diversification of squamate reptiles (Lepidosauria: Diapsida) |journal=Biological Reviews |volume=78 |issue=4 |pages=513–551 |doi=10.1017/S1464793103006134 |pmid=14700390 |s2cid=4845536|url=http://doc.rero.ch/record/16165/files/PAL_E3367.pdf }}
  • {{cite book |last=Evans |first=SE |date=2008 |chapter=The skull of lizards and tuatara |title=Biology of the Reptilia |volume=20, Morphology H: the skull of Lepidosauria |editor1-last=Gans |editor1-first=C |editor2-last=Gaunt |editor2-first=A S |editor3-last=Adler |editor3-first=K |location=Ithaca, New York |publisher=Society for the Study of Amphibians and Reptiles |pages=1–344}}
  • {{cite book |last1=Evans |first1=SE |last2=Jones |first2=MEH |title=New Aspects of Mesozoic Biodiversity |chapter=The Origin, Early History and Diversification of Lepidosauromorph Reptiles |series=Lecture Notes in Earth Sciences |year=2010 |editor-last=Bandyopadhyay |editor-first=S. |volume=132 |pages=27–44 |doi=10.1007/978-3-642-10311-7_2 |bibcode=2010LNES..132...27E |isbn=978-3-642-10310-0}}
  • {{cite book |last1=Freiberg |first1=Marcos |last2=Walls |first2=Jerry |title=The World of Venomous Animals |year=1984 |publisher=TFH Publications |location=New Jersey |isbn=978-0-87666-567-1 |url=https://archive.org/details/worldofvenomousa00marc}}
  • {{cite book |last1=Gibbons |first1=J. Whitfield |last2=Gibbons |first2=Whit |title=Their Blood Runs Cold: Adventures With Reptiles and Amphibians |url=https://archive.org/details/theirbloodrunsco0000gibb |url-access=registration |publisher=University of Alabama Press |year=1983 |location =Alabama |pages=[https://archive.org/details/theirbloodrunsco0000gibb/page/164 164] |isbn=978-0-8173-0135-4}}
  • {{cite book |last1=McDiarmid |first1=RW |last2=Campbell |first2=JA |last3=Touré |first3=T |year=1999 |title=Snake Species of the World: A Taxonomic and Geographic Reference |volume=1 |publisher=Herpetologists' League |pages=511 |isbn=978-1-893777-00-2}}
  • {{cite book |last=Mehrtens |first=John |title=Living Snakes of the World in Color |url=https://archive.org/details/livingsnakesofwo00mehr |url-access=registration |year=1987 |publisher=Sterling

|location=New York |isbn=978-0-8069-6461-4}}

  • {{cite book |last=Rosenfeld |first=Arthur |title=Exotic Pets |publisher=Simon & Schuster |location=New York |year=1989 |pages=293 |isbn=978-0-671-47654-0}}