square tiling honeycomb
{{See also|Order-4 square tiling honeycomb}}
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Square tiling honeycomb | |
bgcolor=#ffffff align=center colspan=2|320px | |
bgcolor=#e7dcc3|Type | Hyperbolic regular honeycomb Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | {4,4,3} r{4,4,4} {41,1,1} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node_1|4|node|4|node|3|node}} {{CDD|node|4|node_1|4|node|4|node}} {{CDD|node|4|node_1|split1-44|nodes}} ↔ {{CDD|node_1|4|node|4|node_g|3sg|node_g}} {{CDD|nodes_11|2a2b-cross|nodes|split2|node}} ↔ {{CDD|node_1|4|node_h0|4|node|3|node}} {{CDD|branchu_11|2|branchu_11|2|branchu_11|2|branchu_11}} ↔ {{CDD|node_1|4|node_g|4sg|node_g|3g|node_g}} |
bgcolor=#e7dcc3|Cells | {4,4} 40px 40px 40px |
bgcolor=#e7dcc3|Faces | square {4} |
bgcolor=#e7dcc3|Edge figure | triangle {3} |
bgcolor=#e7dcc3|Vertex figure | 80px cube, {4,3} |
bgcolor=#e7dcc3|Dual | Order-4 octahedral honeycomb |
bgcolor=#e7dcc3|Coxeter groups | , [4,4,3] , [43] , [41,1,1] |
bgcolor=#e7dcc3|Properties | Regular |
In the geometry of hyperbolic 3-space, the square tiling honeycomb is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells, whose vertices exist on horospheres and converge to a single ideal point at infinity. Given by Schläfli symbol {4,4,3}, it has three square tilings, {4,4}, around each edge, and six square tilings around each vertex, in a cubic {4,3} vertex figure.Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III
{{Honeycomb}}
Rectified order-4 square tiling
Symmetry
The square tiling honeycomb has three reflective symmetry constructions: {{CDD|node_1|4|node|4|node|3|node}} as a regular honeycomb, a half symmetry construction {{CDD|node_1|4|node_h0|4|node|3|node}} ↔ {{CDD|nodes_11|2a2b-cross|nodes|split2|node}}, and lastly a construction with three types (colors) of checkered square tilings {{CDD|node_1|4|node|4|node_g|3sg|node_g}} ↔ {{CDD|node|4|node_1|split1-44|nodes}}.
It also contains an index 6 subgroup [4,4,3*] ↔ [41,1,1], and a radial subgroup [4,(4,3)*] of index 48, with a right dihedral-angled octahedral fundamental domain, and four pairs of ultraparallel mirrors: {{CDD|branchu_11|2|branchu_11|2|branchu_11|2|branchu_11}}.
This honeycomb contains {{CDD|node|3|node|ultra|node_1}} that tile 2-hypercycle surfaces, which are similar to the paracompact order-3 apeirogonal tiling {{CDD|node|3|node|infin|node_1}}:
: 120px
Related polytopes and honeycombs
The square tiling honeycomb is a regular hyperbolic honeycomb in 3-space. It is one of eleven regular paracompact honeycombs.
{{Regular_paracompact_H3_honeycombs}}
There are fifteen uniform honeycombs in the [4,4,3] Coxeter group family, including this regular form, and its dual, the order-4 octahedral honeycomb, {3,4,4}.
{{443_family}}
The square tiling honeycomb is part of the order-4 square tiling honeycomb family, as it can be seen as a rectified order-4 square tiling honeycomb.
{{444_family}}
It is related to the 24-cell, {3,4,3}, which also has a cubic vertex figure.
It is also part of a sequence of honeycombs with square tiling cells:
{{Square tiling tessellations}}
= Rectified square tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Rectified square tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb Semiregular honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | r{4,4,3} or t1{4,4,3} 2r{3,41,1} r{41,1,1} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node|4|node_1|4|node|3|node}} {{CDD|nodes_11|split2-44|node|3|node}} ↔ {{CDD|node_h0|4|node_1|4|node|3|node}} {{CDD|nodes_11|split2-44|node|4|node_1}} ↔ {{CDD|node|4|node_1|4|node_g|3sg|node_g}} {{CDD|node_1|split1-uu|nodes_11|2a2b-cross|nodes_11|split2-uu|node_1}} ↔ {{CDD|node_h0|4|node_1|4|node_g|3sg|node_g}} |
bgcolor=#e7dcc3|Cells | {4,3} 40px r{4,4}40px |
bgcolor=#e7dcc3|Faces | square {4} |
bgcolor=#e7dcc3|Vertex figure | 80px triangular prism |
bgcolor=#e7dcc3|Coxeter groups | , [4,4,3] , [3,41,1] , [41,1,1] |
bgcolor=#e7dcc3|Properties | Vertex-transitive, edge-transitive |
The rectified square tiling honeycomb, t1{4,4,3}, {{CDD|node|4|node_1|4|node|3|node}} has cube and square tiling facets, with a triangular prism vertex figure.
It is similar to the 2D hyperbolic uniform triapeirogonal tiling, r{∞,3}, with triangle and apeirogonal faces.
: 240px
{{Clear}}
= Truncated square tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Truncated square tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | t{4,4,3} or t0,1{4,4,3} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node_1|4|node_1|4|node|3|node}} {{CDD|node_1|4|node_1|4|node_1|4|node}} {{CDD|node_1|4|node_1|split1-44|nodes_11}} ↔ {{CDD|node_1|4|node_1|4|node_1|4|node_h0}} {{CDD|nodes_11|split2-44|node_1|4|node_1}} ↔ {{CDD|node_1|4|node_1|4|node_g|3sg|node_g}} |
bgcolor=#e7dcc3|Cells | {4,3} 40px t{4,4}40px |
bgcolor=#e7dcc3|Faces | square {4} octagon {8} |
bgcolor=#e7dcc3|Vertex figure | 80px triangular pyramid |
bgcolor=#e7dcc3|Coxeter groups | , [4,4,3] , [43] , [41,1,1] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The truncated square tiling honeycomb, t{4,4,3}, {{CDD|node_1|4|node_1|4|node|3|node}} has cube and truncated square tiling facets, with a triangular pyramid vertex figure. It is the same as the cantitruncated order-4 square tiling honeycomb, tr{4,4,4}, {{CDD|node_1|4|node_1|4|node_1|4|node}}.
{{Clear}}
= Bitruncated square tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Bitruncated square tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | 2t{4,4,3} or t1,2{4,4,3} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node|4|node_1|4|node_1|3|node}} |
bgcolor=#e7dcc3|Cells | t{4,3} 40px t{4,4}40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} octagon {8} |
bgcolor=#e7dcc3|Vertex figure | 80px digonal disphenoid |
bgcolor=#e7dcc3|Coxeter groups | , [4,4,3] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The bitruncated square tiling honeycomb, 2t{4,4,3}, {{CDD|node|4|node_1|4|node_1|3|node}} has truncated cube and truncated square tiling facets, with a digonal disphenoid vertex figure.
{{Clear}}
= Cantellated square tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Cantellated square tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | rr{4,4,3} or t0,2{4,4,3} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node_1|4|node|4|node_1|3|node}} {{CDD|nodes_11|2a2b-cross|nodes_11|split2|node}} ↔ {{CDD|node_1|4|node_h0|4|node_1|3|node}} |
bgcolor=#e7dcc3|Cells | r{4,3} 40px rr{4,4}40px {}x{3}40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} |
bgcolor=#e7dcc3|Vertex figure | 80px isosceles triangular prism |
bgcolor=#e7dcc3|Coxeter groups | , [4,4,3] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The cantellated square tiling honeycomb, rr{4,4,3}, {{CDD|node_1|4|node|4|node_1|3|node}} has cuboctahedron, square tiling, and triangular prism facets, with an isosceles triangular prism vertex figure.
{{Clear}}
= Cantitruncated square tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Cantitruncated square tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | tr{4,4,3} or t0,1,2{4,4,3} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_1|4|node_1|4|node_1|3|node}} |
bgcolor=#e7dcc3|Cells | t{4,3} 40px tr{4,4}40px {}x{3} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} octagon {8} |
bgcolor=#e7dcc3|Vertex figure | 80px isosceles triangular pyramid |
bgcolor=#e7dcc3|Coxeter groups | , [4,4,3] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The cantitruncated square tiling honeycomb, tr{4,4,3}, {{CDD|node_1|4|node_1|4|node_1|3|node}} has truncated cube, truncated square tiling, and triangular prism facets, with an isosceles triangular pyramid vertex figure.
{{Clear}}
= Runcinated square tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Runcinated square tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | t0,3{4,4,3} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node_1|4|node|4|node|3|node_1}} {{CDD|nodes_11|2a2b-cross|nodes|split2|node_1}} ↔ {{CDD|node_1|4|node_h0|4|node|3|node_1}} |
bgcolor=#e7dcc3|Cells | {3,4} 40px {4,4}40px {}x{4} 40px {}x{3} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} |
bgcolor=#e7dcc3|Vertex figure | 80px irregular triangular antiprism |
bgcolor=#e7dcc3|Coxeter groups | , [4,4,3] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The runcinated square tiling honeycomb, t0,3{4,4,3}, {{CDD|node_1|4|node|4|node|3|node_1}} has octahedron, triangular prism, cube, and square tiling facets, with an irregular triangular antiprism vertex figure.
{{Clear}}
= Runcitruncated square tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Runcitruncated square tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbols | t0,1,3{4,4,3} s2,3{3,4,4} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node_1|4|node_1|4|node|3|node_1}} {{CDD|node_1|4|node_1|4|node_h|3|node_h}} |
bgcolor=#e7dcc3|Cells | rr{4,3} 40px t{4,4}40px {}x{3} 40px {}x{8} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} octagon {8} |
bgcolor=#e7dcc3|Vertex figure | 80px isosceles-trapezoidal pyramid |
bgcolor=#e7dcc3|Coxeter groups | , [4,4,3] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The runcitruncated square tiling honeycomb, t0,1,3{4,4,3}, {{CDD|node_1|4|node_1|4|node|3|node_1}} has rhombicuboctahedron, octagonal prism, triangular prism and truncated square tiling facets, with an isosceles-trapezoidal pyramid vertex figure.
{{Clear}}
= Runcicantellated square tiling honeycomb =
The runcicantellated square tiling honeycomb is the same as the runcitruncated order-4 octahedral honeycomb.
= Omnitruncated square tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Omnitruncated square tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,2,3{4,4,3} |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_1|4|node_1|4|node_1|3|node_1}} |
bgcolor=#e7dcc3|Cells | tr{4,4} 40px {}x{6} 40px {}x{8} 40px tr{4,3} 40px |
bgcolor=#e7dcc3|Faces | square {4} hexagon {6} octagon {8} |
bgcolor=#e7dcc3|Vertex figure | 80px irregular tetrahedron |
bgcolor=#e7dcc3|Coxeter groups | , [4,4,3] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The omnitruncated square tiling honeycomb, t0,1,2,3{4,4,3}, {{CDD|node_1|4|node_1|4|node_1|3|node_1}} has truncated square tiling, truncated cuboctahedron, hexagonal prism, and octagonal prism facets, with an irregular tetrahedron vertex figure.
{{Clear}}
= Omnisnub square tiling honeycomb =
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Omnisnub square tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | h(t0,1,2,3{4,4,3}) |
bgcolor=#e7dcc3|Coxeter diagram | {{CDD|node_h|4|node_h|4|node_h|3|node_h}} |
bgcolor=#e7dcc3|Cells | sr{4,4} 40px sr{2,3} 40px sr{2,4} 40px sr{4,3} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} |
bgcolor=#e7dcc3|Vertex figure | irregular tetrahedron |
bgcolor=#e7dcc3|Coxeter group | [4,4,3]+ |
bgcolor=#e7dcc3|Properties | Non-uniform, vertex-transitive |
The alternated omnitruncated square tiling honeycomb (or omnisnub square tiling honeycomb), h(t0,1,2,3{4,4,3}), {{CDD|node_h|4|node_h|4|node_h|3|node_h}} has snub square tiling, snub cube, triangular antiprism, square antiprism, and tetrahedron cells, with an irregular tetrahedron vertex figure.
{{Clear}}
= Alternated square tiling honeycomb=
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2| Alternated square tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb Semiregular honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | h{4,4,3} hr{4,4,4} {(4,3,3,4)} h{41,1,1} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|nodes_10ru|split2-44|node|3|node}} ↔ {{CDD|node_h1|4|node|4|node|3|node}} {{CDD|node|4|node_h1|4|node|4|node}} ↔ {{CDD|nodes_10|2a2b-cross|nodes_10ru|split2-44|node}} {{CDD|node_1|split1-44|nodes|split2|node}} ↔ {{CDD|node_h0|4|node|split1-43|nodes_10lu}} {{CDD|node_h|split1-44|nodes|split2-44|node_h}} ↔ {{CDD|node_h0|4|node_h1|4|node|4|node_h0}} {{CDD|nodes|split2-44|node_h1|4|node}} ↔ {{CDD|node|4|node_h1|4|node|4|node_h0}} ↔ {{CDD|node_1|split1-uu|nodes|2a2b-cross|nodes_11|split2-uu|node}} |
bgcolor=#e7dcc3|Cells | {4,4} 40px {4,3} 40px |
bgcolor=#e7dcc3|Faces | square {4} |
bgcolor=#e7dcc3|Vertex figure | |40px cuboctahedron |
bgcolor=#e7dcc3|Coxeter groups | , [3,41,1] [4,1+,4,4] ↔ [∞,4,4,∞] , [(4,4,3,3)] [1+,41,1,1] ↔ [∞[6]] |
bgcolor=#e7dcc3|Properties | Vertex-transitive, edge-transitive, quasiregular |
The alternated square tiling honeycomb, h{4,4,3}, {{CDD|nodes_10ru|split2-44|node|3|node}} is a quasiregular paracompact uniform honeycomb in hyperbolic 3-space. It has cube and square tiling facets in a cuboctahedron vertex figure.
{{Clear}}
= Cantic square tiling honeycomb=
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2| Cantic square tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | h2{4,4,3} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|nodes_10ru|split2-44|node_1|3|node}} ↔ {{CDD|node_h1|4|node|4|node_1|3|node}} |
bgcolor=#e7dcc3|Cells | t{4,4} 40px r{4,3} 40px t{4,3} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} octagon {8} |
bgcolor=#e7dcc3|Vertex figure | |80px rectangular pyramid |
bgcolor=#e7dcc3|Coxeter groups | , [3,41,1] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The cantic square tiling honeycomb, h2{4,4,3}, {{CDD|nodes_10ru|split2-44|node_1|3|node}} is a paracompact uniform honeycomb in hyperbolic 3-space. It has truncated square tiling, truncated cube, and cuboctahedron facets, with a rectangular pyramid vertex figure.
{{Clear}}
= Runcic square tiling honeycomb=
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Runcic square tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | h3{4,4,3} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|nodes_10ru|split2-44|node|3|node_1}} ↔ {{CDD|node_h1|4|node|4|node|3|node_1}} |
bgcolor=#e7dcc3|Cells | {4,4} 40px r{4,3} 40px {3,4} 40px |
bgcolor=#e7dcc3|Faces | triangle {3} square {4} |
bgcolor=#e7dcc3|Vertex figure | |80px square frustum |
bgcolor=#e7dcc3|Coxeter groups | , [3,41,1] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The runcic square tiling honeycomb, h3{4,4,3}, {{CDD|nodes_10ru|split2-44|node|3|node_1}} is a paracompact uniform honeycomb in hyperbolic 3-space. It has square tiling, rhombicuboctahedron, and octahedron facets in a square frustum vertex figure.
{{Clear}}
= Runcicantic square tiling honeycomb=
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2| Runcicantic square tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | h2,3{4,4,3} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|nodes_10ru|split2-44|node_1|3|node_1}} ↔ {{CDD|node_h1|4|node|4|node_1|3|node_1}} |
bgcolor=#e7dcc3|Cells | t{4,4} 40px tr{4,3} 40px t{3,4} 40px |
bgcolor=#e7dcc3|Faces | square {4} hexagon {6} octagon {8} |
bgcolor=#e7dcc3|Vertex figure | |80px mirrored sphenoid |
bgcolor=#e7dcc3|Coxeter groups | , [3,41,1] |
bgcolor=#e7dcc3|Properties | Vertex-transitive |
The runcicantic square tiling honeycomb, h2,3{4,4,3}, {{CDD|nodes_10ru|split2-44|node_1|3|node_1}} ↔ {{CDD|node_h1|4|node|4|node_1|3|node_1}}, is a paracompact uniform honeycomb in hyperbolic 3-space. It has truncated square tiling, truncated cuboctahedron, and truncated octahedron facets in a mirrored sphenoid vertex figure.
{{Clear}}
= Alternated rectified square tiling honeycomb=
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2| Alternated rectified square tiling honeycomb | |
bgcolor=#e7dcc3|Type | Paracompact uniform honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | hr{4,4,3} |
bgcolor=#e7dcc3|Coxeter diagrams | {{CDD|node|4|node_h1|4|node|3|node}} ↔ {{CDD|nodes_10|2a2b-cross|nodes_10ru|split2|node}} |
bgcolor=#e7dcc3|Cells | | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Vertex figure | |triangular prism |
bgcolor=#e7dcc3|Coxeter groups | [4,1+,4,3] = [∞,3,3,∞] |
bgcolor=#e7dcc3|Properties | Nonsimplectic, vertex-transitive |
The alternated rectified square tiling honeycomb is a paracompact uniform honeycomb in hyperbolic 3-space.
{{Clear}}
See also
References
{{reflist}}
- Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{ISBN|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
- The Beauty of Geometry: Twelve Essays (1999), Dover Publications, {{LCCN|99035678}}, {{ISBN|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space]) Table III
- Jeffrey R. Weeks The Shape of Space, 2nd edition {{ISBN|0-8247-0709-5}} (Chapter 16-17: Geometries on Three-manifolds I, II)
- Norman Johnson Uniform Polytopes, Manuscript
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups
- Norman W. Johnson and Asia Ivic Weiss [https://cms.math.ca/cjm/v51/weisscox8.pdf Quadratic Integers and Coxeter Groups] PDF Can. J. Math. Vol. 51 (6), 1999 pp. 1307–1336