List of Quaternary volcanic eruptions
{{short description|None}}
{{Volcanic Eruption Map}}
This article is a list of historical volcanic eruptions of approximately magnitude 6 or more on the Volcanic Explosivity Index (VEI) or equivalent sulfur dioxide emission during the Holocene, and Pleistocene eruptions of the Decade Volcanoes (Avachinsky–Koryaksky, Kamchatka; Colima, Trans-Mexican Volcanic Belt; Mount Etna, Sicily; Galeras, Andes, Northern Volcanic Zone; Mauna Loa, Hawaii; Mount Merapi, Central Java; Mount Nyiragongo, East African Rift; Mount Rainier, Washington; Sakurajima, Kagoshima Prefecture; Santamaria/ Santiaguito, Central America Volcanic Arc; Santorini, Cyclades; Taal Volcano, Luzon Volcanic Arc; Teide, Canary Islands; Ulawun, New Britain; Mount Unzen, Nagasaki Prefecture; Mount Vesuvius, Naples); Campania, Italy; South Aegean Volcanic Arc; Laguna de Bay, Luzon Volcanic Arc; Mount Pinatubo, Luzon Volcanic Arc; Toba, Sunda Arc; Mount Meager massif, Garibaldi Volcanic Belt; Yellowstone hotspot, Wyoming; and Taupō Volcanic Zone, greater than VEI 4.
The eruptions in the Holocene on the link: [http://www.kscnet.ru/ivs/volcanoes/holocene/main/main.htm Holocene Volcanoes in Kamchatka] were not added yet, but they are listed on the Peter L. Ward's supplemental table. Some of the eruptions are not listed on the Global Volcanism Program timetable as well, at least not as VEI 6. The timetables of Global Volcanism Program; Bristlecone pine tree-rings (Pinus longaeva, Pinus aristata, Pinus ponderosa, Pinus edulis, Pseudotsuga menziesii);{{cite journal|last= Salzer
|first= Matthew W. |author2=Malcolm K. Hughes |year= 2007 |title= Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr |journal= Quaternary Research |volume= 67
|issue= 1 |pages= 57–68 |url= http://media.longnow.org/files/2/Salzer_Hughes_2007.pdf |accessdate= 2010-03-18
|doi = 10.1016/j.yqres.2006.07.004 |bibcode=2007QuRes..67...57S|s2cid= 14654597 }} the 4 ka Yamal Peninsula Siberian larch (Larix sibirica) chronology;{{cite journal |last1=Hantemirov |first1=Rashit M. |last2=Shiyatov |first2=Stepan G. |title=A continuous multimillennial ring-width chronology in Yamal, northwestern Siberia |journal=The Holocene |date=September 2002 |volume=12 |issue=6 |pages=717–726 |doi=10.1191/0959683602hl585rp |bibcode= 2002Holoc..12..717H |s2cid=129192118 }} the 7 ka Scots pine (Pinus sylvestris) chronology from Finnish Lapland;{{cite journal |last1=Eronen |first1=Matti |last2=Zetterberg |first2=Pentti |last3=Briffa |first3=Keith R. |last4=Lindholm |first4=Markus |last5=Meriläinen |first5=Jouko |last6=Timonen |first6=Mauri |title=The supra-long Scots pine tree-ring record for Finnish Lapland: Part 1, chronology construction and initial inferences |journal=The Holocene |date=September 2002 |volume=12 |issue=6 |pages=673–680 |doi=10.1191/0959683602hl580rp |bibcode= 2002Holoc..12..673E |s2cid=54806912 }}{{cite journal |last1=Helama |first1=Samuli |last2=Lindholm |first2=Markus |last3=Timonen |first3=Mauri |last4=Meriläinen |first4=Jouko |last5=Eronen |first5=Matti |title=The supra-long Scots pine tree-ring record for Finnish Lapland: Part 2, interannual to centennial variability in summer temperatures for 7500 years |journal=The Holocene |date=September 2002 |volume=12 |issue=6 |pages=681–687 |doi=10.1191/0959683602hl581rp |bibcode=2002Holoc..12..681H |s2cid=129520871 }} GISP2 ice core;{{cite journal |last1=Zielinski |first1=G. A. |last2=Mayewski |first2=P. A. |last3=Meeker |first3=L. D. |last4=Whitlow |first4=S. |last5=Twickler |first5=M. S. |last6=Morrison |first6=M. |last7=Meese |first7=D. A. |last8=Gow |first8=A. J. |last9=Alley |first9=R. B. |title=Record of Volcanism Since 7000 B.C. from the GISP2 Greenland Ice Core and Implications for the Volcano-Climate System |journal=Science |date=13 May 1994 |volume=264 |issue=5161 |pages=948–952 |doi=10.1126/science.264.5161.948 |pmid=17830082 |bibcode = 1994Sci...264..948Z |s2cid=21695750 }}{{cite journal |last1=Zielinski |first1=Gregory A. |title=Stratospheric loading and optical depth estimates of explosive volcanism over the last 2100 years derived from the Greenland Ice Sheet Project 2 ice core |journal=Journal of Geophysical Research |date=1995 |volume=100 |issue=D10 |pages=20937–20955 |doi=10.1029/95JD01751 |bibcode=1995JGR...10020937Z }} GRIP ice core;{{cite journal |last1=Clausen |first1=Henrik B. |last2=Hammer |first2=Claus U. |last3=Hvidberg |first3=Christine S. |last4=Dahl-Jensen |first4=Dorthe |last5=Steffensen |first5=Jørgen P. |last6=Kipfstuhl |first6=Josef |last7=Legrand |first7=Michel |title=A comparison of the volcanic records over the past 4000 years from the Greenland Ice Core Project and Dye 3 Greenland ice cores |journal=Journal of Geophysical Research: Oceans |date=30 November 1997 |volume=102 |issue=C12 |pages=26707–26723 |doi=10.1029/97JC00587 |bibcode=1997JGR...10226707C |doi-access=free }} Dye 3 ice core; Bipolar comparison;{{cite journal |last1=Langway |first1=C. C. |last2=Osada |first2=K. |last3=Clausen |first3=H. B. |last4=Hammer |first4=C. U. |last5=Shoji |first5=H. |title=A 10-century comparison of prominent bipolar volcanic events in ice cores |journal=Journal of Geophysical Research |date=1995 |volume=100 |issue=D8 |pages=16241 |doi=10.1029/95JD01175 |bibcode=1995JGR...10016241L }} Antarctic ice core (Bunder and Cole-Dai, 2003);{{Cite book | contribution = The number and magnitude of explosive volcanic eruptions between 904 and 1865 A.D.: Quantitative evidence from a new South Pole ice core |title= Volcanism and the Earth's Atmosphere |editor=Robock, A. |editor2=Oppenheimer, C. | pages = 165–176 | publisher = American Geophysical Union | year = 2003 | contribution-url = http://learn.sdstate.edu/Jihong_Cole-Dai/vea2003.pdf
| doi = 10.1029/139GM10
|author=Budner, Drew |author2=Cole-Dai, Jihong |quote= The number and magnitude of large explosive volcanic eruptions between 904 and 1865 A.D.: Quantitative evidence from a new South Pole ice core | series = Geophysical Monograph Series | isbn = 978-0-87590-998-1 | volume = 139| bibcode = 2003GMS...139..165B }} Antarctic ice core (Cole-Dai et al., 1997);{{cite journal |last1=Cole-Dai |first1=Jihong |last2=Mosley-Thompson |first2=Ellen |last3=Thompson |first3=Lonnie G. |title=Annually resolved southern hemisphere volcanic history from two Antarctic ice cores |journal=Journal of Geophysical Research: Atmospheres |date=27 July 1997 |volume=102 |issue=D14 |pages=16761–16771 |doi=10.1029/97JD01394 |bibcode=1997JGR...10216761C |doi-access=free }} Crête ice core, in central Greenland,{{cite journal |last1=Crowley |first1=Thomas J. |last2=Criste |first2=Tamara A. |last3=Smith |first3=Neil R. |title=Reassessment of Crete (Greenland) ice core acidity/volcanism link to climate change |journal=Geophysical Research Letters |date=5 February 1993 |volume=20 |issue=3 |pages=209–212 |doi=10.1029/93GL00207 |bibcode=1993GeoRL..20..209C }} benthic foraminifera in deep sea sediment cores (Lisiecki, Raymo 2005),{{Cite journal| doi = 10.1029/2004PA001071| title = A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records| date=January 2005 | last1 = Lisiecki | first1 = L. E.| author-link = Lorraine Lisiecki| journal = Paleoceanography| volume = 20| issue = 1| pages = PA1003| last2 = Raymo | first2 = M. E.| author-link2 = Maureen Raymo| url = http://lorraine-lisiecki.com/LisieckiRaymo2005.pdf |bibcode = 2005PalOc..20.1003L | hdl = 2027.42/149224| s2cid = 12788441}}
{{Cite journal| doi = 10.1029/2005PA001164 | title = Correction to "A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records"| date=May 2005 | last1 = Lisiecki | first1 = L. E.| journal = Paleoceanography| volume = 20| issue = 2| pages = PA2007 | last2 = Raymo | first2 = M. E.|bibcode = 2005PalOc..20.2007L | s2cid = 128995657| url = https://escholarship.org/uc/item/5w11z2zn| doi-access = free}}
data: {{cite journal |last1=Lisiecki |first1=Lorraine E |last2=Raymo |first2=Maureen E |title=Pliocene-Pleistocene stack of globally distributed benthic stable oxygen isotope records|journal=Pangaea |date=2005 |pages=3 datasets |doi=10.1594/PANGAEA.704257 }} Supplement to {{cite journal|doi=10.1029/2004Pa001071|title=A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records |year=2005 |last1=Lisiecki |first1=Lorraine E. |last2=Raymo |first2=Maureen E. |journal=Paleoceanography |volume=20 |issue=1 |bibcode=2005PalOc..20.1003L |s2cid=12788441 |url=https://archimer.ifremer.fr/doc/00233/34403/ }} do not agree with each other sometimes. The 536–547 AD dust-veil event might be an impact event.{{cite journal
|last= Baillie |first= M.G.L. |year= 1994 |title= Dendrochronology raises questions about the nature of the AD 536 dust-veil event |journal= The Holocene |volume= 4 |issue= 2 |pages= 212–7 |doi = 10.1177/095968369400400211 |bibcode= 1994Holoc...4..212B|s2cid= 140595125 }}
Holocene eruptions
= Since 2000 AD =
class="sortable wikitable"
! scope="col" | Name and area ! scope="col" | Date ! scope="col" | VEI ! scope="col" | Products ! scope="col" class="unsortable" | Notes | ||||
Hunga Tonga–Hunga Haʻapai, Tonga | 2022 | 6 | 6.5 km3 (dense-rock equivalent) of tephra | The largest eruption of the 21st century |
Ruang, north sulawesi indonesia | 2024 | 5 | | | |
Chaiten, Southern Chile | 2008 | 5 | | | |
Puyehue-Cordón Caulle, Southern Chile | 2011 | 5 |
= 1000–2000 AD =
= 1 to 1000 AD =
= Before the Common Era (BC/BCE) =
class="sortable wikitable"
! scope="col" | Name and area ! scope="col" | Date ! scope="col" | VEI ! scope="col" | Products ! scope="col" class="unsortable" | Notes | |||||||
Okmok, Okmok Caldera, Aleutian Islands | 44 BC{{cite journal |last1=McConnell |first1=Joseph R. |last2=Sigl |first2=Michael |last3=Plunkett |first3=Gill |last4=Burke |first4=Andrea |last5=Kim |first5=Woon Mi |last6=Raible |first6=Christoph C. |last7=Wilson |first7=Andrew I. |last8=Manning |first8=Joseph G. |last9=Ludlow |first9=Francis |last10=Chellman |first10=Nathan J. |last11=Innes |first11=Helen M. |last12=Yang |first12=Zhen |last13=Larsen |first13=Jessica F. |last14=Schaefer |first14=Janet R. |last15=Kipfstuhl |first15=Sepp |last16=Mojtabavi |first16=Seyedhamidreza |last17=Wilhelms |first17=Frank |last18=Opel |first18=Thomas |last19=Meyer |first19=Hanno |last20=Steffensen |first20=Jørgen Peder |title=Extreme climate after massive eruption of Alaska's Okmok volcano in 43 BCE and effects on the late Roman Republic and Ptolemaic Kingdom |journal=Proceedings of the National Academy of Sciences |date=7 July 2020 |volume=117 |issue=27 |pages=15443–15449 |doi=10.1073/pnas.2002722117 |pmid=32571905 |pmc=7354934 |bibcode=2020PNAS..11715443M |doi-access=free }} | 6 | {{convert|40|to|60|km3|cumi|1|sp=us|abbr=on}} of tephra | ||||
Apoyeque, Nicaragua | 50 BC ±100 | 6 | {{convert|18|km3|abbr=on}} of tephra | ||||
Raoul Island, Kermadec Islands, New Zealand | 250 BC ±75 | 6 | more than {{convert|10|km3|abbr=on}} of tephra | ||||
Mount Meager massif, Garibaldi Volcanic Belt, Canada | 400 BC ±50 | 5 | |||||
Mount Tongariro, Taupō Volcanic Zone, New Zealand | 550 BC ±200 | 5 | {{convert|1.2|km3|abbr=on}} of tephra | ||||
Pinatubo, island of Luzon, Philippines | 1050 BC ±500 | 6 | {{convert|10|to|16|km3|cumi|1|sp=us|abbr=on}} of tephra | ||||
Avachinsky, Kamchatka | 1350 BC (?) | 5 | more than {{convert|1.2|km3|abbr=on}} of tephra | tephra layer IIAV3 | |||
Pago, east of Kimbe, New Britain, Papua New Guinea: Witori Caldera | 1370 BC ±100 | 6 | {{convert|30|km3|abbr=on}} of tephra | ||||
Taupō Volcanic Zone, Taupō, New Zealand | 1460 BC ±40 | 6 | {{convert|17|km3|abbr=on}} of tephra | ||||
Avachinsky, Kamchatka | 1500 BC (?) | 5 | more than {{convert|3.6|km3|abbr=on}} of tephra | tephra layer AV1 | |||
Santorini (Thera), Greece, Youngest Caldera: Minoan eruption | 1610 BC ±14 years | 7 | {{convert|123|km3|abbr=on}} of tephra{{Cite journal |last1=Johnston |first1=E. N. |last2=Sparks |first2=R. S. J. |last3=Phillips |first3=J. C. |last4=Carey |first4=S. |date=July 2014 |title=Revised estimates for the volume of the Late Bronze Age Minoan eruption, Santorini, Greece |url=http://jgs.lyellcollection.org/lookup/doi/10.1144/jgs2013-113 |journal=Journal of the Geological Society |language=en |volume=171 |issue=4 |pages=583–590 |doi=10.1144/jgs2013-113 |bibcode=2014JGSoc.171..583J |s2cid=129937513 |issn=0016-7649|url-access=subscription }} | Ended the Minoan settlement at Akrotiri and the Minoan age on Crete | |||
Mount Aniakchak, Alaska Peninsula | 1645 BC ±10 | 6 | more than {{convert|50|km3|abbr=on}} of tephra | Severe global cooling{{cite journal |last1=McAneney |first1=Jonny |last2=Baillie |first2=Mike |title=Absolute tree-ring dates for the Late Bronze Age eruptions of Aniakchak and Thera in light of a proposed revision of ice-core chronologies |journal=Antiquity |date=February 2019 |volume=93 |issue=367 |pages=99–112 |doi=10.15184/aqy.2018.165 |s2cid=166461015 |doi-access=free }} | |||
Veniaminof, Alaska Peninsula | 1750 BC (?) | 6 | more than {{convert|50|km3|abbr=on}} of tephra | ||||
Mount St. Helens, Washington, USA | 1860 BC (?) | 6 | {{convert|15|km3|abbr=on}} of tephra | ||||
Mount Hudson, Cerro, Southern Chile | 1890 BC (?) | 6 | more than {{convert|10|km3|abbr=on}} of tephra | ||||
Black Peak, Alaska Peninsula | 1900 BC ±150 | 6 | {{convert|10|to|50|km3|cumi|1|sp=us|abbr=on}} of tephra | ||||
Long Island (Papua New Guinea), Northeast of New Guinea | 2040 BC ± 100 | 6 | more than {{convert|11|km3|abbr=on}} of tephra | ||||
Mount Vesuvius, Italy | 2420 BC ±40 | 5? | {{convert|3.9|km3|abbr=on}} of tephra | Avellino eruption{{cite web|url=http://www.ov.ingv.it/inglese/vesuvio/storia/storia.htm |title=Summary of the eruptive history of Mt. Vesuvius |work=Osservatorio Vesuviano, Italian National Institute of Geophysics and Volcanology |accessdate=2006-12-08 |url-status=dead |archive-url=https://web.archive.org/web/20061203041501/http://www.ov.ingv.it/inglese/vesuvio/storia/storia.htm |archive-date=December 3, 2006 }}{{cite web | url = http://vulcan.fis.uniroma3.it/vesuvio/vesuviustext.html | title = Somma-Vesuvius | work = Department of Physics, University of Rome | accessdate = 2006-12-08 | archive-url = https://web.archive.org/web/20110412141328/http://vulcan.fis.uniroma3.it/vesuvio/vesuviustext.html | archive-date = 2011-04-12 | url-status = dead }}{{cite web|url=http://www.meridies-nola.org/nola/villaggiopreistoricoing.htm |title=An ancient Bronze Age village (3500 bp) destroyed by the pumice eruption in Avellino (Nola-Campania) |accessdate=2006-12-08 |url-status=dead |archive-url=https://web.archive.org/web/20120618235308/http://www.meridies-nola.org/nola/villaggiopreistoricoing.htm |archive-date=2012-06-18 }} | |||
Avachinsky, Kamchatka | 3200 BC ±150 | 5 | more than {{convert|1.1|km3|abbr=on}} of tephra | tephra layer IAv20 AV3 | |||
Pinatubo, island of Luzon, Philippines | 3550 BC (?) | 6 | {{convert|10|to|16|km3|cumi|1|sp=us|abbr=on}} of tephra | ||||
Talisay (Taal) caldera (size: 15 x 20 km), island of Luzon, Philippines | 3580 BC ±200 | 7 | {{convert|150|km3|abbr=on}} of tephra | ||||
Haroharo Caldera, Taupō Volcanic Zone, New Zealand | 3580 BC ±50 | 5 | {{convert|2.8|km3|abbr=on}} of tephra | ||||
|
|Pago, New Britain | 4000 BC ± 200 | 6? | {{convert|10|km3|abbr=on}}? of tephra | ||||
Masaya Volcano, Nicaragua | 4050 BC (?) | 6 | more than {{convert|13|km3|abbr=on}} of tephra | ||||
Avachinsky, Kamchatka | 4340 BC ±75 | 5 | more than {{convert|1.3|km3|abbr=on}} of tephra | tephra layer IAv12 AV4 | |||
Macauley Island, Kermadec Islands, New Zealand | 4360 BC ±200 | 6 | {{convert|100|km3|abbr=on}}? of tephraLatter, J. H. | Lloyd, E. F. | Smith, I. E. M. | Nathan, S. (1992). [http://www.gns.cri.nz/what/earthact/volcanoes/nzvolcanoes/kermprint.htm Volcanic hazards in the Kermadec Islands and at submarine volcanoes between southern Tonga and New Zealand] {{webarchive|url=https://web.archive.org/web/20100522060129/http://www.gns.cri.nz/what/earthact/volcanoes/nzvolcanoes/kermprint.htm |date=2010-05-22 }}, Volcanic hazards information series 4. Wellington, New Zealand. Ministry of Civil Defence. 44 p. | |
Mount Hudson, Cerro, Southern Chile | 4750 BC (?) | 6 | {{convert|18|km3|abbr=on}} of tephra | ||||
Mount Aniakchak, Alaska Peninsula | 5250 BC ±1000 | 6 | {{convert|10|to|50|km3|cumi|1|sp=us|abbr=on}} of tephra | ||||
Kikai Caldera (size: 19 km), Ryukyu Islands, Japan: Akahoya eruption | 5350 BC (?) | 7 | {{convert|80|to|220|km3|cumi|1|sp=us|abbr=on}} of tephra | ||||
Mashu, Hokkaido, Japan | 5550 BC ±100 | 6 | {{convert|19|km3|abbr=on}} of tephra | ||||
Tao-Rusyr Caldera, Kuril Islands | 5550 BC ±75 | 6 | {{convert|30|to|36|km3|cumi|1|sp=us}} of tephra | ||||
Mayor Island / Tūhua, Taupō Volcanic Zone, New Zealand | 5060 BC ±200 | 5 | {{convert|1.6|km3|abbr=on}} of tephra | ||||
Crater Lake (Mount Mazama), Oregon, USA | 5677 BC ±150 | 7 | {{convert|150|km3|abbr=on}} of tephra | ||||
Khangar, Kamchatka Peninsula, Russia | 5700 BC ± 16 | 6 | {{convert|14|to|16|km3|cumi|1|sp=us|abbr=on}} of tephra | ||||
Crater Lake (Mount Mazama), Oregon, USA | 5900 BC ± 50 | 6 | {{convert|8|to|28|km3|cumi|1|sp=us|abbr=on}} of tephra | ||||
Avachinsky, Kamchatka | 5980 BC ±100 | 5 | more than {{convert|8|to|10|km3|cumi|1|sp=us|abbr=on}} of tephra | tephra layer IAv1 | |||
Menengai, East African Rift, Kenya | 6050 BC (?) | 6 | {{convert|70|km3|abbr=on}}? of tephra | ||||
Haroharo Caldera, Taupō Volcanic Zone, New Zealand | 6060 BC ±50 | 5 | {{convert|1.2|km3|abbr=on}} of tephra | ||||
Sakurajima, island of Kyūshū, Japan: Aira Caldera | 6200 BC ±1000 | 6 | {{convert|12|km3|abbr=on}} of tephra | ||||
Kurile Caldera (size: 8 x 14 km), Kamchatka Peninsula, Russia | 6440 BC ± 25 years | 7 | {{convert|140|to|170|km3|cumi|1|sp=us|abbr=on}} of tephra | Ilinsky eruption | |||
Karymsky, Kamchatka Peninsula, Russia | 6600 BC (?) | 6 | {{convert|50|to|350|km3|cumi|1|sp=us|abbr=on}} of tephra | ||||
Mount Vesuvius, Italy | 6940 BC ±100 | 5? | {{convert|2.75|to|2.85|km3|cumi|1|sp=us|abbr=on}} of tephra | Mercato eruption | |||
Fisher Caldera, Unimak Island, Aleutian Islands | 7420 BC ±200 | 6 | more than {{convert|50|km3|abbr=on}} of tephra | ||||
Pinatubo, island of Luzon, Philippines | 7460 BC ±150 | 6–7? | |||||
Lvinaya Past, Kuril Islands | 7480 BC ±50 | 6 | {{convert|7|to|8|km3|cumi|1|sp=us|abbr=on}} of tephra | ||||
Rotomā Caldera, Taupō Volcanic Zone, New Zealand | 7560 BC ±18 | 5 | more than {{convert|5.6|km3|abbr=on}} of tephra | ||||
Taupō Volcano, Taupō Volcanic Zone, New Zealand | 8130 BC ±200 | 5 | {{convert|4.7|km3|abbr=on}} of tephra | ||||
Grímsvötn, Northeastern Iceland | 8230 BC ±50 | 6 | more than {{convert|15|km3|abbr=on}} of tephra | ||||
Ulleung, Korea | 8750 BC (?) | 6 | more than {{convert|10|km3|abbr=on}} of tephra | ||||
Mount Tongariro, Taupō Volcanic Zone, New Zealand | 9450 BC (?) | 5 | {{convert|1.7|km3|abbr=on}} of tephra | ||||
Taupō Volcano, Taupō Volcanic Zone, New Zealand | 9460 BC ±200 | 5 | {{convert|1.4|km3|abbr=on}} of tephra | ||||
Mount Tongariro, Taupō Volcanic Zone, New Zealand | 9650 BC (?) | 5 | {{convert|1.6|km3|abbr=on}} of tephra | ||||
Nevado de Toluca, State of Mexico, Trans-Mexican Volcanic Belt | 10.5 ka | 6 | {{convert|14|km3|abbr=on}} of tephra | Upper Toluca Pumice{{cite journal |last1=Arce |first1=J. L. |last2=Macías |first2=J. L. |last3=Vázquez-Selem |first3=L. |title=The 10.5 ka Plinian eruption of Nevado de Toluca volcano, Mexico: Stratigraphy and hazard implications |journal=GSA Bulletin |date=1 February 2003 |volume=115 |issue=2 |pages=230–248 |doi=10.1130/0016-7606(2003)115<0230:TKPEON>2.0.CO;2 |bibcode=2003GSAB..115..230A }} | |||
GISP2 ice core event | 11.258 ka |
Pleistocene eruptions
2.588 ± 0.005 million years BP, the Quaternary period and Pleistocene epoch begin.{{cite journal | url=https://cp.copernicus.org/articles/18/485/2022/#section3 | doi=10.5194/cp-18-485-2022 | title=Magnitude, frequency and climate forcing of global volcanism during the last glacial period as seen in Greenland and Antarctic ice cores (60–9 ka) | year=2022 | last1=Lin | first1=Jiamei | last2=Svensson | first2=Anders | last3=Hvidberg | first3=Christine S. | last4=Lohmann | first4=Johannes | last5=Kristiansen | first5=Steffen | last6=Dahl-Jensen | first6=Dorthe | last7=Steffensen | first7=Jørgen Peder | last8=Rasmussen | first8=Sune Olander | last9=Cook | first9=Eliza | last10=Kjær | first10=Helle Astrid | last11=Vinther | first11=Bo M. | last12=Fischer | first12=Hubertus | last13=Stocker | first13=Thomas | last14=Sigl | first14=Michael | last15=Bigler | first15=Matthias | last16=Severi | first16=Mirko | last17=Traversi | first17=Rita | last18=Mulvaney | first18=Robert | journal=Climate of the Past | volume=18 | issue=3 | pages=485–506 | bibcode=2022CliPa..18..485L | s2cid=247480436 | doi-access=free | hdl=2158/1266504 | hdl-access=free }}
Notes
{{Location map many
|Iceland
|label = Grímsvötn
|label_size = 65
|pos = right
|lat = 64.42
|long = -17.33
|marksize = 3
|label2 = Laki
|label2_size = 65
|pos2 = bottom
|lat2 = 64.064722
|long2 = -18.226111
|mark2size = 3
|label3 = Eldgjá
|label3_size = 65
|pos3 = right
|lat3 = 64.23465
|long3 = -18.403131
|mark3size = 3
|label4 = Katla
|label4_size = 65
|pos4 = right
|lat4 = 63.633333
|long4 = -19.05
|mark4size = 3
|label5 = Bárðarbunga
|label5_size = 65
|pos5 = right
|lat5 = 64.641
|long5 = -17.528
|mark5size = 3
|label6 = Torfajökull
|label6_size = 65
|pos6 = left
|lat6 = 63.916667
|long6 = -19.166667
|mark6size = 3
|label7 = Askja
|label7_size = 65
|pos7 = top
|lat7 = 65.03
|long7 = -16.75
|mark7size = 3
|label8 = Loki
|label8_size = 65
|pos8 = left
|lat8 = 64.48
|long8 = -17.8
|mark8size = 3
|label9 = Eyjafjallajökull
|label9_size = 65
|pos9 = left
|lat9 = 63.633333
|long9 = -19.6
|mark9size = 3
|border = none
|caption = Iceland: volcanoes
|float = right
|width = 220
}}
File:Volcanic system of Iceland-Map-en.svg
- Iceland has four volcanic zones: Reykjanes (Mid-Atlantic Ridge),{{cite web
|url = http://www.volcano.si.edu/world/volcano.cfm?vnum=1701-02= |title = Reykjanes |publisher = Global Volcanism Program |accessdate = 2010-04-20 }} West and North Volcanic Zones (RVZ, WVZ, NVZ) and the East Volcanic Zone (EVZ). The Mid-Iceland Belt (MIB) connects them across central Iceland. There are two intraplate belts too (Öræfajökull (ÖVB) and Snæfellsnes (SVB)).
- Iceland's East Volcanic Zone: the central volcanoes of Vonarskard and Hágöngur belong to the same volcanic system; this also applies to Bárðarbunga and Hamarinn, and Grímsvötn and Þórðarhyrna.{{cite journal|last= Gudmundsson
|first= Magnús T. |author2=Thórdís Högnadóttir |date= January 2007 |title= Volcanic systems and calderas in the Vatnajökull region, central Iceland: Constraints on crustal structure from gravity data |journal= Journal of Geodynamics |volume= 43 |issue= 1 |pages= 153–169 |doi = 10.1016/j.jog.2006.09.015|bibcode = 2007JGeo...43..153G }}{{cite journal|date= January 2007
|title= Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history |journal= Journal of Geodynamics |volume= 43 |issue= 1 |pages= 118–152 |doi = 10.1016/j.jog.2006.09.005|author1=T. Thordarson |author2=G. Larsen |name-list-style=amp|bibcode = 2007JGeo...43..118T |url= http://www.geo.mtu.edu/~raman/papers2/Thordarson%20and%20Larsen%202007%20-%20Volcanism%20in%20Iceland.pdf }}{{cite web
|url = http://www.surtsey.is/SRS_publ/WHL/Surtsey_Nomination_Report_2007_72dpi.pdf
|title = Surtsey Nomination Report 2007
|publisher = Surtsey, Island
|accessdate = 2010-03-30 }}
- Laki is part of a volcanic system, centering on the Grímsvötn volcano (Long NE-SW-trending fissure systems, including Laki, extend from the central volcano).
- The Eldgjá canyon and the Katla volcano form another volcanic system. Although the Eldgjá canyon and the Laki fissure are very near from each other, lava from the Katla and the Hekla volcanic systems result in transitional alkalic basalts and lava from the central volcanoes result in tholeiitic basalts.
- The central volcano of Bárðarbunga, the Veidivötn and Trollagigar fissures form one volcanic system, which extend about 100 km SW to near Torfajökull volcano and 50 km NE to near Askja volcano, respectively. The subglacial Loki-Fögrufjöll volcanic system located SW of Bárðarbunga volcano is also part of the Bárðarbunga volcanic system and contains two subglacial ridges extending from the largely subglacial Hamarinn central volcano (15 km southwest of Bárðarbunga); the Loki ridge trends to the NE and the Fögrufjöll ridge to the SW.
- New Zealand, North Island, Taupō Volcanic Zone:
- The following Volcanic Centers belong to the Taupō Volcanic Zone: Rotorua, Ōkataina, Maroa, Taupō, Tongariro and Mangakino.{{cite journal |author=Cole, J.W. |title=Structural control and origin of volcanism in the Taupo volcanic zone, New Zealand |journal=Bulletin of Volcanology |volume=52 |pages=445–459 |year=1990 |doi=10.1007/BF00268925 |bibcode=1990BVol...52..445C |issue=6|s2cid=129091056 }} It includes Mangakino volcano, Reporoa Caldera, Mount Tarawera, Mount Ruapehu, Mount Tongariro and Whakaari / White Island. The Taupō Volcanic Zone forms a southern portion of the active Lau-Havre-Taupō back-arc basin, which lies behind the Kermadec-Tonga subduction zone (Hikurangi Trough – Kermadec Trench – Tonga Trench).{{cite journal |year=1996 |title=The Lau-Havre-Taupo back-arc basin: A southward-propagating, multi-stage evolution from rifting to spreading |journal=Tectonophysics |volume=263 |issue=1–4 |pages=1–22 |doi=10.1016/S0040-1951(96)00029-7 |author1=L. M. Parson |author2=I. C. Wright |name-list-style=amp|bibcode=1996Tectp.263....1P}} Some lakes in the area: Taupo, Rotorua, Rotomahana, and Rerewhakaaitu. Lake Ōkataina, Lake Tarawera, Lake Rotokakahi (Green Lake), Lake Tikitapu (Blue Lake), Lake Okareka, and Lake Rotoiti lie within the Ōkataina Caldera.
- Taupō Volcanic Zone, the Mangakino Volcanic Center is the westernmost and oldest rhyolitic caldera volcano in the Taupō Volcanic Zone. Mangakino is a town too.{{cite journal |doi=10.1080/00288306.1998.9514803 |author=Krippner, Stephen J. P., Briggs, Roger M., Wilson, Colin J. N., Cole, James W. |title=Petrography and geochemistry of lithic fragments in ignimbrites from the Mangakino Volcanic Centre: implications for the composition of the subvolcanic crust in western Taupo Volcanic Zone, New Zealand |journal=New Zealand Journal of Geology and Geophysics |volume=41 |pages=187–199 |year=1998 |issue=2 |doi-access=free }}
- Taupō Volcanic Zone, Maroa Volcanic Center. The Maroa Caldera formed in the Northeast corner of the Whakamaru Caldera. The Whakamaru Caldera partially overlaps with the Taupō Caldera on the South. The Orakeikorako, Ngatamariki, Rotokaua, and Wairakei hydrothermal areas are located within or adjacent to the Whakamaru caldera. Whakamaru is a town too.
- The oldest volcanic zone in the North Island is the Northland Region, then the Coromandel Volcanic Zone (CVZ), then the Mangakino caldera complex and the Kapenga Caldera and then the rest of the Taupō Volcanic Zone (TVZ).
- Santorini, South Aegean Volcanic Arc. The southern Aegean is one of the most rapidly deforming regions of the Himalayan-Alpine mountain belt (Alpide belt).The South Aegean Active Volcanic Arc: Present Knowledge and Future Perspectives By Michaēl Phytikas, Georges E. Vougioukalakis, 2005, Elsevier, 398 pages, {{ISBN|0-444-52046-5}}
- The twin volcanoes of Nindirí and Masaya lie within the massive Pleistocene Las Sierras pyroclastic shield volcano.
- There are two peaks in the Colima volcano complex: Nevado de Colima (4,330 m), which is older and inactive, lies 5 km north of the younger and very active 3,860 m Volcán de Colima (also called Volcán de Fuego de Colima).
- The largely submarine Kuwae Caldera cuts the flank of the Late Pleistocene or Holocene Tavani Ruru volcano, the submarine volcano Karua lies near the northern rim of Kuwae Caldera.
- Bismarck volcanic arc, the Rabaul Caldera includes the sub-vent of Tavurvur and the sub-vent of Vulcan.
- Bismarck volcanic arc, Pago volcano, New Britain, Papua New Guinea, is a young post-caldera cone within the Witori Caldera. The Buru Caldera cuts the SW flank of the Witori volcano.
- Sakurajima, Kyūshū, Japan, is a volcano of the Aira Caldera.
- The Mount Unzen volcanic complex, East of Nagasaki, Japan, comprises three large stratovolcanoes with complex structures, Kinugasa on the North, Fugen-dake at the East-center, and Kusenbu on the South.
= Nomenclature =
Each state/ country seem to have a slightly different approach, but there is an order:
- Craton, and then Province as sections or regions of a craton.
- First: volcanic arc, volcanic belt and volcanic zone.
- Second: volcanic area, caldera cluster and caldera complex.
- Third: volcanic field, volcanic system and volcanic center.
- A volcanic field is a localized area of the Earth's crust that is prone to localized volcanic activity.
- A volcanic group (aka a volcanic complex) is a collection of related volcanoes or volcanic landforms.
- Neutral: volcanic cluster and volcanic locus.
In the Basin and Range Province the volcanic fields are nested. The McDermit volcanic field, is also named Orevada rift volcanic field. The Latir-Questa volcanic locus and the Taos Plateau volcanic field seem to be in a similar area. The Southwest Nevada volcanic field, the Crater Flat-Lunar Crater volcanic zone, the Central Nevada volcanic field, the Indian Peak volcanic field and the Marysvale volcanic field seem to have no transition between each other; the Ocate volcanic field is also known as the Mora volcanic field; and the Red Hill volcanic field is also known as Quemado volcanic field.
References
{{Reflist|33em}}
External links
- {{Cite web|url=http://vulcan.wr.usgs.gov/Volcanoes/DecadeVolcanoes/framework.html|title=Decade Volcanoes|publisher=United States Geological Survey}}
{{Decade Volcanoes}}
{{List of volcanoes}}