supertaster

{{Short description|Person with an elevated taste response}}{{Further|Taste}}{{Multiple issues|{{more citations needed|date=June 2024}}

{{tone|date=June 2024}}}}

Supertasters are individuals whose sense of taste for certain flavors and foods, such as chocolate, is far more sensitive than the average person.{{cite journal | vauthors = Hayes JE, Keast RS | title = Two decades of supertasting: where do we stand? | journal = Physiology & Behavior | volume = 104 | issue = 5 | pages = 1072–1074 | date = October 2011 | pmid = 21851828 | pmc = 3183330 | doi = 10.1016/j.physbeh.2011.08.003 }} The term originated with experimental psychologist Linda Bartoshuk and is not the result of response bias or a scaling artifact but appears to have an anatomical or biological basis.

Over the past two decades, the study of many differences in oral sensation has grown to encompass the idea of supertasting. Originally identified as the heightened response to the suprathreshold bitterness of concentrated propylthiouracil (PROP),{{Cite journal |last1=Bartoshuk |first1=Linda M. |last2=Duffy |first2=Valerie B. |last3=Miller |first3=Inglis J. |date=1994-12-01 |title=PTC/PROP tasting: Anatomy, psychophysics, and sex effects |journal=Physiology & Behavior |volume=56 |issue=6 |pages=1165–1171 |doi=10.1016/0031-9384(94)90361-1 |pmid=7878086 |issn=0031-9384|doi-access=free }} the contemporary view supports that supertasting encompasses an elevated response to all taste qualities.{{Cite journal |last1=Bajec |first1=Martha R. |last2=Pickering |first2=Gary J. |date=November 2008 |title=Thermal taste, PROP responsiveness, and perception of oral sensations |url=https://doi.org/10.1016/j.physbeh.2008.08.009 |journal=Physiology & Behavior |volume=95 |issue=4 |pages=581–590 |doi=10.1016/j.physbeh.2008.08.009 |pmid=18773913 |issn=0031-9384|url-access=subscription }}{{Cite journal |last1=Pickering |first1=Gary J. |last2=Robert |first2=Gordon |date=June 2006 |title=Perception of Mouthfeel Sensations Elicited by Red Wine Are Associated with Sensitivity to 6-N-Propylthiouracil |url=https://onlinelibrary.wiley.com/doi/10.1111/j.1745-459X.2006.00065.x |journal=Journal of Sensory Studies |language=en |volume=21 |issue=3 |pages=249–265 |doi=10.1111/j.1745-459X.2006.00065.x |issn=0887-8250|url-access=subscription }}

Discovery

Reports of variations in human taste perception date back to 1888.{{Cite journal |last1=Bailey |first1=E. H. S. |last2=Nichols |first2=E. L. |date=1888-03-23 |title=On the Sense of Taste |url=https://www.science.org/doi/10.1126/science.ns-11.268.145.b |journal=Science |language=en |volume=ns-11 |issue=268 |pages=145–146 |doi=10.1126/science.ns-11.268.145.b |issn=0036-8075|url-access=subscription }} The major advance in understanding human taste variation came in 1931 with the discovery of "taste-blindness" specifically for thiourea compounds, when Arthur L. Fox, a chemist at DuPont, discovered that some people found phenylthiocarbamide (PTC) bitter, while others found it tasteless.Fox, Arthur L. "Six in ten “tasteblind” to bitter chemical." Sci News Lett 9 (1931): 249.{{cite journal |vauthors=Bartoshuk LM |date=February 2000 |title=Psychophysical advances aid the study of genetic variation in taste |journal=Appetite |volume=34 |issue=1 |pages=105 |doi=10.1006/appe.1999.0287 |pmid=10744897 |s2cid=30300307}}

File:Taste Exhibit at the 1931 New Orleans meeting of the AAAS.jpg meeting. Visitors were invited to "try this harmless substance and learn whether you are a taster or a non-taster."]]

Fox describes the event:

Some time ago the author [Arthur L. Fox] had occasion to prepare a quantity of phenyl-thio-carbamide, and while placing it in a bottle the dust flew around in the air. Another occupant of the laboratory, Dr. C. R. Noller, complained of the bitter taste of the dust, but the author, who was much closer, observed no taste and so stated. He even tasted some of the crystals and assured Dr. Noller they were tasteless but Dr. Noller was equally certain it was the dust he tasted. He tried some of the crystals and found them extremely bitter.{{Cite journal |last=Fox |first=Arthur L. |date=January 1932 |title=The Relationship between Chemical Constitution and Taste |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=18 |issue=1 |pages=115–120 |doi=10.1073/pnas.18.1.115 |doi-access=free |issn=0027-8424 |pmc=1076170 |pmid=16577421|bibcode=1932PNAS...18..115F }}
At the 1931 American Association for the Advancement of Science (AAAS) meeting, Fox collaborated with Albert F. Blakeslee, a geneticist, to have participants taste PTC: 65% found it bitter, 28% found it tasteless, and 6% described other taste qualities. Subsequent studies established that the ability to taste PTC was heritable (Mendelian recessive), indicating a genetic component to taste sensitivity.{{Cite journal |last=Snyder |first=L. H. |date=1931-08-07 |title=Inherited Taste Deficiency |url=https://www.science.org/doi/10.1126/science.74.1910.151 |journal=Science |language=en |volume=74 |issue=1910 |pages=151–152 |doi=10.1126/science.74.1910.151 |pmid=17782493 |bibcode=1931Sci....74..151S |issn=0036-8075|url-access=subscription }}{{Cite journal |last=Blakeslee |first=Albert F. |date=Jan 1932 |title=Genetics of Sensory Thresholds: Taste for Phenyl Thio Carbamide |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=18 |issue=1 |pages=120–130 |doi=10.1073/pnas.18.1.120 |doi-access=free |issn=0027-8424 |pmc=1076171 |pmid=16577422|bibcode=1932PNAS...18..120B }}

In the 1960s, Roland Fischer was the first to link the ability to taste PTC, and the related compound propylthiouracil (PROP) to food preference, diet, and calorie intake.{{cite journal |vauthors=Tepper BJ, Banni S, Melis M, Crnjar R, Tomassini Barbarossa I |date=August 2014 |title=Genetic sensitivity to the bitter taste of 6-n-propylthiouracil (PROP) and its association with physiological mechanisms controlling body mass index (BMI) |journal=Nutrients |volume=6 |issue=9 |pages=3363–3381 |doi=10.3390/nu6093363 |pmc=4179166 |pmid=25166026 |doi-access=free}} Today, PROP has replaced PTC for research because of a faint sulfurous odor and safety concerns with PTC.{{cite book |url=https://books.google.com/books?id=SJYGmkmnPT8C&pg=PT90 |title=Investigating Safely: A Guide for High School Teachers |vauthors=Texley J, Kwan T, Summers J |date=1 January 2004 |publisher=NSTA Press |isbn=978-0-87355-202-8 |pages=90–}} In the 1990s Linda Bartoshuk and colleagues discovered that the taster group could be further divided into medium tasters and supertasters.{{cite journal |vauthors=Bartoshuk LM |year=1991 |title=Sweetness: history, preference, and genetic variability |journal=Food Technology |volume=45 |issue=11 |pages=108–13 |issn=0015-6639 |id={{INIST|5536670}}}}{{cite journal |vauthors=Di Lorenzo PM, Youngentob SL |date=15 April 2003 |title=Olfaction and Taste |journal=Handbook of Psychology |pages=269–297 |doi=10.1002/0471264385.wei0310 |isbn=0471264385}} Research suggests 25% of the population are non-tasters, 50% are medium tasters, and 25% are supertasters.{{Cite journal |last1=Robino |first1=Antonietta |last2=Mezzavilla |first2=Massimo |last3=Pirastu |first3=Nicola |last4=Dognini |first4=Maddalena |last5=Tepper |first5=Beverly J. |last6=Gasparini |first6=Paolo |date=2014-03-13 |title=A Population-Based Approach to Study the Impact of PROP Perception on Food Liking in Populations along the Silk Road |journal=PLOS ONE |volume=9 |issue=3 |pages=e91716 |doi=10.1371/journal.pone.0091716 |doi-access=free |issn=1932-6203 |pmc=3953580 |pmid=24626196|bibcode=2014PLoSO...991716R }}

As a result of hundreds of studies exploring the detection threshold variation in taste sensitivity, the ability to taste the bitter compound phenylthiocarbamide (PTC) has become one of the best-known Mendelian traits in human populations, ranking alongside eye color and blood type in the canon of classic examples.Stephen Wooding, Phenylthiocarbamide: A 75-Year Adventure in Genetics and Natural Selection, Genetics, Volume 172, Issue 4, 1 April 2006, Pages 2015–2023, https://doi.org/10.1093/genetics/172.4.2015

Cause

In 2003, a significant breakthrough occurred when allelic variation in the bitter receptor gene TAS2R38 was identified as the molecular basis for differences in PTC detection thresholds. This gene encodes a receptor on the tongue that binds to bitter compounds, influencing how strongly an individual perceives the taste of these substances.{{Cite journal |last1=Kim |first1=Un-kyung |last2=Jorgenson |first2=Eric |last3=Coon |first3=Hilary |last4=Leppert |first4=Mark |last5=Risch |first5=Neil |last6=Drayna |first6=Dennis |date=2003-02-21 |title=Positional Cloning of the Human Quantitative Trait Locus Underlying Taste Sensitivity to Phenylthiocarbamide |url=https://www.science.org/doi/10.1126/science.1080190 |journal=Science |language=en |volume=299 |issue=5610 |pages=1221–1225 |doi=10.1126/science.1080190 |pmid=12595690 |bibcode=2003Sci...299.1221K |issn=0036-8075|url-access=subscription }} The discovery of TAS2R38's role in taste perception was quickly extended to include sensitivity to propylthiouracil (PROP).{{Cite journal |last1=Duffy |first1=Valerie B. |last2=Davidson |first2=Andrew C. |last3=Kidd |first3=Judith R. |last4=Kidd |first4=Kenneth K. |last5=Speed |first5=William C. |last6=Pakstis |first6=Andrew J. |last7=Reed |first7=Danielle R. |last8=Snyder |first8=Derek J. |last9=Bartoshuk |first9=Linda M. |date=November 2004 |title=Bitter Receptor Gene ( TAS2R38 ), 6- n -Propylthiouracil (PROP) Bitterness and Alcohol Intake |journal=Alcoholism: Clinical and Experimental Research |language=en |volume=28 |issue=11 |pages=1629–1637 |doi=10.1097/01.ALC.0000145789.55183.D4 |issn=0145-6008 |pmc=1397913 |pmid=15547448}} Associations between TAS2R38 and the number of fungiform papillae (FP) were suspected. However, a causal relationship with the supertaster phenomenon has not been established.{{Cite journal |last1=Hayes |first1=John E. |last2=Bartoshuk |first2=Linda M. |last3=Kidd |first3=Judith R. |last4=Duffy |first4=Valerie B. |date=March 2008 |title=Supertasting and PROP Bitterness Depends on More Than the TAS2R38 Gene |url=https://academic.oup.com/chemse/article-lookup/doi/10.1093/chemse/bjm084 |journal=Chemical Senses |language=en |volume=33 |issue=3 |pages=255–265 |doi=10.1093/chemse/bjm084 |pmid=18209019 |issn=1464-3553}}

Molecular genetics indicate that TAS2R38 alleles cannot explain supertasting. This seems intuitive, as polymorphisms in a specific bitter receptor gene are unlikely to account for heightened responses across multiple taste qualities, oral somatosensation, and retronasal olfaction.{{Cite journal |last1=Hayes |first1=John E. |last2=Keast |first2=Russell S.J. |date=October 2011 |title=Two decades of supertasting: Where do we stand? |journal=Physiology & Behavior |language=en |volume=104 |issue=5 |pages=1072–1074 |doi=10.1016/j.physbeh.2011.08.003 |pmc=3183330 |pmid=21851828}}{{Cite journal |last1=Calò |first1=Carla |last2=Padiglia |first2=Alessandra |last3=Zonza |first3=Andrea |last4=Corrias |first4=Laura |last5=Contu |first5=Paolo |last6=Tepper |first6=Beverly J. |last7=Barbarossa |first7=Iole Tomassini |date=October 2011 |title=Polymorphisms in TAS2R38 and the taste bud trophic factor, gustin gene co-operate in modulating PROP taste phenotype |url=https://doi.org/10.1016/j.physbeh.2011.06.013 |journal=Physiology & Behavior |volume=104 |issue=5 |pages=1065–1071 |doi=10.1016/j.physbeh.2011.06.013 |pmid=21712049 |issn=0031-9384|url-access=subscription }}

In addition, environmental causes may play a role in sensitive taste. The exact mechanisms by which these causes may manifest, as well as possible evolutionary advantages to elevated taste sensitivity, are still unknown.{{cite journal | vauthors = Navarro-Allende A, Khataan N, El-Sohemy A | title = Impact of genetic and environmental determinants of taste with food preferences in older adults | journal = Journal of Nutrition for the Elderly | volume = 27 | issue = 3–4 | pages = 267–276 | date = 16 September 2008 | pmid = 19042575 | doi = 10.1080/01639360802261920 | s2cid = 44506616 }}{{Cite web |last=McDonald |first=John H. |date=December 8, 2011 |title=Myths of Human Genetics: PTC tasting |url=https://udel.edu/~mcdonald/mythptc.html |archive-url=https://web.archive.org/web/20240226113809/https://udel.edu/~mcdonald/mythptc.html |archive-date=26 February 2024 |website=udel.edu |pages=54–60}} No clearcut benefit to the trait has been established: in some environments a heightened taste response, particularly to bitterness, would represent an important advantage in avoiding potentially toxic plant alkaloids; however, an increased response to bitterness may limit approach behavior for various palatable foods.

Moreover, the TAS2R38 genotype has been linked to a preference for sweetness in children,{{cite journal |vauthors=Mennella JA, Pepino MY, Reed DR |date=February 2005 |title=Genetic and environmental determinants of bitter perception and sweet preferences |journal=Pediatrics |volume=115 |issue=2 |pages=e216–e222 |doi=10.1542/peds.2004-1582 |pmc=1397914 |pmid=15687429}} avoidance of alcoholic beverages,{{cite journal |display-authors=6 |vauthors=Duffy VB, Davidson AC, Kidd JR, Kidd KK, Speed WC, Pakstis AJ, Reed DR, Snyder DJ, Bartoshuk LM |date=November 2004 |title=Bitter receptor gene (TAS2R38), 6-n-propylthiouracil (PROP) bitterness and alcohol intake |journal=Alcoholism: Clinical and Experimental Research |volume=28 |issue=11 |pages=1629–1637 |doi=10.1097/01.ALC.0000145789.55183.D4 |pmc=1397913 |pmid=15547448}} increased prevalence of colon cancer (because of inadequate vegetable consumption),{{cite journal |vauthors=Basson MD, Bartoshuk LM, Dichello SZ, Panzini L, Weiffenbach JM, Duffy VB |date=March 2005 |title=Association between 6-n-propylthiouracil (PROP) bitterness and colonic neoplasms |journal=Digestive Diseases and Sciences |volume=50 |issue=3 |pages=483–489 |doi=10.1007/s10620-005-2462-7 |pmid=15810630 |s2cid=21099629}} and avoidance of cigarette smoking.{{cite journal |display-authors=6 |vauthors=Cannon DS, Baker TB, Piper ME, Scholand MB, Lawrence DL, Drayna DT, McMahon WM, Villegas GM, Caton TC, Coon H, Leppert MF |date=December 2005 |title=Associations between phenylthiocarbamide gene polymorphisms and cigarette smoking |journal=Nicotine & Tobacco Research |volume=7 |issue=6 |pages=853–858 |doi=10.1080/14622200500330209 |pmid=16298720 |doi-access=free}}

Prevalence

{{Expand section|Further evidence on prevalences|date=June 2024|small=no}}

= Women =

Women are more likely to be supertasters, as are those from Asia, South America, and Africa.{{Cite web |title=BBC - Science & Nature - Human Body and Mind - Science of supertasters |url=https://www.bbc.co.uk/science/humanbody/body/articles/senses/supertaster.shtml |access-date=2023-05-10 |website=www.bbc.co.uk}} Female supertasters tend to have a lower body mass index and better cardiovascular health. This could be because supertasters may not have a high predilection for sweet or high-fat foods compared to the average person.{{Cite web | vauthors = Crosby G |date=2016-05-31|title=Super-Tasters and Non-Tasters: Is it Better to Be Average?|url=https://www.hsph.harvard.edu/nutritionsource/2016/05/31/super-tasters-non-tasters-is-it-better-to-be-average/|access-date=2020-06-04| work = The Nutrition Source | publisher = Harvard University |language=en-us}}

=Identification=

File:Blue tongue.jpg.]]

The tongue's fungiform papillae can be revealed with blue food dye.

Supertasters were initially identified based on the perceived intensity of propylthiouracil (PROP) compared to a reference salt solution. Supertasters consume more salt in comparison to those with average taste.{{Cite journal |last1=Hayes |first1=John E. |last2=Sullivan |first2=Bridget S. |last3=Duffy |first3=Valerie B. |date=2010-06-16 |title=Explaining variability in sodium intake through oral sensory phenotype, salt sensation and liking |journal=Physiology & Behavior |volume=100 |issue=4 |pages=369–380 |doi=10.1016/j.physbeh.2010.03.017 |issn=0031-9384 |pmc=2874635 |pmid=20380843}} Subsequently, salt has been replaced with a non-oral gustatory standard. Therefore, if two individuals rate the same gustatory stimulus at a comparable perceptual intensity, but one gives a rating twice as large for the bitterness of a PROP solution, the experimenter can be confident the difference is real and not merely the result of how the person is using the scale.{{Cite journal |last1=Lim |first1=Juyun |last2=Urban |first2=Lenka |last3=Green |first3=Barry G. |date=July 2008 |title=Measures of Individual Differences in Taste and Creaminess Perception |journal=Chemical Senses |language=en |volume=33 |issue=6 |pages=493–501 |doi=10.1093/chemse/bjn016 |pmid=18453638|pmc=2899842 }} Today, a phenylthiocarbamide (PTC) test strip is used to help determine if someone is a low taster. The general population tastes this as bitter about 75% of the time.{{Cite web|url=https://learn.genetics.utah.edu/content/basics/ptc/|title=PTC The Genetics of Bitter Taste|website=learn.genetics.utah.edu}}

Many studies do not include a cross-modal reference and categorize individuals based on the bitterness of a concentrated PROP solution{{cite journal | vauthors = Prescott J, Ripandelli N, Wakeling I | title = Binary taste mixture interactions in prop non-tasters, medium-tasters and super-tasters | journal = Chemical Senses | volume = 26 | issue = 8 | pages = 993–1003 | date = October 2001 | pmid = 11595676 | doi = 10.1093/chemse/26.8.993 | doi-access = free }}{{cite journal | vauthors = Lanier SA, Hayes JE, Duffy VB | title = Sweet and bitter tastes of alcoholic beverages mediate alcohol intake in of-age undergraduates | journal = Physiology & Behavior | volume = 83 | issue = 5 | pages = 821–831 | date = January 2005 | pmid = 15639168 | doi = 10.1016/j.physbeh.2004.10.004 | s2cid = 40244872 }} or PROP-impregnated paper.{{cite journal | vauthors = Sipiora ML, Murtaugh MA, Gregoire MB, Duffy VB | title = Bitter taste perception and severe vomiting in pregnancy | journal = Physiology & Behavior | volume = 69 | issue = 3 | pages = 259–267 | date = May 2000 | pmid = 10869591 | doi = 10.1016/S0031-9384(00)00223-7 | s2cid = 26518676 }} Supertasters tend to have more fungiform papillae and pain receptors than tasters and non-tasters.{{Cite web|date=May 31, 2016|title=Super-Tasters and Non-Tasters: Is it Better to Be Average?|url=https://www.hsph.harvard.edu/nutritionsource/2016/05/31/super-tasters-non-tasters-is-it-better-to-be-average/|access-date=2020-06-04|website=The Nutrition Source|language=en-us}} It is also possible to make a reasonably accurate self-diagnosis at home by carefully examining the tongue and looking for the number of fungiform papillae.{{cite web|title=Super-Tasting Science: Find Out If You're a "Supertaster"!|date=December 27, 2012|work= Science Buddies | publisher = Scientific American|url=http://www.scientificamerican.com/article/super-tasting-science-find-out-if-youre-a-supertaster/|access-date=2021-07-18}}

Specific food sensitivities

{{prose|date=June 2024}}{{More citations needed section|date=June 2024}}

Although individual food preferences for supertasters cannot be typified, documented examples for either lessened preference or consumption include:

  • Certain alcoholic beverages

    • Brassica oleracea cultivars
    • Brussels sprouts{{cite journal | vauthors = Drewnowski A, Henderson SA, Levine A, Hann C | title = Taste and food preferences as predictors of dietary practices in young women | journal = Public Health Nutrition | volume = 2 | issue = 4 | pages = 513–519 | date = December 1999 | pmid = 10656470 | doi = 10.1017/S1368980099000695 | doi-access = free }}{{cite journal | vauthors = Drewnowski A, Henderson SA, Barratt-Fornell A | title = Genetic taste markers and food preferences | journal = Drug Metabolism and Disposition | volume = 29 | issue = 4 Pt 2 | pages = 535–538 | date = April 2001 | pmid = 11259346 | url = http://dmd.aspetjournals.org/cgi/pmidlookup?view=long&pmid=11259346 }}{{cite journal | vauthors = Dinehart ME, Hayes JE, Bartoshuk LM, Lanier SL, Duffy VB | title = Bitter taste markers explain variability in vegetable sweetness, bitterness, and intake | journal = Physiology & Behavior | volume = 87 | issue = 2 | pages = 304–313 | date = February 2006 | pmid = 16368118 | doi = 10.1016/j.physbeh.2005.10.018 | s2cid = 24387624 }}
    • Cabbage
    • Kale
    • Coffee
    • Chocolate{{cn|date=June 2024}}
    • Grapefruit juice
    • Green tea
    • Watercress, mustard greens, horseradish, dandelion greens, rutabaga (swede), and turnip{{cite journal | vauthors = Sandell MA, Breslin PA | title = Variability in a taste-receptor gene determines whether we taste toxins in food | journal = Current Biology | volume = 16 | issue = 18 | pages = R792–R794 | date = September 2006 | pmid = 16979544 | doi = 10.1016/j.cub.2006.08.049 | doi-access = free | bibcode = 2006CBio...16.R792S }}
    • Soy products
    • Carbonated water{{cite web | vauthors = Swan N | work = ABC More | publisher = Australian Broadcasting Corporation |url=http://www.abc.net.au/radionational/programs/healthreport/super-tasters/3373896 |title=Health Report – 22/12/1997: Super Tasters |date=7 January 1998 |access-date=2013-08-29}}
    • Mushrooms{{cn|date=June 2024}}
    • Anise and licorice{{cn|date=June 2024}}
    • Lower-sodium foods{{cite web | vauthors = Gardner A | date = 16 June 2010 | work = Health.com |url=http://news.health.com/2010/06/16/salt-supertasters/ | archive-url = https://web.archive.org/web/20120114105357/http://news.health.com/2010/06/16/salt-supertasters/ | archive-date = 14 January 2012 |title=Love Salt? You Might Be a "Supertaster"|access-date=2014-12-09}}
    • Spicy foods

See also

References

{{Reflist|2}}

Further reading

{{refbegin}}

  • {{cite journal | vauthors = Reed DR, Tanaka T, McDaniel AH | title = Diverse tastes: Genetics of sweet and bitter perception | journal = Physiology & Behavior | volume = 88 | issue = 3 | pages = 215–226 | date = June 2006 | pmid = 16782140 | pmc = 1698869 | doi = 10.1016/j.physbeh.2006.05.033 }}
  • {{cite web | vauthors = Cole K | url = http://www.oregonlive.com/foodday/index.ssf/2011/03/how_we_taste_--_and_the_truth.html | title = How we taste – and the truth about 'supertasters' | date = 29 March 2011 | work = The Oregonian }} An interview with sensory scientist Juyun Lim of Oregon State University and winemaker John Eliassen
  • {{cite book | vauthors = Di Lorenzo PM, Youngentob SL | chapter = Taste and Olfaction | veditors = Gallagher M, Nelson RJ | title = Handbook of Psychology, Behavioral Neuroscience | date = October 2012 | volume = 3 | pages = 272 | location = New York | publisher = Wiley | chapter-url = https://books.google.com/books?id=Ur5hh9iCxKcC&pg=PA272 | isbn = 978-0-470-89059-2 }}

{{refend}}