Detached object#Orbits

{{Short description|Dynamical class of minor planets}}

File:TheTransneptunians 500AU.svgs plotted by their distance and inclination. Objects beyond a distance of 100 AU display their designation.

{{legend2|#ff0000|border=1px solid #333|Resonant TNO & Plutino}}

{{legend2|#0000ff|border=1px solid #000|Cubewanos (classical KBO)}}

{{legend2|#999|border=1px solid #222|Scattered disc object}}

{{legend2|#ffffff|border=1px solid #666|Detached object}}

]]

Detached objects are a dynamical class of minor planets in the outer reaches of the Solar System and belong to the broader family of trans-Neptunian objects (TNOs). These objects have orbits whose points of closest approach to the Sun (perihelion) are sufficiently distant from the gravitational influence of Neptune that they are only moderately affected by Neptune and the other known planets: This makes them appear to be "detached" from the rest of the Solar System, except for their attraction to the Sun.

{{cite journal |author1=Lykawka, P.S. |author2=Mukai, T. |title=An outer planet beyond Pluto and the origin of the trans-Neptunian belt architecture |journal=Astronomical Journal |year = 2008 |volume=135 |issue=4 |pages=1161–1200 |doi=10.1088/0004-6256/135/4/1161 |bibcode=2008AJ....135.1161L |arxiv=0712.2198|s2cid=118414447 }}{{cite book |author1-link=David Jewitt |first1=D. |last1=Jewitt |first2=A. |last2=Delsanti |contribution=The Solar System Beyond the Planets |title=Solar System Update: Topical and Timely Reviews in Solar System Sciences |edition=Springer-Praxis |isbn=3-540-26056-0 |year=2006 |publisher=Springer |url=http://www.ifa.hawaii.edu/faculty/jewitt/papers/2006/DJ06.pdf |archive-url=https://web.archive.org/web/20070129151907/http://www.ifa.hawaii.edu/faculty/jewitt/papers/2006/DJ06.pdf |archive-date=January 29, 2007 |df=dmy-all}}

In this way, detached objects differ substantially from most other known TNOs, which form a loosely defined set of populations that have been perturbed to varying degrees onto their current orbit by gravitational encounters with the giant planets, predominantly Neptune. Detached objects have larger perihelia than these other TNO populations, including the objects in orbital resonance with Neptune, such as Pluto, the classical Kuiper belt objects in non-resonant orbits such as Makemake, and the scattered disk objects like Eris.

Detached objects have also been referred to in the scientific literature as extended scattered disc objects (E-SDO),{{cite journal |last1=Gladman |first1=B. |display-authors=etal |year=2002 |title=Evidence for an extended scattered disk |journal=Icarus |volume=157 |issue=2 |pages=269–279 |doi=10.1006/icar.2002.6860 |bibcode=2002Icar..157..269G |arxiv=astro-ph/0103435 |s2cid=16465390 }} distant detached objects (DDO),{{cite journal |bibcode=2006Icar..184..589G |title=A distant planetary-mass solar companion may have produced distant detached objects |journal=Icarus |volume=184 |issue=2 |pages=589–601 |publisher=Elsevier |doi=10.1016/j.icarus.2006.05.026 |year=2006 |first1=Rodney S. |last1=Gomes |last2=Matese |first2=J. |last3=Lissauer |first3=Jack}}

or scattered–extended, as in the formal classification by the Deep Ecliptic Survey.{{cite journal

|author1=Elliot, J.L. |author2=Kern, S.D. |author3=Clancy, K.B. |author4=Gulbis, A.A.S. |author5=Millis, R.L. |author6=Buie, M.W. |author7=Wasserman, L.H. |author8=Chiang, E.I. |author9=Jordan, A.B. |author10=Trilling, D.E. |author11=Meech, K.J. |title=The Deep Ecliptic Survey: A search for Kuiper belt objects and centaurs. II. Dynamical classification, the Kuiper belt plane, and the core population |journal=The Astronomical Journal |volume=129 |issue=2 |pages=1117–1162 |year=2006 |url=http://occult.mit.edu/_assets/documents/publications/Elliot2005AJ129.1117.pdf |bibcode=2005AJ....129.1117E |doi=10.1086/427395|doi-access=free }} This reflects the dynamical gradation that can exist between the orbital parameters of the scattered disk and the detached population.

At least nine such bodies have been securely identified,{{cite journal |author1=Lykawka, Patryk Sofia |author2=Mukai, Tadashi |date=July 2007 |title=Dynamical classification of trans-neptunian objects: Probing their origin, evolution, and interrelation |journal=Icarus |volume=189 |issue=1 |pages=213–232 |doi=10.1016/j.icarus.2007.01.001 |bibcode=2007Icar..189..213L}} of which the largest, most distant, and best known is Sedna. Those with large semi-major axes and high perihelion orbits similar to that of Sedna are termed sednoids. As of 2024, there are three known sednoids: Sedna, 2012 VP113, and Leleākūhonua.{{Cite journal |last1=Huang 黄 |first1=Yukun 宇坤 |last2=Gladman |first2=Brett |date=2024-02-01 |title=Primordial Orbital Alignment of Sednoids |journal=The Astrophysical Journal Letters |volume=962 |issue=2 |pages=L33 |doi=10.3847/2041-8213/ad2686 |doi-access=free |arxiv=2310.20614 |bibcode=2024ApJ...962L..33H |issn=2041-8205}} These objects exhibit a highly statistically significant asymmetry between the distributions of object pairs with small ascending and descending nodal distances that might be indicative of a response to external perturbations; asymmetries such as this one are sometimes attributed to perturbations induced by unseen planets.{{cite journal |last1=de la Fuente Marcos |first1=Carlos |last2=de la Fuente Marcos |first2=Raúl |title=Peculiar orbits and asymmetries in extreme trans-Neptunian space | journal=Monthly Notices of the Royal Astronomical Society |url=https://academic.oup.com/mnras/article-abstract/506/1/633/6307523|volume=506 |issue=1 |pages=633–649 |arxiv=2106.08369 |bibcode=2021MNRAS.506..633D |doi=10.1093/mnras/stab1756|date=1 September 2021|doi-access=free }}{{cite journal |last1=de la Fuente Marcos |first1=Carlos |last2=de la Fuente Marcos |first2=Raúl |title=Twisted extreme trans-Neptunian orbital parameter space: statistically significant asymmetries confirmed |journal=Monthly Notices of the Royal Astronomical Society Letters |url=https://academic.oup.com/mnrasl/article-abstract/512/1/L6/6524836 |volume=512 |issue=1 |pages=L6–L10 |arxiv=2202.01693 |bibcode=2022MNRAS.512L...6D |doi=10.1093/mnrasl/slac012 |date=1 May 2022|doi-access=free }}

Orbits

Detached objects have perihelia much larger than Neptune's aphelion. They often have highly elliptical, very large orbits with semi-major axes of up to a few hundred astronomical units (AU, the radius of Earth's orbit). Such orbits cannot have been created by gravitational scattering by the giant planets, not even Neptune. Instead, a number of explanations have been put forward, including an encounter with a passing star{{cite journal |journal=The Astronomical Journal |issue=5 |volume=128 |pages=2564–2576 |date=November 2004 |title=Scenarios for the Origin of the Orbits of the Trans-Neptunian Objects {{mp|2000 CR|105}} and {{mp|2003 VB|12}} |first1=Alessandro |last1=Morbidelli |doi=10.1086/424617 |last2=Levison |first2=Harold F. |bibcode=2004AJ....128.2564M |arxiv=astro-ph/0403358|s2cid=119486916 }} or a distant planet-sized object, or Neptune migration (which may once have had a much more eccentric orbit, from which it could have tugged the objects to their current orbit){{cite journal |doi=10.1006/icar.2002.6860 |title=Evidence for an extended scattered disk |arxiv=astro-ph/0103435 |bibcode=2002Icar..157..269G |volume=157 |issue=2|journal=Icarus |pages=269–279 |year=2002 |last1=Gladman |first1=B. |last2=Holman |first2=M. |last3=Grav |first3=T. |last4=Kavelaars |first4=J. |last5=Nicholson |first5=P. |last6=Aksnes |first6=K. |last7=Petit |first7=J.-M.|s2cid=16465390 }}{{cite web |url=http://www.grantchronicles.com/12thplanetmk.htm |title=Mankind's Explanation: 12th Planet}}{{cite web |url=https://www.sciencenews.org/article/comets-odd-orbit-hints-hidden-planet?mode=magazine&context=293 |title=A comet's odd orbit hints at hidden planet |date=4 April 2001 }}{{cite web |url=http://www.spaceref.com/news/viewnews.html?id=309 |title=Is There a Large Planet Orbiting Beyond Neptune? }}{{Dead link|date=January 2024 |bot=InternetArchiveBot |fix-attempted=yes }}{{cite web |url=https://www.science.org/content/article/signs-hidden-planet |title=Signs of a Hidden Planet?}}

or ejected rogue planets (present in the early Solar System that were ejected).{{cite journal |doi=10.1086/505214 |title=Production of the Extended Scattered Disk by Rogue Planets|bibcode = 2006ApJ...643L.135G |volume=643 |issue=2 |journal=The Astrophysical Journal |pages=L135–L138 |citeseerx=10.1.1.386.5256 |year=2006 |last1=Gladman |first1=Brett |last2=Chan |first2=Collin |s2cid=2453782 }}{{cite web |url=http://www.findplanetnine.com/2016/01/the-long-and-winding-history-of-planet-x.html |title=The long and winding history of Planet X |access-date=2016-02-09 |archive-date=2016-02-15 |archive-url=https://web.archive.org/web/20160215164442/http://www.findplanetnine.com/2016/01/the-long-and-winding-history-of-planet-x.html |url-status=dead }}{{Cite journal |last1=Huang |first1=Yukun |last2=Gladman |first2=Brett |last3=Beaudoin |first3=Matthew |last4=Zhang |first4=Kevin |date=October 2022 |title=A Rogue Planet Helps to Populate the Distant Kuiper Belt |journal=The Astrophysical Journal Letters |language=en |volume=938 |issue=2 |pages=L23 |doi=10.3847/2041-8213/ac9480 |doi-access=free |arxiv=2209.09399 |bibcode=2022ApJ...938L..23H |issn=2041-8205}}

The classification suggested by the Deep Ecliptic Survey team introduces a formal distinction between scattered-near objects (which could be scattered by Neptune) and scattered-extended objects (e.g. 90377 Sedna) using a Tisserand's parameter value of 3.

The Planet Nine hypothesis suggests that the orbits of several detached objects can be explained by the gravitational influence of a large, unobserved planet between 200 AU and 1200 AU from the Sun and/or the influence of Neptune.{{cite journal |title=Evidence for a distant giant planet in the Solar system |first1=Konstantin |last1=Batygin |first2=Michael E. |last2=Brown |date=20 January 2016 |journal=The Astronomical Journal |volume=151 |number=2 |page=22 |doi=10.3847/0004-6256/151/2/22 |arxiv=1601.05438 |bibcode = 2016AJ....151...22B|s2cid=2701020 |doi-access=free }}

Classification

{{TNO}}

Detached objects are one of four distinct dynamical classes of TNO; the other three classes are classical Kuiper-belt objects, resonant objects, and scattered-disc objects (SDO).{{Cite book |last1=Gladman |first1=B. |url=https://ui.adsabs.harvard.edu/abs/2008ssbn.book...43G |title=Nomenclature in the Outer Solar System |last2=Marsden |first2=B. G. |last3=Vanlaerhoven |first3=C. |date=2008-01-01|bibcode=2008ssbn.book...43G }} Sednoids also belong to detached objects. Detached objects generally have a perihelion distance greater than 40 AU, deterring strong interactions with Neptune, which has an approximately circular orbit about 30 AU from the Sun. The boundary between the scattered and detached regions can be defined using an analytical resonance overlap criterion.{{Cite journal |last1=Batygin |first1=Konstantin |last2=Mardling |first2=Rosemary A. |last3=Nesvorný |first3=David |date=2021-10-01 |title=The Stability Boundary of the Distant Scattered Disk |journal=The Astrophysical Journal |volume=920 |issue=2 |pages=148 |doi=10.3847/1538-4357/ac19a4 |doi-access=free |arxiv=2111.00305 |bibcode=2021ApJ...920..148B |issn=0004-637X}}{{Cite journal |last1=Hadden |first1=Sam |last2=Tremaine |first2=Scott |date=2023-11-09 |title=Scattered disc dynamics: the mapping approach |url=https://academic.oup.com/mnras/article/527/2/3054/7408612 |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=527 |issue=2 |pages=3054–3075 |doi=10.1093/mnras/stad3478 |issn=0035-8711|doi-access=free }}

The discovery of 90377 Sedna in 2003, together with a few other objects discovered around that time such as {{mpl|(148209) 2000 CR|105}} and {{mpl|(612911) 2004 XR|190}}, has motivated discussion of a category of distant objects that may also be inner Oort cloud objects or (more likely) transitional objects between the scattered disc and the inner Oort cloud.

Although Sedna is officially considered a scattered-disc object by the MPC, its discoverer Michael E. Brown has suggested that because its perihelion distance of 76 AU is too distant to be affected by the gravitational attraction of the outer planets it should be considered an inner-Oort-cloud object rather than a member of the scattered disc.{{cite web |title=Sedna (The coldest most distant place known in the solar system; possibly the first object in the long-hypothesized Oort cloud) |last=Brown |first=Michael E. |author-link=Michael E. Brown |publisher=California Institute of Technology, Department of Geological Sciences |url=http://www.gps.caltech.edu/~mbrown/sedna/ |access-date=2008-07-02 |df=dmy-all}} This classification of Sedna as a detached object is accepted in recent publications.{{cite book |author1-link=David Jewitt |first1=D. |last1=Jewitt |first2=A. |last2=Moro-Martın |first3=P. |last3=Lacerda |contribution=The Kuiper belt and other debris disks |title=Astrophysics in the Next Decade |publisher=Springer Verlag |year=2009 |url=http://www.ifa.hawaii.edu/faculty/jewitt/papers/2008/JML08.pdf }}

This line of thinking suggests that the lack of a significant gravitational interaction with the outer planets creates an extended–outer group starting somewhere between Sedna (perihelion 76 AU) and more conventional SDOs like {{mpl-|15874|1996 TL|66}} (perihelion 35 AU), which is listed as a scattered–near object by the Deep Ecliptic Survey.{{cite web |author=Buie, Marc W. |author-link=Marc W. Buie |date=2007-12-28 |title=Orbit fit and astrometric record for 15874 |publisher=SwRI |department=Space Science Department |url=http://www.boulder.swri.edu/~buie/kbo/astrom/15874.html |access-date=2011-11-12 |df=dmy-all}}

= Influence of Neptune =

One of the problems with defining this extended category is that weak resonances may exist and would be difficult to prove due to chaotic planetary perturbations and the current lack of knowledge of the orbits of these distant objects. They have orbital periods of more than 300 years and most have only been observed over a short observation arc of a couple years. Due to their great distance and slow movement against background stars, it may be decades before most of these distant orbits are determined well enough to confidently confirm or rule out a resonance. Further improvement in the orbit and potential resonance of these objects will help to understand the migration of the giant planets and the formation of the Solar System. For example, simulations by Emel'yanenko and Kiseleva in 2007 show that many distant objects could be in resonance with Neptune. They show a 10% likelihood that 2000 CR105 is in a 20:1 resonance, a 38% likelihood that 2003 QK91 is in a 10:3 resonance, and an 84% likelihood that {{mpl|(82075) 2000 YW|134}} is in an 8:3 resonance.{{cite journal |last=Emel'yanenko |first=V.V. |title=Resonant motion of trans-Neptunian objects in high-eccentricity orbits |journal=Astronomy Letters |volume=34 |issue=4 |pages=271–279 |year=2008 |bibcode=2008AstL...34..271E |doi=10.1134/S1063773708040075|s2cid=122634598 }}(subscription required) The likely dwarf planet {{mpl|(145480) 2005 TB|190}} appears to have less than a 1% likelihood of being in a 4:1 resonance.

= Influence of hypothetical planet(s) beyond Neptune =

Mike Brown—who made the Planet Nine hypothesis—makes an observation that "all of the known distant objects which are pulled even a little bit away from the Kuiper seem to be clustered under the influence of this hypothetical planet (specifically, objects with semimajor axis > 100 AU and perihelion > 42 AU)".{{cite web |url=http://www.findplanetnine.com/2016/02/why-i-believe-in-planet-nine.html |author=Mike Brown |title=Why I believe in Planet Nine |author-link=Michael E. Brown}}

Carlos de la Fuente Marcos and Ralph de la Fuente Marcos have calculated that some of the statistically significant commensurabilities are compatible with the Planet Nine hypothesis; in particular, a number of objects{{efn|60 minor planets with a semi-major axis greater than 150 AU and perihelion greater than 30 AU are known.{{cite web |url=http://minorplanetcenter.net/db_search/show_by_properties?perihelion_distance_min=30&semimajor_axis_min=150 |title=Minor Planets with semi-major axis greater than 150 AU and perihelion greater than 30 AU}}}} which are called extreme trans-Neptunian object (ETNOs){{cite journal |author1=C. de la Fuente Marcos |author2=R. de la Fuente Marcos |title=Extreme trans-Neptunian objects and the Kozai mechanism: Signalling the presence of trans-Plutonian planets |journal=Monthly Notices of the Royal Astronomical Society |volume=443 |issue=1 |pages=L59–L63 |arxiv=1406.0715 |bibcode=2014MNRAS.443L..59D |doi=10.1093/mnrasl/slu084 |date=September 1, 2014 |doi-access=free |s2cid=118622180 |df=dmy-all}} may be trapped in the 5:3 and 3:1 mean-motion resonances with a putative Planet Nine with a semimajor axis ~700 AU.{{cite journal |doi=10.1093/mnrasl/slw077|title=Commensurabilities between ETNOs: a Monte Carlo survey |arxiv=1604.05881 |bibcode=2016MNRAS.460L..64D |first1=Carlos |last1=de la Fuente Marcos |first2=Raúl |last2=de la Fuente Marcos |journal=Monthly Notices of the Royal Astronomical Society: Letters |volume=460 |issue=1 |pages=L64–L68 |date=21 July 2016|doi-access=free |s2cid=119110892 }}

Possible detached objects

{{See also|Sednoid|Extreme trans-Neptunian object}}

{{Update|date=October 2023|demospace=section|type=section}}

This is a list of known objects by discovery date that could not be easily scattered by Neptune's current orbit and therefore are likely to be detached objects, but that lie inside the perihelion gap of ≈50–75 AU that defines the sednoids.{{cite web|date=10 September 2013 |title=How many dwarf planets are there in the outer solar system? (updates daily) |publisher=California Institute of Technology |author=Michael E. Brown |url=http://www.gps.caltech.edu/~mbrown/dps.html |access-date=2013-05-27 |quote=Diameter: 242km |url-status=dead |archive-url=https://web.archive.org/web/20111018154917/http://www.gps.caltech.edu/~mbrown/dps.html |archive-date=2011-10-18 |df=dmy-all |author-link=Michael E. Brown }}{{cite web |url=http://minorplanetcenter.net/db_search/show_by_properties?perihelion_distance_min=40&aphelion_distance_min=60&perihelion_distance_max=55 |title=objects with perihelia between 40–55 AU and aphelion more than 60 AU}}{{cite web |url=http://minorplanetcenter.net/db_search/show_by_properties?perihelion_distance_min=40&aphelion_distance_min=100&perihelion_distance_max=55 |title=objects with perihelia between 40–55 AU and aphelion more than 100 AU}}{{cite web |url=http://minorplanetcenter.net/db_search/show_by_properties?perihelion_distance_min=40&semimajor_axis_min=50&perihelion_distance_max=55 |title=objects with perihelia between 40–55 AU and semi-major axis more than 50 AU}}{{cite web |url=http://minorplanetcenter.net/db_search/show_by_properties?perihelion_distance_min=40&eccentricity_min=0.5&perihelion_distance_max=55 |title=objects with perihelia between 40–55 AU and eccentricity more than 0.5}}{{cite web |url=http://minorplanetcenter.net/db_search/show_by_properties?perihelion_distance_min=37&eccentricity_min=0.5&perihelion_distance_max=40 |title=objects with perihelia between 37–40 AU and eccentricity more than 0.5}}

Objects listed below have a perihelion of more than 40 AU, and a semi-major axis of more than 47.7 AU (the 1:2 resonance with Neptune, and the approximate outer limit of the Kuiper Belt):{{cite web |title=MPC list of q > 40 and a > 47.7 |url=http://minorplanetcenter.net/db_search/show_by_properties?perihelion_distance_min=40&semimajor_axis_min=47.7 |publisher=Minor Planet Center |access-date=7 May 2018}}

class="wikitable sortable collapsible" style="text-align: center; font-size: 0.9em;"
data-sort-type="number" width=130 | Designation

! data-sort-type="number" | Diameter
(km)

! data-sort-type="number" | H

! data-sort-type="number" | q
(AU)

! data-sort-type="number" | a
(AU)

! data-sort-type="number" | Q
(AU)

! data-sort-type="number" | ω (°)

! data-sort-type="number" | Discovery
Year

! Discoverer

! class="unsortable" | Notes & Refs

data-sort-value="148209" | {{mpl-|148209|2000 CR|105}}

| 243

| 6.3

| 44.252

| 221.2

| 398

| 316.93

| 2000

| M. W. Buie

|{{cite journal |author1=E. L. Schaller |author2=M. E. Brown |title=Volatile loss and retention on Kuiper belt objects |journal=Astrophysical Journal |volume=659 |issue=1 |pages=I.61–I.64 |year=2007|url=http://www.gps.caltech.edu/~mbrown/papers/ps/volatiles.pdf|access-date=2008-04-02|doi=10.1086/516709 |bibcode=2007ApJ...659L..61S|s2cid=10782167 }}

data-sort-value="082075" | {{mpl-|82075|2000 YW|134}}

| 216

| 4.7

| 41.207

| 57.795

| 74.383

| 316.481

| 2000

| Spacewatch

| ≈3:8 Neptune resonance

{{mpl|2001 FL|193}}

| 81

| 8.7

|40.29

|50.26

|60.23

|108.6

|2001

| R. L. Allen, G. Bernstein, R. Malhotra

| orbit extremely poor, might not be a TNO

data-sort-value="P2001K077A" | {{mpl|2001 KA|77}}

| 634

| 5.0

| 43.41

| 47.74

| 52.07

| 120.3

| 2001

| M. W. Buie

| borderline classical KBO

data-sort-value="P2002C154P" | {{mpl|2002 CP|154}}

| 222

| 6.5

| 42

| 52

| 62

| 50

| 2002

| M. W. Buie

| orbit fairly poor, but definitely a detached object

data-sort-value="P2003U291Y" | {{mpl|2003 UY|291}}

| 147

| 7.4

| 41.19

| 48.95

| 56.72

| 15.6

| 2003

| M. W. Buie

| borderline classical KBO

data-sort-value="090377" | Sedna

| 995

| 1.5

| 76.072

| 483.3

| 890

| 311.61

| 2003

| M. E. Brown, C. A. Trujillo, D. L. Rabinowitz

| Sednoid

data-sort-value="P2004P112D" | {{mpl|2004 PD|112}}

| 267

| 6.1

| 40

| 70

| 90

| 40

| 2004

| M. W. Buie

| orbit very poor, might not be a detached object

data-sort-value="474640" | Alicanto

| 222

| 6.5

| 47.308

| 315

| 584

| 326.925

| 2004

| Cerro Tololo (unspecified)

|{{cite web |first=Marc W. |last=Buie |date=2007-11-08 |df=dmy-all |title=Orbit Fit and Astrometric record for 04VN112 |publisher=SwRI (Space Science Department) |url=http://www.boulder.swri.edu/~buie/kbo/astrom/04VN112.html |access-date=2008-07-17 |url-status=dead |archive-url=https://web.archive.org/web/20100818145946/http://www.boulder.swri.edu/~buie/kbo/astrom/04VN112.html |archive-date=2010-08-18 |author-link=Marc W. Buie }}{{cite web |title=JPL Small-Body Database Browser: (2004 VN112) |url=http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2004VN112 |access-date=2015-02-24}}{{cite web |url=http://www.minorplanetcenter.net/iau/lists/Centaurs.html|title=List Of Centaurs and Scattered-Disk Objects |access-date=2011-07-05 |df=dmy-all |quote=Discoverer: CTIO}}

data-sort-value="P2004X190R" | {{mpl|2004 XR|190}}

| 612

| 4.1

| 51.085

| 57.336

| 63.586

| 284.93

| 2004

| R. L. Allen, B. J. Gladman, J. J. Kavelaars
J.-M. Petit, J. W. Parker, P. Nicholson

| very high inclination; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination of 2004 XR190 to obtain a very high perihelion{{cite journal |author1=R. L. Allen |author2=B. Gladman | title = Discovery of a low-eccentricity, high-inclination Kuiper Belt object at 58 AU | journal = The Astrophysical Journal | year = 2006 | volume = 640 |issue=1 |doi=10.1086/503098 |arxiv=astro-ph/0512430 |bibcode = 2006ApJ...640L..83A | pages=L83–L86|s2cid=15588453 }}{{cite journal |title=Beyond the Kuiper Belt Edge: New High Perihelion Trans-Neptunian Objects with Moderate Semimajor Axes and Eccentricities |journal=The Astrophysical Journal Letters |first1=Scott S. |last1=Sheppard |first2=Chadwick |last2=Trujillo |first3=David J. |last3=Tholen |volume=825 |issue=1 |page=L13 |date=July 2016 |doi=10.3847/2041-8205/825/1/L13 |bibcode=2016ApJ...825L..13S |arxiv=1606.02294|s2cid=118630570 |doi-access=free }}

data-sort-value="P2005C081G" | {{mpl|2005 CG|81}}

| 267

| 6.1

| 41.03

| 54.10

| 67.18

| 57.12

| 2005

| CFEPS

| —

data-sort-value="385607" | {{mpl-|385607|2005 EO|297}}

| 161

| 7.2

| 41.215

| 62.98

| 84.75

| 349.86

| 2005

| M. W. Buie

| —

data-sort-value="145480" | {{mpl-|145480|2005 TB|190}}

| 372

| 4.5

| 46.197

| 75.546

| 104.896

| 171.023

| 2005

| A. C. Becker, A. W. Puckett, J. M. Kubica

| Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion

data-sort-value="P2006A101O" | {{mpl|2006 AO|101}}

| 168

| 7.1

| —

| —

| —

| —

| 2006

| Mauna Kea (unspecified)

| orbit extremely poor, might not be a TNO

data-sort-value="278361" | {{mpl-|278361|2007 JJ|43}}

| 558

| 4.5

| 40.383

| 48.390

| 56.397

| 6.536

| 2007

| Palomar (unspecified)

| borderline classical KBO

data-sort-value="P2007L038E" | {{mpl|2007 LE|38}}

| 176

| 7.0

| 41.798

| 54.56

| 67.32

| 53.96

| 2007

| Mauna Kea (unspecified)

| —

data-sort-value="P2008S291T" | {{mpl|2008 ST|291}}

| 640

| 4.2

| 42.27

| 99.3

| 156.4

| 324.37

| 2008

| M. E. Schwamb, M. E. Brown, D. L. Rabinowitz

| ≈1:6 Neptune resonance

data-sort-value="P2009K036X" | {{mpl|2009 KX|36}}

| 111

| 8.0

| —

| 100

| 100

| —

| 2009

| Mauna Kea (unspecified)

| orbit extremely poor, might not be a TNO

data-sort-value="P2010D093N" | {{mpl-|523635|2010 DN|93}}

| 486

| 4.7

| 45.102

| 55.501

| 65.90

| 33.01

| 2010

| Pan-STARRS

| ≈2:5 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion

data-sort-value="P2010E065R" | {{mpl|2010 ER|65}}

| 404

| 5.0

| 40.035

| 99.71

| 159.39

| 324.19

| 2010

| D. L. Rabinowitz, S. W. Tourtellotte

| —

data-sort-value="P2010G174B" | {{mpl|2010 GB|174}}

| 222

| 6.5

| 48.8

| 360

| 670

| 347.7

| 2010

| Mauna Kea (unspecified)

| —

data-sort-value="P2012F084H" | {{mpl|2012 FH|84}}

| 161

| 7.2

| 42

| 56

| 70

| 10

| 2012

| Las Campanas (unspecified)

| —

data-sort-value="P2012V113P" | {{mpl|2012 VP|113}}

| 702

| 4.0

| 80.47

| 256

| 431

| 293.8

| 2012

| S. S. Sheppard, C. A. Trujillo

| Sednoid

data-sort-value="P2013Q028Q" | {{mpl|2013 FQ|28}}

| 280

| 6.0

| 45.9

| 63.1

| 80.3

| 230

| 2013

| S. S. Sheppard, C. A. Trujillo

| ≈1:3 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion

data-sort-value="P2013F028T" | {{mpl|2013 FT|28}}

| 202

| 6.7

| 43.5

| 310

| 580

| 40.3

| 2013

| S. S. Sheppard

| —

data-sort-value="496315" | {{mpl-|496315|2013 GP|136}}

| 212

| 6.6

| 41.061

| 155.1

| 269.1

| 42.38

| 2013

| OSSOS

| —

data-sort-value="P2013G136Q" | {{mpl|2013 GQ|136}}

| 222

| 6.5

| 40.79

| 49.06

| 57.33

| 155.3

| 2013

| OSSOS

| borderline classical KBO

data-sort-value="P2013G138G" | {{mpl|2013 GG|138}}

| 212

| 6.6

| 46.64

| 47.792

| 48.946

| 128

| 2013

| OSSOS

| borderline classical KBO

data-sort-value="500876" | {{mpl-|500876|2013 JD|64}}

| 111

| 8.0

| 42.603

| 73.12

| 103.63

| 178.0

| 2013

| OSSOS

| —

data-sort-value="500880" | {{mpl-|500880|2013 JJ|64}}

| 147

| 7.4

| 44.04

| 48.158

| 52.272

| 179.8

| 2013

| OSSOS

| borderline classical KBO

data-sort-value="P2013S099Y" | {{mpl|2013 SY|99}}

| 202

| 6.7

| 50.02

| 694

| 1338

| 32.1

| 2013

| OSSOS

| —

data-sort-value="P2013S100K" | {{mpl|2013 SK|100}}

| 134

| 7.6

| 45.468

| 61.61

| 77.76

| 11.5

| 2013

| OSSOS

| —

data-sort-value="505478" | {{mpl-|505478|2013 UT|15}}

| 255

| 6.3

| 43.89

| 195.7

| 348

| 252.33

| 2013

| OSSOS

| —

data-sort-value="P2013U017B" | {{mpl|2013 UB|17}}

| 176

| 7.0

| 44.49

| 62.31

| 80.13

| 308.93

| 2013

| OSSOS

| —

data-sort-value="P2013V024D" | {{mpl|2013 VD|24}}

| 128

| 7.8

| 40

| 50

| 70

| 197

| 2013

| Dark Energy Survey

| orbit very poor, might not be a detached object

data-sort-value="P2013Y151J" | {{mpl|2013 YJ|151}}

| 336

| 5.4

| 40.866

| 72.35

| 103.83

| 141.83

| 2013

| Pan-STARRS

| —

data-sort-value="P2014E051Z" | {{mpl|2014 EZ|51}}

| 770

| 3.7

| 40.70

| 52.49

| 64.28

| 329.84

| 2014

| Pan-STARRS

| —

data-sort-value="P2014F069C" | {{mpl|2014 FC|69}}

| 533

| 4.6

| 40.28

| 73.06

| 105.8

| 190.57

| 2014

| S. S. Sheppard, C. A. Trujillo

|

data-sort-value="P2014F071Z" | {{mpl|2014 FZ|71}}

| 185

| 6.9

| 55.9

| 76.2

| 96.5

| 245

| 2014

| S. S. Sheppard, C. A. Trujillo

| ≈1:4 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a very high perihelion

data-sort-value="P2014F072C" | {{mpl|2014 FC|72}}

| 509

| 4.5

| 51.670

| 76.329

| 100.99

| 32.85

| 2014

| Pan-STARRS

| ≈1:4 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a very high perihelion

data-sort-value="P2014J080M" | {{mpl|2014 JM|80}}

| 352

| 5.5

| 46.00

| 63.00

| 80.01

| 96.1

| 2014

| Pan-STARRS

| ≈1:3 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion

data-sort-value="P2014J080S" | {{mpl|2014 JS|80}}

| 306

| 5.5

| 40.013

| 48.291

| 56.569

| 174.5

| 2014

| Pan-STARRS

| borderline classical KBO

data-sort-value="P2014O394J" | {{mpl|2014 OJ|394}}

| 423

| 5.0

| 40.80

| 52.97

| 65.14

| 271.60

| 2014

| Pan-STARRS

| in 3:7 Neptune resonance

data-sort-value="P2014Q441R" | {{mpl|2014 QR|441}}

| 193

| 6.8

| 42.6

| 67.8

| 93.0

| 283

| 2014

| Dark Energy Survey

| —

data-sort-value="P2014S349R" | {{mpl|2014 SR|349}}

| 202

| 6.6

| 47.6

| 300

| 540

| 341.1

| 2014

| S. S. Sheppard, C. A. Trujillo

| —

data-sort-value="P2014S349S" | {{mpl|2014 SS|349}}

| 134

| 7.6

| 45

| 140

| 240

| 148

| 2014

| S. S. Sheppard, C. A. Trujillo

| ≈2:10 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion{{cite journal |title=New Extreme Trans-Neptunian Objects: Towards a Super-Earth in the Outer Solar System |journal=Astrophysical Journal |volume=152 |issue=6 |pages=221 |first1=Scott S. |last1=Sheppard |first2=Chad |last2=Trujillo |date=August 2016 |doi= 10.3847/1538-3881/152/6/221 |arxiv=1608.08772 |bibcode=2016AJ....152..221S|s2cid=119187392 |doi-access=free }}

data-sort-value="P2014S373T" | {{mpl|2014 ST|373}}

| 330

| 5.5

| 50.13

| 104.0

| 157.8

| 297.52

| 2014

| Dark Energy Survey

| —

data-sort-value="P2014U228T" | {{mpl|2014 UT|228}}

| 154

| 7.3

| 43.97

| 48.593

| 53.216

| 49.9

| 2014

| OSSOS

| borderline classical KBO

data-sort-value="P2014U230A" | {{mpl|2014 UA|230}}

| 222

| 6.5

| 42.27

| 55.05

| 67.84

| 132.8

| 2014

| OSSOS

| —

data-sort-value="P2014U231O" | {{mpl|2014 UO|231}}

| 97

| 8.3

| 42.25

| 55.11

| 67.98

| 234.56

| 2014

| OSSOS

| —

data-sort-value="P2014W509K" | {{mpl|2014 WK|509}}

| 584

| 4.0

| 40.08

| 50.79

| 61.50

| 135.4

| 2014

| Pan-STARRS

| —

data-sort-value="P2014W556B" | {{mpl|2014 WB|556}}

| 147

| 7.4

| 42.6

| 280

| 520

| 234

| 2014

| Dark Energy Survey

| —

data-sort-value="P2015A281L" | {{mpl|2015 AL|281}}

| 293

| 6.1

| 42

| 48

| 54

| 120

| 2015

| Pan-STARRS

| borderline classical KBO
orbit very poor, might not be a detached object

data-sort-value="495603" | {{mpl-|495603|2015 AM|281}}

| 486

| 4.8

| 41.380

| 55.372

| 69.364

| 157.72

| 2015

| Pan-STARRS

| —

data-sort-value="487581" | {{mpl-|487581|2015 BE|519}}

| 352

| 5.5

| 44.82

| 47.866

| 50.909

| 293.2

| 2015

| Pan-STARRS

| borderline classical KBO

data-sort-value="P2015F345J" | {{mpl|2015 FJ|345}}

| 117

| 7.9

| 51

| 63.0

| 75.2

| 78

| 2015

| S. S. Sheppard, C. A. Trujillo

| ≈1:3 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a very high perihelion

data-sort-value="P2015G050P" | {{mpl|2015 GP|50}}

| 222

| 6.5

| 40.4

| 55.2

| 70.0

| 130

| 2015

| S. S. Sheppard, C. A. Trujillo

| —

data-sort-value="P2015K162H" | {{mpl|2015 KH|162}}

| 671

| 3.9

| 41.63

| 62.29

| 82.95

| 296.805

| 2015

| S. S. Sheppard, D. J. Tholen, C. A. Trujillo

| —

data-sort-value="P2015K163G" | {{mpl|2015 KG|163}}

| 101

| 8.3

| 40.502

| 826

| 1610

| 32.06

| 2015

| OSSOS

| —

data-sort-value="P2015K163H" | {{mpl|2015 KH|163}}

| 117

| 7.9

| 40.06

| 157.2

| 274

| 230.29

| 2015

| OSSOS

| ≈1:12 Neptune resonance

data-sort-value="P2015K172E" | {{mpl|2015 KE|172}}

| 106

| 8.1

| 44.137

| 133.12

| 222.1

| 15.43

| 2015

| OSSOS

| 1:9 Neptune resonance

data-sort-value="P2015K172G" | {{mpl|2015 KG|172}}

| 280

| 6.0

| 42

| 55

| 69

| 35

| 2015

| R. L. Allen
D. James
D. Herrera

| orbit fairly poor, might not be a detached object

data-sort-value="P2015K174Q" | {{mpl|2015 KQ|174}}

| 154

| 7.3

| 49.31

| 55.40

| 61.48

| 294.0

| 2015

| Mauna Kea (unspecified)

| ≈2:5 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a very high perihelion

data-sort-value="P2015R245X" | {{mpl|2015 RX|245}}

| 255

| 6.2

| 45.5

| 410

| 780

| 65.3

| 2015

| OSSOS

| —

data-sort-value="P2015T387G" | Leleākūhonua

| 300

| 5.5

| 65.02

| 1042

| 2019

| 118.0

| 2015

| S. S. Sheppard, C. A. Trujillo, D. J. Tholen

| Sednoid

{{mpl|2017 DP|121}}1617.240.5250.4860.45217.92017
{{mpl|2017 FP|161}}1687.140.8847.9955.12182017borderline classical KBO
data-sort-value="P2017S132N" | {{mpl|2017 SN|132}}

| 97

| 5.8

| 40.949

| 79.868

| 118.786

| 148.769

| 2017

| S. S. Sheppard, C. A. Trujillo, D. J. Tholen

|

data-sort-value="P2018V035M" | {{mpl|2018 VM|35}}

| 134

| 7.6

| 45.289

| 240.575

| 435.861

| 302.008

| 2018

| Mauna Kea (unspecified)

|

The following objects can also be generally thought to be detached objects, although with slightly lower perihelion distances of 38–40 AU.

class="wikitable sortable collapsible" style="text-align:center; font-size: 0.9em;"
width=130 | Designation

! data-sort-type="number" | Diameter
(km)

! data-sort-type="number" | H

! data-sort-type="number" | q
(AU)

! data-sort-type="number" | a
(AU)

! data-sort-type="number" | Q
(AU)

! data-sort-type="number" | ω (°)

! data-sort-type="number" | Discovery
Year

! Discoverer

! class="unsortable" | Notes & Refs

data-sort-value="506479" | {{mpl-|506479|2003 HB|57}}

| 147

| 7.4

| 38.116

| 166.2

| 294

| 11.082

| 2003

| Mauna Kea (unspecified)

| —

data-sort-value="P2003S422S" | {{mpl|2003 SS|422}}

| 168

| data-slort-value="7.2" | 7.04

| 39.574

| 198.181

| 356.788

| 206.824

| 2003

| Cerro Tololo (unspecified)

| —

data-sort-value="P2005R052H" | {{mpl|2005 RH|52}}

| 128

| 7.8

| 38.957

| 152.6

| 266.3

| 32.285

| 2005

| CFEPS

| —

data-sort-value="P2007T434C" | {{mpl|2007 TC|434}}

| 168

| 7.0

| 39.577

| 128.41

| 217.23

| 351.010

| 2007

| Las Campanas (unspecified)

| 1:9 Neptune resonance

data-sort-value="P2012F084L" | {{mpl|2012 FL|84}}

| 212

| 6.6

| 38.607

| 106.25

| 173.89

| 141.866

| 2012

| Pan-STARRS

| —

data-sort-value="P2014F072L" | {{mpl|2014 FL|72}}

| 193

| 6.8

| 38.1

| 104

| 170

| 259.49

| 2014

| Cerro Tololo (unspecified)

| —

data-sort-value="P2014J080W" | {{mpl|2014 JW|80}}

| 352

| 5.5

| 38.161

| 142.62

| 247.1

| 131.61

| 2014

| Pan-STARRS

| —

data-sort-value="P2014Y050K" | {{mpl-|523778|2014 YK|50}}

| 293

| 5.6

| 38.972

| 120.52

| 202.1

| 169.31

| 2014

| Pan-STARRS

| —

{{mpl|2015 DM|319}}

|

|8.78

|39.491

|272.302

|505.113

|43.227

|2015

|OSSOS

|

data-sort-value="P2015G050T" | {{mpl|2015 GT|50}}

| 88

| 8.6

| 38.46

| 333

| 627

| 129.3

| 2015

| OSSOS

| —

See also

Notes

{{notelist|1}}

References

{{reflist|25em|refs=

{{cite web

|title = List of Known Trans-Neptunian Objects

|publisher = Johnston's Archive

|date = 7 October 2018

|url = http://www.johnstonsarchive.net/astro/tnoslist.html

|access-date = 23 October 2018}}

}}

{{Dwarf planets}}

{{Small Solar System bodies}}

{{Solar System}}

{{Portal bar|Astronomy|Spaceflight|Outer space|Solar system}}

{{Good article}}

Category:Oort cloud

Category:Solar System