Catalan's constant

{{short description|Number, approximately 0.916}}

{{Distinguish|Catalan number}}

{{CS1 config|mode=cs1}}

{{infobox non-integer number

| rationality = Unknown

| symbol = G

| decimal = {{gaps|0.91596|55941|77219|0150...}}

}}

In mathematics, Catalan's constant {{mvar|G}}, is the alternating sum of the reciprocals of the odd square numbers, being defined by:

: G = \beta(2) = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)^2} = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \frac{1}{9^2} - \cdots,

where {{mvar|β}} is the Dirichlet beta function. Its numerical value{{cite book|last1=Papanikolaou|first1=Thomas| title=Catalan's Constant to 1,500,000 Places|url=https://www.gutenberg.org/ebooks/812|via=Gutenberg.org|date=March 1997}} is approximately {{OEIS|A006752}}

: {{math|1=G = {{val|0.915965594177219015054603514932384110774}}…}}

Catalan's constant was named after Eugène Charles Catalan, who found quickly-converging series for its calculation and published a memoir on it in 1865.{{citation

| last = Goldstein | first = Catherine | author-link = Catherine Goldstein

| journal = Bulletin de la Société Royale des Sciences de Liège

| mr = 3498215

| pages = 74–92

| title = The mathematical achievements of Eugène Catalan

| url = https://popups.uliege.be/0037-9565/index.php?id=4830

| volume = 84

| year = 2015}}{{citation

| last = Catalan | first = E. | author-link = Eugène Charles Catalan

| hdl = 2268/193841

| language = fr

| location = Brussels

| series = Mémoires de l'Académie royale des sciences, des lettres et des beaux-arts de Belgique

| title = Mémoire sur la transformation des séries et sur quelques intégrales définies

| journal = Ers, Publiés Par l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique. Collection in 4 | volume = 33

| year = 1865}}

Uses

In low-dimensional topology, Catalan's constant is 1/4 of the volume of an ideal hyperbolic octahedron, and therefore 1/4 of the hyperbolic volume of the complement of the Whitehead link.{{citation

| last = Agol | first = Ian | author-link = Ian Agol

| doi = 10.1090/S0002-9939-10-10364-5

| issue = 10

| journal = Proceedings of the American Mathematical Society

| mr = 2661571

| pages = 3723–3732

| title = The minimal volume orientable hyperbolic 2-cusped 3-manifolds

| volume = 138

| year = 2010| arxiv = 0804.0043| s2cid = 2016662 }}. It is 1/8 of the volume of the complement of the Borromean rings.{{Citation |author=William Thurston|author-link=William Thurston |date=March 2002 |title=The Geometry and Topology of Three-Manifolds |url=http://library.msri.org/books/gt3m/ |chapter=7. Computation of volume |chapter-url=http://library.msri.org/books/gt3m/PDF/7.pdf |archive-url=https://web.archive.org/web/20110125012649/http://library.msri.org/books/gt3m/PDF/7.pdf |archive-date=2011-01-25 |url-status=live |page=165}}

In combinatorics and statistical mechanics, it arises in connection with counting domino tilings,{{citation

| last1 = Temperley | first1 = H. N. V. | author1-link = Harold Neville Vazeille Temperley

| last2 = Fisher | first2 = Michael E. | author2-link = Michael Fisher

| date = August 1961

| doi = 10.1080/14786436108243366

| issue = 68

| journal = Philosophical Magazine

| pages = 1061–1063

| title = Dimer problem in statistical mechanics—an exact result

| volume = 6| bibcode = 1961PMag....6.1061T }} spanning trees,{{citation

| last = Wu | first = F. Y.

| doi = 10.1088/0305-4470/10/6/004

| issue = 6

| journal = Journal of Physics

| mr = 489559

| pages = L113–L115

| title = Number of spanning trees on a lattice

| volume = 10

| year = 1977| bibcode = 1977JPhA...10L.113W

}} and Hamiltonian cycles of grid graphs.{{citation

| last = Kasteleyn | first = P. W. | author-link = Pieter Kasteleyn

| doi = 10.1016/S0031-8914(63)80241-4

| journal = Physica

| mr = 159642

| pages = 1329–1337

| title = A soluble self-avoiding walk problem

| volume = 29

| year = 1963| issue = 12 | bibcode = 1963Phy....29.1329K }}

In number theory, Catalan's constant appears in a conjectured formula for the asymptotic number of primes of the form n^2+1 according to Hardy and Littlewood's Conjecture F. However, it is an unsolved problem (one of Landau's problems) whether there are even infinitely many primes of this form.{{citation

| last = Shanks | first = Daniel | author-link = Daniel Shanks

| journal = Mathematical Tables and Other Aids to Computation

| mr = 105784

| pages = 78–86

| title = A sieve method for factoring numbers of the form n^2+1

| volume = 13

| year = 1959| doi = 10.2307/2001956 | jstor = 2001956 }}

Catalan's constant also appears in the calculation of the mass distribution of spiral galaxies.{{citation

| last1 = Wyse | first1 = A. B. | author1-link=Arthur Bambridge Wyse

| last2 = Mayall | first2 = N. U.

| bibcode = 1942ApJ....95...24W

| date = January 1942

| doi = 10.1086/144370

| journal = The Astrophysical Journal

| pages = 24–47

| title = Distribution of Mass in the Spiral Nebulae Messier 31 and Messier 33.

| volume = 95| doi-access = free

}}{{citation

| last = van der Kruit | first = P. C.

| bibcode = 1988A&A...192..117V

| date = March 1988

| journal = Astronomy & Astrophysics

| pages = 117–127

| title = The three-dimensional distribution of light and mass in disks of spiral galaxies.

| volume = 192}}

Properties

{{unsolved|mathematics|Is Catalan's constant irrational? If so, is it transcendental?}}

It is not known whether {{mvar|G}} is irrational, let alone transcendental.{{citation

| last = Nesterenko | first = Yu. V.

| date = January 2016

| doi = 10.1134/s0081543816010107

| issue = 1

| journal = Proceedings of the Steklov Institute of Mathematics

| pages = 153–170

| title = On Catalan's constant

| volume = 292| s2cid = 124903059

}}. {{mvar|G}} has been called "arguably the most basic constant whose irrationality and transcendence (though strongly

suspected) remain unproven".{{citation

| last1 = Bailey | first1 = David H.

| last2 = Borwein | first2 = Jonathan M.

| last3 = Mattingly | first3 = Andrew

| last4 = Wightwick | first4 = Glenn

| doi = 10.1090/noti1015

| issue = 7

| journal = Notices of the American Mathematical Society

| mr = 3086394

| pages = 844–854

| title = The computation of previously inaccessible digits of \pi^2 and Catalan's constant

| volume = 60

| year = 2013| doi-access = free

}}

There exist however partial results. It is known that infinitely many of the numbers β(2n) are irrational, where β(s) is the Dirichlet beta function.{{Cite journal |last1=Rivoal |first1=T. |last2=Zudilin |first2=W. |date=2003-08-01 |title=Diophantine properties of numbers related to Catalan's constant |url=https://link.springer.com/article/10.1007/s00208-003-0420-2 |journal=Mathematische Annalen |language=en |volume=326 |issue=4 |pages=705–721 |doi=10.1007/s00208-003-0420-2 |hdl=1959.13/803688 |issn=1432-1807}} In particular at least one of β(2), β(4), β(6), β(8), β(10) and β(12) must be irrational, where β(2) is Catalan's constant.{{Cite journal |last=Zudilin |first=Wadim |date=2018-04-26 |title=Arithmetic of Catalan's constant and its relatives |journal=Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg |volume=89 |pages=45–53 |doi=10.1007/s12188-019-00203-w |arxiv=1804.09922 |language=en}} These results by Wadim Zudilin and Tanguy Rivoal are related to similar ones given for the odd zeta constants ζ(2n+1).

Catalan's constant is known to be an algebraic period, which follows from some of the double integrals given below.

Series representations

Catalan's constant appears in the evaluation of several rational series including:{{Cite web |last=Weisstein |first=Eric W. |title=Catalan's Constant |url=https://mathworld.wolfram.com/CatalansConstant.html |access-date=2024-10-02 |website=mathworld.wolfram.com |language=en}}\frac{\pi^2}{16}+\frac G2 = \sum_{n=0}^\infty \frac{1}{(4n+1)^2}.\frac{\pi^2}{16}-\frac G2 = \sum_{n=0}^\infty \frac{1}{(4n+3)^2}.

The following two formulas involve quickly converging series, and are thus appropriate for numerical computation:

\begin{align}

G & = 3 \sum_{n=0}^\infty \frac{1}{2^{4n}}

\left(-\frac{1}{2(8n+2)^2}+\frac{1}{2^2(8n+3)^2}-\frac{1}{2^3(8n+5)^2}+\frac{1}{2^3(8n+6)^2}-\frac{1}{2^4(8n+7)^2}+\frac{1}{2(8n+1)^2}\right) \\

& \qquad -2 \sum_{n=0}^\infty \frac{1}{2^{12n}}

\left(\frac{1}{2^4(8n+2)^2}+\frac{1}{2^6(8n+3)^2}-\frac{1}{2^9(8n+5)^2}-\frac{1}{2^{10} (8n+6)^2}-\frac{1}{2^{12} (8n+7)^2}+\frac{1}{2^3(8n+1)^2}\right)

\end{align}

and

G = \frac{\pi}{8}\log\left(2 + \sqrt{3}\right) + \frac{3}{8}\sum_{n=0}^\infty \frac{1}{(2n+1)^2 \binom{2n}{n}}.

The theoretical foundations for such series are given by Broadhurst, for the first formula,{{cite arXiv|first1=D. J. |last1=Broadhurst|eprint=math.CA/9803067 |title=Polylogarithmic ladders, hypergeometric series and the ten millionth digits of {{math|ζ(3)}} and {{math|ζ(5)}}| year=1998}} and Ramanujan, for the second formula.{{cite book|first=B. C.|last=Berndt|title=Ramanujan's Notebook, Part I|publisher=Springer Verlag|date=1985|page=289|isbn=978-1-4612-1088-7}} The algorithms for fast evaluation of the Catalan constant were constructed by E. Karatsuba.{{cite journal|first=E. A.| last=Karatsuba| title=Fast evaluation of transcendental functions|journal=Probl. Inf. Transm.|volume=27|issue=4| pages=339–360| date=1991|zbl=0754.65021|mr=1156939}}{{cite book|first=E. A.|last=Karatsuba|contribution=Fast computation of some special integrals of mathematical physics|title=Scientific Computing, Validated Numerics, Interval Methods| url=https://archive.org/details/scientificcomput00wals_919|url-access=limited|editor1-first=W.|editor1-last=Krämer| editor2-first=J. W.|editor2-last=von Gudenberg|pages=[https://archive.org/details/scientificcomput00wals_919/page/n35 29]–41|date=2001|doi=10.1007/978-1-4757-6484-0_3|isbn=978-1-4419-3376-8 }} Using these series, calculating Catalan's constant is now about as fast as calculating Apéry's constant, \zeta(3).

Other quickly converging series, due to Guillera and Pilehrood and employed by the y-cruncher software, include:{{cite web|url=http://www.numberworld.org/y-cruncher/internals/formulas.html|title=Formulas and Algorithms|author=Alexander Yee|date=14 May 2019|access-date=5 December 2021}}

:G = \frac{1}{2}\sum_{k=0}^{\infty }\frac{(-8)^{k}(3k+2)}{(2k+1)^{3}{\binom{2k}{k}}^{3}}

:G = \frac{1}{64}\sum_{k=1}^{\infty }\frac{256^{k}(580k^2-184k+15)}{k^3(2k-1)\binom{6k}{3k}\binom{6k}{4k}\binom{4k}{2k}}

:G = -\frac{1}{1024}\sum_{k=1}^{\infty }\frac{(-4096)^k(45136k^4-57184k^3+21240k^2-3160k+165)}{k^3(2k-1)^3}\left( \frac{(2k)!^6(3k)!^3}{k!^3(6k)!^3} \right)

All of these series have time complexity O(n\log(n)^3).

Integral identities

As Seán Stewart writes, "There is a rich and seemingly endless source of definite integrals that

can be equated to or expressed in terms of Catalan's constant."{{citation | last = Stewart | first = Seán M. | doi = 10.1017/mag.2020.99 | issue = 561 | journal = The Mathematical Gazette | mr = 4163926 | pages = 449–459 | title = A Catalan constant inspired integral odyssey | volume = 104 | year = 2020| s2cid = 225116026 }} Some of these expressions include:

\begin{align}

G &= -\frac{1}{\pi i}\int_{0}^{\frac{\pi}{2}} \ln\ln \tan x \ln \tan x \,dx \\[3pt]

G &= \iint_{[0,1]^2} \! \frac{1}{1+x^2 y^2} \,dx\, dy \\[3pt]

G &= \int_0^1\int_0^{1-x} \frac{1}{1 -x^2-y^2} \,dy\,dx \\[3pt]

G &= \int_1^\infty \frac{\ln t}{1 + t^2} \,dt \\[3pt]

G &= -\int_0^1 \frac{\ln t}{1 + t^2} \,dt \\[3pt]

G &= \frac{1}{2} \int_0^\frac{\pi}{2} \frac{t}{\sin t} \,dt \\[3pt]

G &= \int_0^\frac{\pi}{4} \ln \cot t \,dt \\[3pt]

G &= \frac{1}{2} \int_0^\frac{\pi}{2} \ln \left( \sec t +\tan t \right) \,dt \\[3pt]

G &= \int_0^1 \frac{\arccos t}{\sqrt{1+t^2}} \,dt \\[3pt]

G &= \int_0^1 \frac{\operatorname{arcsinh} t}{\sqrt{1-t^2}} \,dt \\[3pt]

G &= \frac{1}{2} \int_0^\infty \frac{\operatorname{arctan} t}{t\sqrt{1+t^2}} \,dt \\[3pt]

G &= \frac{1}{2} \int_0^1 \frac{\operatorname{arctanh} t}{\sqrt{1-t^2}} \,dt \\[3pt]

G &= \int_0^\infty \arccot e^{t} \,dt \\[3pt]

G &= \frac{1}{4} \int_0^{{\pi^2}/{4}} \csc \sqrt{t} \,dt \\[3pt]

G &= \frac{1}{16} \left(\pi^2 + 4\int_1^\infty \arccsc^2 t \,dt\right) \\[3pt]

G &= \frac{1}{2} \int_0^\infty \frac{t}{\cosh t} \,dt \\[3pt]

G &= \frac{\pi}{2} \int_1^\infty \frac{\left(t^4-6t^2+1\right)\ln\ln t}{\left(1+t^2\right)^3} \,dt \\[3pt]

G &= \frac{1}{2} \int_0^\infty \frac{\arcsin \left(\sin t\right)}{t} \,dt \\[3pt]

G &= 1 + \lim_{\alpha\to{1^-}}\!\left\{\int_0^{\alpha}\!\frac{\left(1+6t^2+t^4\right)\arctan{t}}{t\left(1-t^2\right)^2}\, dt

+ 2\operatorname{artanh}{\alpha} - \frac{\pi\alpha}{1-\alpha^2} \right\} \\[3pt]

G &= 1 - \frac18 \iint_{\R^2}\!\!\frac{x\sin\left(2xy/\pi\right)}{\,\left(x^2+\pi^2\right)\cosh x\sinh y\,} \,dx\,dy \\[3pt]

G &= \int_{0}^{\infty}\int_{0}^{\infty}\frac{\sqrt[4]{x} \left(\sqrt{x} \sqrt{y}-1\right)}{(x+1)^2 \sqrt[4]{y} (y+1)^2 \log (x y)}dxdy

\end{align}

where the last three formulas are related to Malmsten's integrals.{{Cite journal| first1=Iaroslav| last1=Blagouchine| title=Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results| year=2014| doi=10.1007/s11139-013-9528-5| url=https://iblagouchine.perso.centrale-marseille.fr/publications/Blagouchine-Malmsten-integrals-and-their-evaluation-by-contour-integration-methods-(Ramanujan-J-2014).pdf| volume=35| journal=The Ramanujan Journal| pages=21–110| s2cid=120943474| access-date=2018-10-01| archive-url=https://web.archive.org/web/20181002020243/https://iblagouchine.perso.centrale-marseille.fr/publications/Blagouchine-Malmsten-integrals-and-their-evaluation-by-contour-integration-methods-(Ramanujan-J-2014).pdf| archive-date=2018-10-02| url-status=dead }}

If {{math|K(k)}} is the complete elliptic integral of the first kind, as a function of the elliptic modulus {{math|k}}, then

G = \tfrac{1}{2} \int_0^1 \mathrm{K}(k)\,dk

If {{math|E(k)}} is the complete elliptic integral of the second kind, as a function of the elliptic modulus {{math|k}}, then

G = -\tfrac{1}{2}+\int_0^1 \mathrm{E}(k)\,dk

With the gamma function {{math|1=Γ(x + 1) = x!}}

\begin{align}

G &= \frac{\pi}{4} \int_0^1 \Gamma\left(1+\frac{x}{2}\right)\Gamma\left(1-\frac{x}{2}\right)\,dx \\

&= \frac{\pi}{2} \int_0^\frac12\Gamma(1+y)\Gamma(1-y)\,dy

\end{align}

The integral

G = \operatorname{Ti}_2(1)=\int_0^1 \frac{\arctan t}{t}\,dt

is a known special function, called the inverse tangent integral, and was extensively studied by Srinivasa Ramanujan.

Relation to special functions

{{mvar|G}} appears in values of the second polygamma function, also called the trigamma function, at fractional arguments:

\begin{align}

\psi_1 \left(\tfrac14\right) &= \pi^2 + 8G \\

\psi_1 \left(\tfrac34\right) &= \pi^2 - 8G.

\end{align}

Simon Plouffe gives an infinite collection of identities between the trigamma function, {{pi}}2 and Catalan's constant; these are expressible as paths on a graph.

Catalan's constant occurs frequently in relation to the Clausen function, the inverse tangent integral, the inverse sine integral, the Barnes G-function, as well as integrals and series summable in terms of the aforementioned functions.

As a particular example, by first expressing the inverse tangent integral in its closed form – in terms of Clausen functions – and then expressing those Clausen functions in terms of the Barnes {{mvar|G}}-function, the following expression is obtained (see Clausen function for more):

G=4\pi \log\left( \frac{ G\left(\frac{3}{8}\right) G\left(\frac{7}{8}\right) }{ G\left(\frac{1}{8}\right) G\left(\frac{5}{8}\right) } \right) +4 \pi \log \left( \frac{ \Gamma\left(\frac{3}{8}\right) }{ \Gamma\left(\frac{1}{8}\right) } \right) +\frac{\pi}{2} \log \left( \frac{1+\sqrt{2} }{2 \left(2-\sqrt{2}\right)} \right).

If one defines the Lerch transcendent {{math|Φ(z,s,α)}} by

\Phi(z, s, \alpha) = \sum_{n=0}^\infty \frac { z^n} {(n+\alpha)^s},

then

G = \tfrac{1}{4}\Phi\left(-1, 2, \tfrac{1}{2}\right).

Continued fraction

{{mvar|G}} can be expressed in the following form:{{cite journal | journal=Acta Arithmetica |volume=103 |issue=4 |pages=329–342 | author=Bowman, D. | author2=Mc Laughlin, J.| name-list-style=amp | title=Polynomial continued fractions | language=English | year=2002 |doi=10.4064/aa103-4-3 |arxiv=1812.08251 |bibcode=2002AcAri.103..329B |s2cid=119137246 | url=https://www.wcupa.edu/sciences-mathematics/mathematics/jMcLaughlin/documents/4paper1.pdf |archive-url=https://web.archive.org/web/20200413012537/https://www.wcupa.edu/sciences-mathematics/mathematics/jMcLaughlin/documents/4paper1.pdf |archive-date=2020-04-13 |url-status=live}}

:G=\cfrac{1}{1+\cfrac{1^4}{8+\cfrac{3^4}{16+\cfrac{5^4}{24+\cfrac{7^4}{32+\cfrac{9^4}{40+\ddots}}}}}}

The simple continued fraction is given by:{{Cite web |title=A014538 - OEIS |url=http://oeis.org/A014538 |access-date=2022-10-27 |website=oeis.org}}

:G=\cfrac{1}{1+\cfrac{1}{10+\cfrac{1}{1+\cfrac{1}{8+\cfrac{1}{1+\cfrac{1}{88+\ddots}}}}}}

This continued fraction would have infinite terms if and only if G is irrational, which is still unresolved.

Known digits

The number of known digits of Catalan's constant {{mvar|G}} has increased dramatically during the last decades. This is due both to the increase of performance of computers as well as to algorithmic improvements.{{cite web|last1=Gourdon|first1=X.|last2=Sebah|first2=P.|url=http://numbers.computation.free.fr/Constants/constants.html|title=Constants and Records of Computation|access-date=11 September 2007}}

class="wikitable" style="margin: 1em auto 1em auto"

|+ Number of known decimal digits of Catalan's constant {{mvar|G}}

! Date

Decimal digitsComputation performed by
1832align="right"| 16Thomas Clausen
1858align="right"| 19Carl Johan Danielsson Hill
1864align="right"| 14Eugène Charles Catalan
1877align="right"| 20James W. L. Glaisher
1913align="right"| 32James W. L. Glaisher
1990align="right"| {{val|20000}}Greg J. Fee
1996align="right"| {{val|50000}}Greg J. Fee
August 14, 1996align="right"| {{val|100000}}Greg J. Fee & Simon Plouffe
September 29, 1996align="right"| {{val|300000}}Thomas Papanikolaou
1996align="right"| {{val|1500000}}Thomas Papanikolaou
1997align="right"| {{val|3379957}}Patrick Demichel
January 4, 1998align="right"| {{val|12500000}}Xavier Gourdon
2001align="right"| {{val|100000500}}Xavier Gourdon & Pascal Sebah
2002align="right"| {{val|201000000}}Xavier Gourdon & Pascal Sebah
October 2006align="right"| {{val|5000000000}}Shigeru Kondo & Steve Pagliarulo{{Cite web |url=http://ja0hxv.calico.jp/pai/ecatalan.html |title=Shigeru Kondo's website |access-date=2008-01-31 |archive-url=https://web.archive.org/web/20080211185703/http://ja0hxv.calico.jp/pai/ecatalan.html |archive-date=2008-02-11 |url-status=dead }}
August 2008align="right"| {{val|10000000000}}Shigeru Kondo & Steve Pagliarulo
January 31, 2009align="right"| {{val|15510000000}}Alexander J. Yee & Raymond Chan{{cite web| url = http://www.numberworld.org/nagisa_runs/computations.html| title = Large Computations |accessdate=31 January 2009}}
April 16, 2009align="right"| {{val|31026000000}}Alexander J. Yee & Raymond Chan
June 7, 2015align="right"| {{val|200000001100}}Robert J. Setti{{cite web| url = http://www.numberworld.org/digits/Catalan/| title = Catalan's constant records using YMP |access-date=14 May 2016}}
April 12, 2016align="right"| {{val|250000000000}}Ron Watkins
February 16, 2019align="right"| {{val|300000000000}}Tizian Hanselmann
March 29, 2019align="right"| {{val|500000000000}}Mike A & Ian Cutress
July 16, 2019align="right"| {{val|600000000100}}Seungmin Kim{{cite web |url = http://www.numberworld.org/y-cruncher/ |title = Catalan's constant records using YMP |archive-url=https://web.archive.org/web/20190722034426/http://www.numberworld.org/y-cruncher/ |archive-date=22 July 2019 |url-status=dead |access-date=22 July 2019}}{{cite web| url = https://ehfd.github.io/world-record/catalans-constant/| title = Catalan's constant world record by Seungmin Kim| date = 23 July 2019 |access-date=17 October 2020}}
September 6, 2020align="right"| {{val|1000000001337}}Andrew Sun{{Cite web|title=Records set by y-cruncher|url=http://www.numberworld.org/y-cruncher/records.html|access-date=2022-02-13|website=www.numberworld.org}}
March 9, 2022align="right"| {{val|1200000000100}}Seungmin Kim

See also

References

{{reflist}}

Further reading

  • {{cite journal

|first = Victor

|last = Adamchik

|year = 2002

|journal = Zeitschrift für Analysis und ihre Anwendungen

|volume = 21

|issue = 3

|pages = 1–10

|title = A certain series associated with Catalan's constant

|mr = 1929434

|doi = 10.4171/ZAA/1110

|doi-access = free

}}

  • {{cite conference

| last = Fee | first = Gregory J.

| editor1-last = Watanabe | editor1-first = Shunro

| editor2-last = Nagata | editor2-first = Morio

| contribution = Computation of Catalan's Constant Using Ramanujan's Formula

| doi = 10.1145/96877.96917

| isbn = 0201548925

| s2cid = 1949187

| pages = 157–160

| publisher = ACM

| title = Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC '90, Tokyo, Japan, August 20-24, 1990

| year = 1990| doi-access = free

}}

  • {{Cite journal

| first = David M.

| last = Bradley

| title = A class of series acceleration formulae for Catalan's constant

| doi = 10.1023/A:1006945407723

| year = 1999

| journal = The Ramanujan Journal

| volume = 3

| issue = 2

| pages = 159–173

| mr = 1703281

| arxiv = 0706.0356

| bibcode = 2007arXiv0706.0356B

| s2cid = 5111792

}}