square tiling honeycomb

{{See also|Order-4 square tiling honeycomb}}

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Square tiling honeycomb

bgcolor=#ffffff align=center colspan=2|320px
bgcolor=#e7dcc3|TypeHyperbolic regular honeycomb
Paracompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbols{4,4,3}
r{4,4,4}
{41,1,1}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|4|node|4|node|3|node}}
{{CDD|node|4|node_1|4|node|4|node}}
{{CDD|node|4|node_1|split1-44|nodes}} ↔ {{CDD|node_1|4|node|4|node_g|3sg|node_g}}
{{CDD|nodes_11|2a2b-cross|nodes|split2|node}} ↔ {{CDD|node_1|4|node_h0|4|node|3|node}}
{{CDD|branchu_11|2|branchu_11|2|branchu_11|2|branchu_11}} ↔ {{CDD|node_1|4|node_g|4sg|node_g|3g|node_g}}
bgcolor=#e7dcc3|Cells{4,4} 40px 40px 40px
bgcolor=#e7dcc3|Facessquare {4}
bgcolor=#e7dcc3|Edge figuretriangle {3}
bgcolor=#e7dcc3|Vertex figure80px
cube, {4,3}
bgcolor=#e7dcc3|DualOrder-4 octahedral honeycomb
bgcolor=#e7dcc3|Coxeter groups\overline{R}_3, [4,4,3]
\overline{N}_3, [43]
\overline{M}_3, [41,1,1]
bgcolor=#e7dcc3|PropertiesRegular

In the geometry of hyperbolic 3-space, the square tiling honeycomb is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells, whose vertices exist on horospheres and converge to a single ideal point at infinity. Given by Schläfli symbol {4,4,3}, it has three square tilings, {4,4}, around each edge, and six square tilings around each vertex, in a cubic {4,3} vertex figure.Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III

{{Honeycomb}}

Rectified order-4 square tiling

It is also seen as a rectified order-4 square tiling honeycomb, r{4,4,4}:

class=wikitable

!{4,4,4}

!r{4,4,4} = {4,4,3}

{{CDD|node_1|4|node|4|node|4|node}}||{{CDD|node|4|node_1|4|node|4|node}} = {{CDD|node_1|4|node|4|node|3|node}}
240px240px

Symmetry

The square tiling honeycomb has three reflective symmetry constructions: {{CDD|node_1|4|node|4|node|3|node}} as a regular honeycomb, a half symmetry construction {{CDD|node_1|4|node_h0|4|node|3|node}} ↔ {{CDD|nodes_11|2a2b-cross|nodes|split2|node}}, and lastly a construction with three types (colors) of checkered square tilings {{CDD|node_1|4|node|4|node_g|3sg|node_g}} ↔ {{CDD|node|4|node_1|split1-44|nodes}}.

It also contains an index 6 subgroup [4,4,3*] ↔ [41,1,1], and a radial subgroup [4,(4,3)*] of index 48, with a right dihedral-angled octahedral fundamental domain, and four pairs of ultraparallel mirrors: {{CDD|branchu_11|2|branchu_11|2|branchu_11|2|branchu_11}}.

This honeycomb contains {{CDD|node|3|node|ultra|node_1}} that tile 2-hypercycle surfaces, which are similar to the paracompact order-3 apeirogonal tiling {{CDD|node|3|node|infin|node_1}}:

: 120px

Related polytopes and honeycombs

The square tiling honeycomb is a regular hyperbolic honeycomb in 3-space. It is one of eleven regular paracompact honeycombs.

{{Regular_paracompact_H3_honeycombs}}

There are fifteen uniform honeycombs in the [4,4,3] Coxeter group family, including this regular form, and its dual, the order-4 octahedral honeycomb, {3,4,4}.

{{443_family}}

The square tiling honeycomb is part of the order-4 square tiling honeycomb family, as it can be seen as a rectified order-4 square tiling honeycomb.

{{444_family}}

It is related to the 24-cell, {3,4,3}, which also has a cubic vertex figure.

It is also part of a sequence of honeycombs with square tiling cells:

{{Square tiling tessellations}}

= Rectified square tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Rectified square tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
Semiregular honeycomb
bgcolor=#e7dcc3|Schläfli symbolsr{4,4,3} or t1{4,4,3}
2r{3,41,1}
r{41,1,1}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node|4|node_1|4|node|3|node}}
{{CDD|nodes_11|split2-44|node|3|node}} ↔ {{CDD|node_h0|4|node_1|4|node|3|node}}
{{CDD|nodes_11|split2-44|node|4|node_1}} ↔ {{CDD|node|4|node_1|4|node_g|3sg|node_g}}
{{CDD|node_1|split1-uu|nodes_11|2a2b-cross|nodes_11|split2-uu|node_1}} ↔ {{CDD|node_h0|4|node_1|4|node_g|3sg|node_g}}
bgcolor=#e7dcc3|Cells{4,3} 40px
r{4,4}40px
bgcolor=#e7dcc3|Facessquare {4}
bgcolor=#e7dcc3|Vertex figure80px
triangular prism
bgcolor=#e7dcc3|Coxeter groups\overline{R}_3, [4,4,3]
\overline{O}_3, [3,41,1]
\overline{M}_3, [41,1,1]
bgcolor=#e7dcc3|PropertiesVertex-transitive, edge-transitive

The rectified square tiling honeycomb, t1{4,4,3}, {{CDD|node|4|node_1|4|node|3|node}} has cube and square tiling facets, with a triangular prism vertex figure.

480px

It is similar to the 2D hyperbolic uniform triapeirogonal tiling, r{∞,3}, with triangle and apeirogonal faces.

: 240px

{{Clear}}

= Truncated square tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Truncated square tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolst{4,4,3} or t0,1{4,4,3}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|4|node_1|4|node|3|node}}
{{CDD|node_1|4|node_1|4|node_1|4|node}}
{{CDD|node_1|4|node_1|split1-44|nodes_11}} ↔ {{CDD|node_1|4|node_1|4|node_1|4|node_h0}}
{{CDD|nodes_11|split2-44|node_1|4|node_1}} ↔ {{CDD|node_1|4|node_1|4|node_g|3sg|node_g}}
bgcolor=#e7dcc3|Cells{4,3} 40px
t{4,4}40px
bgcolor=#e7dcc3|Facessquare {4}
octagon {8}
bgcolor=#e7dcc3|Vertex figure80px
triangular pyramid
bgcolor=#e7dcc3|Coxeter groups\overline{R}_3, [4,4,3]
\overline{N}_3, [43]
\overline{M}_3, [41,1,1]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The truncated square tiling honeycomb, t{4,4,3}, {{CDD|node_1|4|node_1|4|node|3|node}} has cube and truncated square tiling facets, with a triangular pyramid vertex figure. It is the same as the cantitruncated order-4 square tiling honeycomb, tr{4,4,4}, {{CDD|node_1|4|node_1|4|node_1|4|node}}.

480px

{{Clear}}

= Bitruncated square tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Bitruncated square tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbols2t{4,4,3} or t1,2{4,4,3}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node|4|node_1|4|node_1|3|node}}
bgcolor=#e7dcc3|Cellst{4,3} 40px
t{4,4}40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
octagon {8}
bgcolor=#e7dcc3|Vertex figure80px
digonal disphenoid
bgcolor=#e7dcc3|Coxeter groups\overline{R}_3, [4,4,3]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The bitruncated square tiling honeycomb, 2t{4,4,3}, {{CDD|node|4|node_1|4|node_1|3|node}} has truncated cube and truncated square tiling facets, with a digonal disphenoid vertex figure.

480px

{{Clear}}

= Cantellated square tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Cantellated square tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolsrr{4,4,3} or t0,2{4,4,3}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|4|node|4|node_1|3|node}}
{{CDD|nodes_11|2a2b-cross|nodes_11|split2|node}} ↔ {{CDD|node_1|4|node_h0|4|node_1|3|node}}
bgcolor=#e7dcc3|Cellsr{4,3} 40px
rr{4,4}40px
{}x{3}40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
bgcolor=#e7dcc3|Vertex figure80px
isosceles triangular prism
bgcolor=#e7dcc3|Coxeter groups\overline{R}_3, [4,4,3]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The cantellated square tiling honeycomb, rr{4,4,3}, {{CDD|node_1|4|node|4|node_1|3|node}} has cuboctahedron, square tiling, and triangular prism facets, with an isosceles triangular prism vertex figure.

480px

{{Clear}}

= Cantitruncated square tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Cantitruncated square tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolstr{4,4,3} or t0,1,2{4,4,3}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|4|node_1|4|node_1|3|node}}
bgcolor=#e7dcc3|Cellst{4,3} 40px
tr{4,4}40px
{}x{3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
octagon {8}
bgcolor=#e7dcc3|Vertex figure80px
isosceles triangular pyramid
bgcolor=#e7dcc3|Coxeter groups\overline{R}_3, [4,4,3]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The cantitruncated square tiling honeycomb, tr{4,4,3}, {{CDD|node_1|4|node_1|4|node_1|3|node}} has truncated cube, truncated square tiling, and triangular prism facets, with an isosceles triangular pyramid vertex figure.

480px

{{Clear}}

= Runcinated square tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcinated square tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolt0,3{4,4,3}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|4|node|4|node|3|node_1}}
{{CDD|nodes_11|2a2b-cross|nodes|split2|node_1}} ↔ {{CDD|node_1|4|node_h0|4|node|3|node_1}}
bgcolor=#e7dcc3|Cells{3,4} 40px
{4,4}40px
{}x{4} 40px
{}x{3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
bgcolor=#e7dcc3|Vertex figure80px
irregular triangular antiprism
bgcolor=#e7dcc3|Coxeter groups\overline{R}_3, [4,4,3]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcinated square tiling honeycomb, t0,3{4,4,3}, {{CDD|node_1|4|node|4|node|3|node_1}} has octahedron, triangular prism, cube, and square tiling facets, with an irregular triangular antiprism vertex figure.

480px

{{Clear}}

= Runcitruncated square tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcitruncated square tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolst0,1,3{4,4,3}
s2,3{3,4,4}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|4|node_1|4|node|3|node_1}}
{{CDD|node_1|4|node_1|4|node_h|3|node_h}}
bgcolor=#e7dcc3|Cellsrr{4,3} 40px
t{4,4}40px
{}x{3} 40px
{}x{8} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
octagon {8}
bgcolor=#e7dcc3|Vertex figure80px
isosceles-trapezoidal pyramid
bgcolor=#e7dcc3|Coxeter groups\overline{R}_3, [4,4,3]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcitruncated square tiling honeycomb, t0,1,3{4,4,3}, {{CDD|node_1|4|node_1|4|node|3|node_1}} has rhombicuboctahedron, octagonal prism, triangular prism and truncated square tiling facets, with an isosceles-trapezoidal pyramid vertex figure.

480px

{{Clear}}

= Runcicantellated square tiling honeycomb =

The runcicantellated square tiling honeycomb is the same as the runcitruncated order-4 octahedral honeycomb.

= Omnitruncated square tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Omnitruncated square tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolt0,1,2,3{4,4,3}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|4|node_1|4|node_1|3|node_1}}
bgcolor=#e7dcc3|Cellstr{4,4} 40px
{}x{6} 40px
{}x{8} 40px
tr{4,3} 40px
bgcolor=#e7dcc3|Facessquare {4}
hexagon {6}
octagon {8}
bgcolor=#e7dcc3|Vertex figure80px
irregular tetrahedron
bgcolor=#e7dcc3|Coxeter groups\overline{R}_3, [4,4,3]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The omnitruncated square tiling honeycomb, t0,1,2,3{4,4,3}, {{CDD|node_1|4|node_1|4|node_1|3|node_1}} has truncated square tiling, truncated cuboctahedron, hexagonal prism, and octagonal prism facets, with an irregular tetrahedron vertex figure.

480px

{{Clear}}

= Omnisnub square tiling honeycomb =

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Omnisnub square tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolh(t0,1,2,3{4,4,3})
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_h|4|node_h|4|node_h|3|node_h}}
bgcolor=#e7dcc3|Cellssr{4,4} 40px
sr{2,3} 40px
sr{2,4} 40px
sr{4,3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
bgcolor=#e7dcc3|Vertex figureirregular tetrahedron
bgcolor=#e7dcc3|Coxeter group[4,4,3]+
bgcolor=#e7dcc3|PropertiesNon-uniform, vertex-transitive

The alternated omnitruncated square tiling honeycomb (or omnisnub square tiling honeycomb), h(t0,1,2,3{4,4,3}), {{CDD|node_h|4|node_h|4|node_h|3|node_h}} has snub square tiling, snub cube, triangular antiprism, square antiprism, and tetrahedron cells, with an irregular tetrahedron vertex figure.

{{Clear}}

= Alternated square tiling honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2| Alternated square tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
Semiregular honeycomb
bgcolor=#e7dcc3|Schläfli symbolh{4,4,3}
hr{4,4,4}
{(4,3,3,4)}
h{41,1,1}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|nodes_10ru|split2-44|node|3|node}} ↔ {{CDD|node_h1|4|node|4|node|3|node}}
{{CDD|node|4|node_h1|4|node|4|node}} ↔ {{CDD|nodes_10|2a2b-cross|nodes_10ru|split2-44|node}}
{{CDD|node_1|split1-44|nodes|split2|node}} ↔ {{CDD|node_h0|4|node|split1-43|nodes_10lu}}
{{CDD|node_h|split1-44|nodes|split2-44|node_h}} ↔ {{CDD|node_h0|4|node_h1|4|node|4|node_h0}}
{{CDD|nodes|split2-44|node_h1|4|node}} ↔ {{CDD|node|4|node_h1|4|node|4|node_h0}} ↔ {{CDD|node_1|split1-uu|nodes|2a2b-cross|nodes_11|split2-uu|node}}
bgcolor=#e7dcc3|Cells{4,4} 40px
{4,3} 40px
bgcolor=#e7dcc3|Facessquare {4}
bgcolor=#e7dcc3|Vertex figure|40px
cuboctahedron
bgcolor=#e7dcc3|Coxeter groups\overline{O}_3, [3,41,1]
[4,1+,4,4] ↔ [∞,4,4,∞]
\widehat{BR}_3, [(4,4,3,3)]
[1+,41,1,1] ↔ [∞[6]]
bgcolor=#e7dcc3|PropertiesVertex-transitive, edge-transitive, quasiregular

The alternated square tiling honeycomb, h{4,4,3}, {{CDD|nodes_10ru|split2-44|node|3|node}} is a quasiregular paracompact uniform honeycomb in hyperbolic 3-space. It has cube and square tiling facets in a cuboctahedron vertex figure.

{{Clear}}

= Cantic square tiling honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2| Cantic square tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolh2{4,4,3}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|nodes_10ru|split2-44|node_1|3|node}} ↔ {{CDD|node_h1|4|node|4|node_1|3|node}}
bgcolor=#e7dcc3|Cellst{4,4} 40px
r{4,3} 40px
t{4,3} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
octagon {8}
bgcolor=#e7dcc3|Vertex figure|80px
rectangular pyramid
bgcolor=#e7dcc3|Coxeter groups\overline{O}_3, [3,41,1]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The cantic square tiling honeycomb, h2{4,4,3}, {{CDD|nodes_10ru|split2-44|node_1|3|node}} is a paracompact uniform honeycomb in hyperbolic 3-space. It has truncated square tiling, truncated cube, and cuboctahedron facets, with a rectangular pyramid vertex figure.

{{Clear}}

= Runcic square tiling honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2|Runcic square tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolh3{4,4,3}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|nodes_10ru|split2-44|node|3|node_1}} ↔ {{CDD|node_h1|4|node|4|node|3|node_1}}
bgcolor=#e7dcc3|Cells{4,4} 40px
r{4,3} 40px
{3,4} 40px
bgcolor=#e7dcc3|Facestriangle {3}
square {4}
bgcolor=#e7dcc3|Vertex figure|80px
square frustum
bgcolor=#e7dcc3|Coxeter groups\overline{O}_3, [3,41,1]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcic square tiling honeycomb, h3{4,4,3}, {{CDD|nodes_10ru|split2-44|node|3|node_1}} is a paracompact uniform honeycomb in hyperbolic 3-space. It has square tiling, rhombicuboctahedron, and octahedron facets in a square frustum vertex figure.

{{Clear}}

= Runcicantic square tiling honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2| Runcicantic square tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolh2,3{4,4,3}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|nodes_10ru|split2-44|node_1|3|node_1}} ↔ {{CDD|node_h1|4|node|4|node_1|3|node_1}}
bgcolor=#e7dcc3|Cellst{4,4} 40px
tr{4,3} 40px
t{3,4} 40px
bgcolor=#e7dcc3|Facessquare {4}
hexagon {6}
octagon {8}
bgcolor=#e7dcc3|Vertex figure|80px
mirrored sphenoid
bgcolor=#e7dcc3|Coxeter groups\overline{O}_3, [3,41,1]
bgcolor=#e7dcc3|PropertiesVertex-transitive

The runcicantic square tiling honeycomb, h2,3{4,4,3}, {{CDD|nodes_10ru|split2-44|node_1|3|node_1}} ↔ {{CDD|node_h1|4|node|4|node_1|3|node_1}}, is a paracompact uniform honeycomb in hyperbolic 3-space. It has truncated square tiling, truncated cuboctahedron, and truncated octahedron facets in a mirrored sphenoid vertex figure.

{{Clear}}

= Alternated rectified square tiling honeycomb=

class="wikitable" align="right" style="margin-left:10px" width="320"

!bgcolor=#e7dcc3 colspan=2| Alternated rectified square tiling honeycomb

bgcolor=#e7dcc3|TypeParacompact uniform honeycomb
bgcolor=#e7dcc3|Schläfli symbolhr{4,4,3}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node|4|node_h1|4|node|3|node}} ↔ {{CDD|nodes_10|2a2b-cross|nodes_10ru|split2|node}}
bgcolor=#e7dcc3|Cells|
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Vertex figure|triangular prism
bgcolor=#e7dcc3|Coxeter groups[4,1+,4,3] = [∞,3,3,∞]
bgcolor=#e7dcc3|PropertiesNonsimplectic, vertex-transitive

The alternated rectified square tiling honeycomb is a paracompact uniform honeycomb in hyperbolic 3-space.

{{Clear}}

See also

References

{{reflist}}

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{ISBN|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, {{LCCN|99035678}}, {{ISBN|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space]) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition {{ISBN|0-8247-0709-5}} (Chapter 16-17: Geometries on Three-manifolds I, II)
  • Norman Johnson Uniform Polytopes, Manuscript
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups
  • Norman W. Johnson and Asia Ivic Weiss [https://cms.math.ca/cjm/v51/weisscox8.pdf Quadratic Integers and Coxeter Groups] PDF Can. J. Math. Vol. 51 (6), 1999 pp. 1307–1336

Category:Regular 3-honeycombs

Category:Square tilings