2025 in paleoichthyology
{{Short description|none}}
{{Year nav topic20 |2025|paleoichthyology|paleontology |paleobotany |arthropod paleontology |paleoentomology |paleomalacology |reptile paleontology |archosaur paleontology |paleomammalogy}}
This list of fossil fish research presented in 2025 is a list of new fossil taxa of jawless vertebrates, placoderms, cartilaginous fishes, bony fishes, and other fishes that were described during the year, as well as other significant discoveries and events related to paleoichthyology that occurred in 2025.
Jawless vertebrates
class="wikitable sortable" align="center" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Deanaspis{{cite journal |last1=Lin |first1=X. |last2=Zan |first2=C. |last3=Gai |first3=Z. |last4=Zhu |first4=M. |title=Deanaspis, a new genus of Galeaspida (jawless stem Gnathostomata) from the Silurian of Jiangxi, China, and its evolutionary implications |journal=Journal of Systematic Palaeontology |year=2025 |volume=23 |issue=1 |at=2460479 |doi=10.1080/14772019.2025.2460479 }}
| Gen. et sp. nov | Junior homonym | Lin et al. | | | {{Flag|China}} | A member of Galeaspida. Genus includes new species D. longpingi. The generic name is preoccupied by Deanaspis Hughes, Ingham & Addison (1975). | |
Placoderms
=Placoderm research=
- Redescription and a study on the affinities of Exutaspis megista is published by Xue et al. (2025).{{Cite journal|last1=Xue |first1=Q. |last2=Wang |first2=J. |last3=Zhu |first3=M. |last4=Zhu |first4=Y. |year=2025 |title=A reappraisal of the morphology and systematics of Extuaspis megista, a brachythoracid arthrodire from the Early Devonian of Yunnan, China |journal=Journal of Systematic Palaeontology |volume=23 |issue=1 |at=2455751 |doi=10.1080/14772019.2025.2455751 }}
Cartilaginous fishes
=Cartilaginous fish research=
- A diverse assemblage of cartilaginous fish fossils, including the youngest record of Phoebodus latus reported to date, is described from the Upper Devovian strata from the South Urals (Russia) by Ivanov et al. (2025).{{Cite journal|last1=Ivanov |first1=A. O. |last2=Artyushkova |first2=O. V. |last3=Tagarieva |first3=R. C. |last4=Reshetnikov |first4=P. A. |year=2025 |title=Fish Assemblages from the Upper Devonian of the South Urals (Russia) |journal=Paleontological Journal |volume=58 |issue=4 supplement |pages=S358–S390 |doi=10.1134/S0031030124601737 }}
- Zhao et al. (2025) interpret Laffonia helvetica as a holocephalan egg capsule morphologically intermediate between Carboniferous Crookallia and Vetacapsula and extant chimaerid capsules.{{Cite journal |last1=Zhao |first1=Y. |last2=Bestwick |first2=J. |last3=Fischer |first3=J. |last4=Bastiaans |first4=D. |last5=Greif |first5=M. |last6=Klug |first6=C. |year=2025 |title=The first record of a shortnose chimaera-like egg capsule from the Mesozoic (Late Jurassic, Switzerland) |journal=Swiss Journal of Palaeontology |volume=144 |at=8 |doi=10.1186/s13358-025-00352-x |pmid=39967761 |pmc=11830639 |doi-access=free }}
- A well-preserved specimen of Chimaeropsis paradoxa, displaying soft parts, is described from the Tithonian strata in the Solnhofen area (Germany) by Duffin, Lauer & Lauer (2025).{{Cite journal|last1=Duffin |first1=C. J. |last2=Lauer |first2=B. |last3=Lauer |first3=R. |title=Chimaeropsis paradoxa Zittel, 1887 (Myriacanthoidei, Holocephali) from the Late Jurassic of Solnhofen |year=2025 |journal=Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen |volume=313 |issue=3 |pages=245–272 |doi=10.1127/njgpa/2025/1233 }}
- Popov & Rogov (2025) describe chimaeroid fossil material from the Coniacian strata from the Krasnoyarsk Krai (Russia), providing evidence of presence of Edaphodon sp. and Harriotta sp. in the polar latitudes of eastern Siberia during the Late Cretaceous.{{Cite journal|last1=Popov |first1=E. V. |last2=Rogov |first2=M. A. |year=2025 |title=Polar Records of Chimaeroid Fishes (Holocephali, Chimaeroidei) from the Upper Cretaceous of Eastern Siberia |journal=Paleontological Journal |volume=58 |issue=4 supplement |pages=S434–S444 |doi=10.1134/S0031030124601786 }}
- A study on the histology and growth of dental plates of Ischyodus dolloi is published by Cerda, Gouiric Cavalli & Reguero (2025).{{Cite journal |last1=Cerda |first1=I. |last2=Gouiric Cavalli |first2=S. |last3=Reguero |first3=M. A. |year=2025 |title=Dental plate histology of †Ischyodus dolloi (Chondrichthyes, Holocephali), from Antarctica |journal=Journal of Anatomy |doi=10.1111/joa.14257 }}
- Gayford & Jambura (2025) review evidence of different drivers of diversification of elasmobranchs throughout their evolutionary history.{{cite journal |last1=Gayford |first1=J. H. |last2=Jambura |first2=P. L. |year=2025 |title=Drivers of diversification in sharks and rays (Chondrichthyes: Elasmobranchii) |journal=Frontiers in Ecology and Evolution |volume=12 |at=1530326 |doi=10.3389/fevo.2024.1530326 |doi-access=free |pmc=7617448 }}
- Greif et al. (2025) reconstruct feeding habits of Ctenacanthus concinnus, interpreting it as likely opportunistic feeder that used an array of feeding mechanisms.{{cite journal |last1=Greif |first1=M. |last2=Calandra |first2=I. |last3=Lautenschlager |first3=S. |last4=Kaiser |first4=T. M. |last5=Mezane |first5=M. |last6=Klug |first6=C. |year=2025 |title=Reconstruction of feeding behaviour and diet in Devonian ctenacanth chondrichthyans using dental microwear texture and finite element analyses |journal=Royal Society Open Science |volume=12 |issue=1 |at=240936 |doi=10.1098/rsos.240936 |pmc=11774596 |doi-access=free }}
- Eltink et al. (2025) report the first discovery of fossil material of Priohybodus arambourgi from the Upper Jurassic Aliança Formation (Brazil), and study tooth morphology of members of the species and its variation.{{Cite journal |last1=Eltink |first1=E. |last2=da Silva |first2=K. R. |last3=de França |first3=M. A. G. |last4=de Morais |first4=D. M. F. |last5=Soto |first5=M. |last6=Duffin |first6=C. J. |year=2025 |title=Morphology and paleoecology of a hybodontiform with serrated teeth, Priohybodus arambourgi, from the Late Jurassic of northeastern Brazil |journal=The Anatomical Record |doi=10.1002/ar.25671 |pmid=40254967 |doi-access=free }}
- Staggl et al. (2025) study diversity dynamics of neoselachians throughout the Mesozoic, providing evidence that higher atmospheric CO2 concentrations had negative effect on neoselachian diversity.{{cite journal |last1=Staggl |first1=M. A. |last2=De Gracia |first2=C. |last3=López-Romero |first3=F. A. |last4=Stumpf |first4=S. |last5=Villalobos-Segura |first5=E. |last6=Benton |first6=M. J. |last7=Kriwet |first7=J. |year=2025 |title=The Drivers of Mesozoic Neoselachian Success and Resilience |journal=Biology |volume=14 |issue=2 |at=142 |doi=10.3390/biology14020142 |doi-access=free |pmc=11852107 }}
- Evidence from the study of oxygen isotope composition of teeth of Cretoxyrhina mantelli, Cretalamna appendiculata, Scapanorhynchus texanus, Squalicorax kaupi, Squalicorax pristodontus and Ptychodus mortoni from the Upper Cretaceous strata from the Gulf Coastal Plain, interpreted as likely indicative of increased body temperature of P. mortoni and indicative of active heating and migration from warmer waters by C. mantelli, is presented by Comans, Tobin & Totten (2025){{Cite journal |last1=Comans |first1=C. M. |last2=Tobin |first2=T. S. |last3=Totten |first3=R. L. |title=Oxygen isotope composition of teeth suggests endothermy and possible migration in some Late Cretaceous shark taxa from the Gulf Coastal Plain, USA |year=2025 |journal=Paleobiology |pages=1–13 |doi=10.1017/pab.2024.45 |doi-access=free }}
- Amadori et al. (2025) reconstruct the lower crushing plate of Ptychodus decurrens on the basis of new fossil material from the Upper Cretaceous strata in Croatia.{{Cite journal |last1=Amadori |first1=M. |last2=Japundžić |first2=S. |last3=Amalfitano |first3=J. |last4=Giusberti |first4=L. |last5=Fornaciari |first5=E. |last6=Jambura |first6=P. L. |last7=Kriwet |first7=J. |year=2025 |title=New insights on the shell-crusher shark Ptychodus decurrens Agassiz, 1838 (Elasmobranchii, Ptychodontidae) based on the first known articulated dentition from the Upper Cretaceous of Croatia |journal=Swiss Journal of Palaeontology |volume=144 |issue=1 |at=2 |doi=10.1186/s13358-024-00340-7 |pmid=39802099 |pmc=11711565 |doi-access=free }}
- Shimada et al. (2025) argue that Otodus megalodon likely had slenderer body than the great white shark, and estimate that it might have reached about 24.3 m in body length.{{cite journal|last1=Shimada |first1=K. |last2=Motani |first2=R. |last3=Wood |first3=J. J. |last4=Sternes |first4=P. C. |last5=Tomita |first5=T. |last6=Bazzi |first6=M. |last7=Collareta |first7=A. |last8=Gayford |first8=J. H. |last9=Türtscher |first9=J. |last10=Jambura |first10=P. L. |last11=Kriwet |first11=J. |last12=Vullo |first12=R. |last13=Long |first13=D. J. |last14=Summers |first14=A. P. |last15=Maisey |first15=J. G. |last16=Underwood |first16=C. |last17=Ward |first17=D. J. |last18=Maisch |first18=H. M. |last19=Perez |first19=V. J. |last20=Feichtinger |first20=I. |last21=Naylor |first21=G. J. P. |last22=Moyer |first22=J. K. |last23=Higham |first23=T. E. |last24=Silva |first24=J. P. C. B. |last25=Bornatowski |first25=H. |last26=González-Barba |first26=G. |last27=Griffiths |first27=M. L. |last28=Becker |first28=M. A. |last29=Siversson |first29=M. |title=Reassessment of the possible size, form, weight, cruising speed, and growth parameters of the extinct megatooth shark, Otodus megalodon (Lamniformes: Otodontidae), and new evolutionary insights into its gigantism, life history strategies, ecology, and extinction |year=2025 |journal=Palaeontologia Electronica |volume=28 |issue=1 |at=28.1.a12 |doi=10.26879/1502 |doi-access=free |pmc=7617484 }}
- A study on the evolution of members of Squaliformes is published by Marion, Condamine & Guinot (2025), who find evidence of multiple colonizations of the deep sea that coincided with marine transgressions and were likely facilitated by the evolution of bioluminescence.{{cite journal |last1=Marion |first1=A. F. P. |last2=Condamine |first2=F. L. |last3=Guinot |first3=G. |year=2025 |title=Bioluminescence and repeated deep-sea colonization shaped the diversification and body size evolution of squaliform sharks |journal=Proceedings of the Royal Society B: Biological Sciences |volume=292 |issue=2042 |at=20242932 |doi=10.1098/rspb.2024.2932 |pmid=40040453 |pmc=11880842 |pmc-embargo-date=March 5, 2026 }}
- Greenfield (2025) reidentify the large rostrum and four fragmentary rostral denticles from the Dakhla Formation originally attributed to Onchopristis sp. by Capasso et al. (2024){{Cite journal|last1=Capasso |first1=L. |last2=Abdel Aziz |first2=S. |last3=Tantawy |first3=A. A. |last4=Mousa |first4=M. K. |last5=Wahba |first5=D. G. A. |last6=Abu El-Kheir |first6=G. A. |year=2024 |title=The first described Onchopristis Stromer, 1917, (Elasmobranchii: †Onchopristidae) from the Marine Maastrichtian of Dakhla Formation, Western Desert, Egypt |journal=Journal of African Earth Sciences |volume=220 |at=105415 |doi=10.1016/j.jafrearsci.2024.105415 |bibcode=2024JAfES.22005415C }} as Sclerorhynchoidei indet. and Sclerorhynchus cf. leptodon, respectively,{{cite journal|author=Greenfield, T.|year=2025|title=No evidence for a giant, late-surviving Onchopristis: Comment on Capasso et al. (2024)|journal=Journal of African Earth Sciences|volume=223|at=105541|doi=10.1016/j.jafrearsci.2025.105541|bibcode=2025JAfES.22305541G }} while Capasso et al. (2025) supported their original identification and stated that any taxonomic determination without direct examination is unacceptable.{{Cite journal|last1=Capasso |first1=L. |last2=Abdel Aziz |first2=S. |last3=Tantawy |first3=A. A. |last4=Mousa |first4=M. K. |last5=Wahba |first5=D. G. A. |last6=Abu El-Kheir |first6=G. A. |year=2025 |title=Comments on the Greenfield (2025) |journal=Journal of African Earth Sciences |volume=228 |at=105642 |doi=10.1016/j.jafrearsci.2025.105642 }}
Ray-finned fishes
=Otolith taxa=
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Acanthocepola adamantis{{Cite journal|last1=Schwarzhans |first1=W. W. |last2=Cotton |first2=L. J. |year=2025 |title=First Marine Fossil Otoliths (Teleostei) from East Africa (Tanzania) |journal=Diversity |volume=17 |issue=4 |at=255 |doi=10.3390/d17040255 |doi-access=free }}
| Sp. nov | Valid | Schwarzhans & Cotton | Oligocene | | {{flag|Tanzania}} | A species of Acanthocepola. | |
Bregmaceros tanzaniensis
| Sp. nov | Valid | Schwarzhans & Cotton | Oligocene | Pande Formation | {{flag|Tanzania}} | A codlet. | |
Ortugobius pandeanus
| Sp. nov | Valid | Schwarzhans & Cotton | Oligocene | Pande Formation | {{flag|Tanzania}} | A member of the family Gobiidae. | |
Protanago africanus
| Sp. nov | Valid | Schwarzhans & Cotton | Oligocene | Pande Formation | {{flag|Tanzania}} | A member of the family Congridae. | |
Pseudonansenia{{Cite journal|last1=Schrøder |first1=A. E. |last2=Carnevale |first2=G. |last3=Schwarzhans |first3=W. |year=2025 |title=First occurrence of a fish otolith from the Eocene Fur Formation, Denmark |journal=Bulletin of the Geological Society of Denmark |volume=74 |pages=25–32 |doi=10.37570/bgsd-2025-74-03 |doi-access=free }}
| Gen. et sp. nov | Valid | Schrøder, Carnevale & Schwarzhans | Paleocene (Selandian) | | {{flag|Denmark}} | A member of Argentiniformes. The type species is P. hauniensis. | |
"Serranus" plasmaticus
| Sp. nov | Valid | Schwarzhans & Cotton | Oligocene | Pande Formation | {{flag|Tanzania}} | A member of the family Serranidae. | |
=Ray-finned fish research=
- A study on the development of teeth of a stem ray-finned fish specimen from the Devonian Gneudna Formation (Australia), providing evidence of similarities with the organization of lungfish tooth plates, is published by Chen (2025).{{Cite journal |last=Chen |first=D. |title=Lungfish-like antero-labial tooth addition and amphibian-like enameloid-enamel transition in the coronoid of a Devonian stem actinopterygian |year=2025 |journal=Journal of Anatomy |doi=10.1111/joa.14240 |pmid=40083060 |doi-access=free }}
- Cooper et al. (2025) study the skull roof anatomy of Gyrosteus mirabilis, and interpret both G. mirabilis and Strongylosteus hindenburgi as species distinct from Chondrosteus acipenseroides.{{Cite journal |last1=Cooper |first1=S. L. A. |last2=Jacobs |first2=M. |last3=Ferrari |first3=L. |last4=Martill |first4=D. M. |title=Skull roof anatomy of the Early Jurassic (Toarcian) acipenseriform †Gyrosteus mirabilis Woodward ex Agassiz, from Yorkshire, England, elucidates diversity of †Chondrosteidae |year=2025 |journal=Proceedings of the Geologists' Association |doi=10.1016/j.pgeola.2024.12.004 }}
- Pacheco-Ordaz, Reyes-López & Alvarado-Ortega (2025) identify a specimen of Paranursallia gutturosa from the Turonian strata from the San José de Gracia Quarry (Mexico), assign further nursalliine pycnodontid specimens from the Agua Nueva Formation to the same species, and discard report of the presence of Nursallia tethyensis in the Turonian strata of the Huehuetla Quarry.{{Cite journal|last1=Pacheco-Ordaz |first1=S. |last2=Reyes-López |first2=Á. |last3=Alvarado-Ortega |first3=J. |year=2025 |title=A Turonian pycnodontiform fish from the San José de Gracia quarry, Puebla, Mexico |journal=Boletín de la Sociedad Geológica Mexicana |volume=77 |issue=1 |at=A241224 |doi=10.18268/BSGM2023v77n1a241224 }}
- Redescription of Zignoichthys oblongus, based on data from new fossil material from the Pesciara site of the Bolca locality (Italy), is published by Ridolfi et al. (2025).{{Cite journal |last1=Ridolfi |first1=L. |last2=Marramà |first2=G. |last3=Tyler |first3=J. C. |last4=Carnevale |first4=G. |title=A new fossil clarifies the anatomy and phylogenetic relationships of the Eocene gymnodont fish †Zignoichthys oblongus (Zigno, 1874) |year=2025 |journal=Rivista Italiana di Paleontologia e Stratigrafia |volume=131 |issue=1 |pages=117–138 |doi=10.54103/2039-4942/23409 |doi-access=free }}
- Collareta et al. (2025) report the discovery of fused dentaries of an ocean sunfish from the Lower Pliocene strata of the Siena-Radicofani Basin (Italy), representing the first finding of fossil material of a member of this group in post-Miocene strata outside North America.{{Cite journal|last1=Collareta |first1=A. |last2=Casati |first2=S. |last3=Mulè |first3=F. |last4=Pieri |first4=A. |last5=Di Cencio |first5=A. |last6=Bianucci |first6=G. |title=A fossil mola from the Mediterranean Pliocene |year=2025 |journal=Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen |volume=313 |issue=3 |pages=341–351 |doi=10.1127/njgpa/2025/1238 }}
- Přikryl et al. (2025) report the presence of fossil material of an indeterminate goby and members of the genera Herklotsichthys and Ophisternon in the Pleistocene Laguna Formation (Philippines).{{Cite journal |last1=Přikryl |first1=T. |last2=Castro |first2=A. |last3=Fernando |first3=A. G. |last4=Nogot |first4=J. R. C. |last5=Magtoto |first5=C. |last6=Garas |first6=K. |last7=Mediodia |first7=D. |last8=Lin |first8=C.-H. |year=2025 |title=Fossil fish assemblage of the Laguna Formation, Philippines: unveiling the uniqueness of Pleistocene freshwater ecosystems in Southeast Asia |journal=Swiss Journal of Palaeontology |volume=144 |at=5 |doi=10.1186/s13358-024-00347-0 |doi-access=free }}
- Evidence of changes of diversity of ray-finned fishes from the south of Eastern Europe (Moldova, Russia and Ukraine) from the late Miocene to the late Pleistocene is presented by Barkaszi & Kovalchuk (2025).{{Cite journal |last1=Barkaszi |first1=Z. |last2=Kovalchuk |first2=O. |year=2025 |title=Diversity of Late Cenozoic Actinopterygian Assemblages of the South of Eastern Europe |journal=Diversity |volume=17 |issue=4 |at=259 |doi=10.3390/d17040259 |doi-access=free }}
Lobe-finned fishes
=Lobe-finned fish research=
- Cui et al. (2025) provide new information on the anatomy of Styloichthys changae, and study the evolution of cosmine in lobe-finned fishes.{{Cite journal|last1=Cui |first1=X. |last2=Qiao |first2=T. |last3=Peng |first3=L. |last4=Zhu |first4=M. |year=2025 |title=New material of the Early Devonian sarcopterygian Styloichthys changae illuminates the origin of cosmine |journal=Journal of Systematic Palaeontology |volume=23 |issue=1 |at=2432273 |doi=10.1080/14772019.2024.2432273 |bibcode=2025JSPal..2332273C }}
General research
- Gonçalves et al. (2025) report the discovery of a new ichthyological assemblage from the Carboniferous (Gzhelian) Bourran Formation (Aveyron, France), comprising specimens of Orthacanthus sp., cf. Progyrolepis, Acanthodidae indet., Aeduella sp. and Decazella vetteri..{{Cite journal |last1=Gonçalves |first1=D. |last2=Luccisano |first2=V. |last3=Rebillard |first3=A. |last4=Logghe |first4=A. |last5=Štamberg |first5=S. |last6=Steyer |first6=J.-S.|title=New aquatic vertebrate and ichnological remains from the Upper Carboniferous of Decazeville (Aveyron, France): implications for the paleofauna of the French Variscan basins |year=2025 |journal=Comptes Rendus PalEvol |volume=24 |issue=11 |pages=191-217 |doi=10.5852/cr-palevol2025v24a11 |doi-access=free }}
- Andrews, Shirley & Figueroa (2025) report the discovery of a new, diverse fish assemblage from the Carboniferous (Mississippian) Marshall Sandstone (Michigan, United States).{{Cite journal |last1=Andrews |first1=J. V. |last2=Shirley |first2=E. A. |last3=Figueroa |first3=R. T. |title=Vertebrates of the Blue Ridge Esker (Mississippian, Marshall Sandstone) of Michigan |year=2025 |journal=Contributions from the Museum of Paleontology, University of Michigan |volume=36 |issue=3 |pages=43–58 |doi=10.7302/25119 }}
- Swimming trails of fishes with diverse morphologies or swimming behaviors are described from the Permian Salagou Formation (France) by Moreau et al. (2025).{{Cite journal|last1=Moreau |first1=J.-D. |last2=Lopez |first2=M. |last3=Lapeyrie |first3=J. |last4=Fouché |first4=S. |last5=Gand |first5=G. |last6=Aubert |first6=N. |title=Swimming trails of fishes from the Permian playa-lake ecosystem of the Salagou Formation (Lodève Basin, southern France) |year=2025 |journal=Palaeobiodiversity and Palaeoenvironments |doi=10.1007/s12549-025-00644-7 |doi-access=free }}
- Pokorný et al. (2025) describe trace fossils produced during death struggle of fishes from the Upper Cretaceous marine sediments in Lebanon, and name new ichnotaxa Pinnichnus haqilensis and P. emmae.{{Cite journal |last1=Pokorný |first1=R. |last2=Nohra |first2=R. |last3=Abi Saad |first3=P. |last4=Vallon |first4=L. H. |title=Death on "live broadcast"—fish mortichnia from the Upper Cretaceous plattenkalk of Lebanon |year=2025 |journal=Paleobiology |pages=1–14 |doi=10.1017/pab.2024.28 }}
- Deville de Periere et al. (2025) report the discovery of a diverse assemblage of marine fishes from the Eocene Dammam Formation (Saudi Arabia) .{{Cite journal |last1=Deville de Periere |first1=M. |last2=Guinot |first2=G. |last3=Adnet |first3=S. |last4=Riechelmann |first4=S. |last5=Murray |first5=A. |last6=Merle |first6=D. |last7=Cesari |first7=C. |last8=Reid |first8=C. |last9=Sadah |first9=M. |title=Biodiversity and paleoenvironments of vertebrate-rich Eocene marine deposits (Lutetian) of the tropical western Neotethys: New insights from the Arabian Platform |year=2025 |journal=Journal of Asian Earth Sciences |doi=10.1016/j.jseaes.2025.106604 }}
References
{{reflist}}