Polygamma function#Inequalities

{{Short description|Meromorphic function}}

{{For|Barnes's gamma function|multiple gamma function}}

{{one source|date=August 2021}}{{Use American English|date = March 2019}}

File:Mplwp polygamma03.svg

File:Plot of polygamma function in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1.svg, the first polygamma function, in the complex plane, with colors showing one cycle of phase shift around each pole and zero | Plot of the digamma function, the first polygamma function, in the complex plane from −2−2i to 2+2i with colors created by Mathematica's function ComplexPlot3D showing one cycle of phase shift around each pole and the zero]]

In mathematics, the polygamma function of order {{mvar|m}} is a meromorphic function on the complex numbers \mathbb{C} defined as the {{math|(m + 1)}}th derivative of the logarithm of the gamma function:

:\psi^{(m)}(z) := \frac{\mathrm{d}^m}{\mathrm{d}z^m} \psi(z) = \frac{\mathrm{d}^{m+1}}{\mathrm{d}z^{m+1}} \ln\Gamma(z).

Thus

:\psi^{(0)}(z) = \psi(z) = \frac{\Gamma'(z)}{\Gamma(z)}

holds where {{math|ψ(z)}} is the digamma function and {{math|Γ(z)}} is the gamma function. They are holomorphic on \mathbb{C} \backslash\mathbb{Z}_{\le0}. At all the nonpositive integers these polygamma functions have a pole of order {{math|m + 1}}. The function {{math|ψ(1)(z)}} is sometimes called the trigamma function.

style="text-align:center"

|+ The logarithm of the gamma function and the first few polygamma functions in the complex plane

|Image:Complex LogGamma.jpg

|Image:Complex Polygamma 0.jpg

|Image:Complex Polygamma 1.jpg

{{math|ln Γ(z)}}

|{{math|ψ(0)(z)}}

|{{math|ψ(1)(z)}}

Image:Complex Polygamma 2.jpg

|Image:Complex Polygamma 3.jpg

|Image:Complex Polygamma 4.jpg

{{math|ψ(2)(z)}}

|{{math|ψ(3)(z)}}

|{{math|ψ(4)(z)}}

Integral representation

{{see also|Digamma function#Integral representations}}

When {{math|m > 0}} and {{math|Re z > 0}}, the polygamma function equals

:\begin{align}

\psi^{(m)}(z)

&= (-1)^{m+1}\int_0^\infty \frac{t^m e^{-zt}}{1-e^{-t}}\,\mathrm{d}t \\

&= -\int_0^1 \frac{t^{z-1}}{1-t}(\ln t)^m\,\mathrm{d}t\\

&= (-1)^{m+1}m!\zeta(m+1,z)

\end{align}

where \zeta(s,q) is the Hurwitz zeta function.

This expresses the polygamma function as the Laplace transform of {{math|{{sfrac|(−1)m+1 tm|1 − et}}}}. It follows from Bernstein's theorem on monotone functions that, for {{math|m > 0}} and {{math|x}} real and non-negative, {{math|(−1)m+1 ψ(m)(x)}} is a completely monotone function.

Setting {{math|m {{=}} 0}} in the above formula does not give an integral representation of the digamma function. The digamma function has an integral representation, due to Gauss, which is similar to the {{math|m {{=}} 0}} case above but which has an extra term {{math|{{sfrac|et|t}}}}.

Recurrence relation

It satisfies the recurrence relation

:\psi^{(m)}(z+1)= \psi^{(m)}(z) + \frac{(-1)^m\,m!}{z^{m+1}}

which – considered for positive integer argument – leads to a presentation of the sum of reciprocals of the powers of the natural numbers:

:\frac{\psi^{(m)}(n)}{(-1)^{m+1}\,m!} = \zeta(1+m) - \sum_{k=1}^{n-1} \frac{1}{k^{m+1}} = \sum_{k=n}^\infty \frac{1}{k^{m+1}} \qquad m \ge 1

and

:\psi^{(0)}(n) = -\gamma\ + \sum_{k=1}^{n-1}\frac{1}{k}

for all n \in \mathbb{N}, where \gamma is the Euler–Mascheroni constant. Like the log-gamma function, the polygamma functions can be generalized from the domain {{math|\mathbb{N}}} uniquely to positive real numbers only due to their recurrence relation and one given function-value, say {{math|ψ(m)(1)}}, except in the case {{math|m {{=}} 0}} where the additional condition of strict monotonicity on \mathbb{R}^{+} is still needed. This is a trivial consequence of the Bohr–Mollerup theorem for the gamma function where strictly logarithmic convexity on \mathbb{R}^{+} is demanded additionally. The case {{math|m {{=}} 0}} must be treated differently because {{math|ψ(0)}} is not normalizable at infinity (the sum of the reciprocals doesn't converge).

Reflection relation

:(-1)^m \psi^{(m)} (1-z) - \psi^{(m)} (z) = \pi \frac{\mathrm{d}^m}{\mathrm{d} z^m} \cot{\pi z} = \pi^{m+1} \frac{P_m(\cos{\pi z})}{\sin^{m+1}(\pi z)}

where {{math|Pm}} is alternately an odd or even polynomial of degree {{math|{{abs|m − 1}}}} with integer coefficients and leading coefficient {{math|(−1)m⌈2m − 1⌉}}. They obey the recursion equation

:\begin{align} P_0(x) &= x \\ P_{m+1}(x) &= - \left( (m+1)xP_m(x)+\left(1-x^2\right)P'_m(x)\right).\end{align}

Multiplication theorem

The multiplication theorem gives

:k^{m+1} \psi^{(m)}(kz) = \sum_{n=0}^{k-1} \psi^{(m)}\left(z+\frac{n}{k}\right)\qquad m \ge 1

and

:k \psi^{(0)}(kz) = k\ln{k} + \sum_{n=0}^{k-1}

\psi^{(0)}\left(z+\frac{n}{k}\right)

for the digamma function.

Series representation

The polygamma function has the series representation

:\psi^{(m)}(z) = (-1)^{m+1}\, m! \sum_{k=0}^\infty \frac{1}{(z+k)^{m+1}}

which holds for integer values of {{math|m > 0}} and any complex {{mvar|z}} not equal to a negative integer. This representation can be written more compactly in terms of the Hurwitz zeta function as

:\psi^{(m)}(z) = (-1)^{m+1}\, m!\, \zeta (m+1,z).

This relation can for example be used to compute the special values

{{cite journal|first1=K. S. |last1=Kölbig|year=1996|journal=Journal of Computational and Applied Mathematics |volume=75|number=1|pages=43–46|title=The polygamma function \psi^{(k)}(x) for x=\frac{1}{4} and x=\frac{3}{4}|doi=10.1016/S0377-0427(96)00055-6|doi-access=free}}

:

\psi^{(2n-1)}\left(\frac14\right) = \frac{4^{2n-1}}{2n}\left(\pi^{2n}(2^{2n}-1)|B_{2n}|+2(2n)!\beta(2n)\right);

:

\psi^{(2n-1)}\left(\frac34\right) = \frac{4^{2n-1}}{2n}\left(\pi^{2n}(2^{2n}-1)|B_{2n}|-2(2n)!\beta(2n)\right);

:

\psi^{(2n)}\left(\frac14\right) = -2^{2n-1}\left(\pi^{2n+1}|E_{2n}|+2(2n)!(2^{2n+1}-1)\zeta(2n+1)\right);

:

\psi^{(2n)}\left(\frac34\right) = 2^{2n-1}\left(\pi^{2n+1}|E_{2n}|-2(2n)!(2^{2n+1}-1)\zeta(2n+1)\right).

Alternately, the Hurwitz zeta can be understood to generalize the polygamma to arbitrary, non-integer order.

One more series may be permitted for the polygamma functions. As given by Schlömilch,

:\frac{1}{\Gamma(z)} = z e^{\gamma z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}}.

This is a result of the Weierstrass factorization theorem. Thus, the gamma function may now be defined as:

:\Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^\frac{z}{n}.

Now, the natural logarithm of the gamma function is easily representable:

:\ln \Gamma(z) = -\gamma z - \ln(z) + \sum_{k=1}^\infty \left( \frac{z}{k} - \ln\left(1 + \frac{z}{k}\right) \right).

Finally, we arrive at a summation representation for the polygamma function:

:\psi^{(n)}(z) = \frac{\mathrm{d}^{n+1}}{\mathrm{d}z^{n+1}}\ln \Gamma(z) = -\gamma \delta_{n0} - \frac{(-1)^n n!}{z^{n+1}} + \sum_{k=1}^{\infty} \left(\frac{1}{k} \delta_{n0} - \frac{(-1)^n n!}{(k+z)^{n+1}}\right)

Where {{math|δn0}} is the Kronecker delta.

Also the Lerch transcendent

:\Phi(-1, m+1, z) = \sum_{k=0}^\infty \frac{(-1)^k}{(z+k)^{m+1}}

can be denoted in terms of polygamma function

:\Phi(-1, m+1, z)=\frac1{(-2)^{m+1}m!}\left(\psi^{(m)}\left(\frac{z}{2}\right)-\psi^{(m)}\left(\frac{z+1}{2}\right)\right)

Taylor series

The Taylor series at {{math|z {{=}} -1}} is

:\psi^{(m)}(z+1)= \sum_{k=0}^\infty (-1)^{m+k+1} \frac {(m+k)!}{k!} \zeta (m+k+1) z^k \qquad m \ge 1

and

:\psi^{(0)}(z+1)= -\gamma +\sum_{k=1}^\infty (-1)^{k+1}\zeta (k+1) z^k

which converges for {{math|{{abs|z}} < 1}}. Here, {{mvar|ζ}} is the Riemann zeta function. This series is easily derived from the corresponding Taylor series for the Hurwitz zeta function. This series may be used to derive a number of rational zeta series.

Asymptotic expansion

These non-converging series can be used to get quickly an approximation value with a certain numeric at-least-precision for large arguments:{{cite journal|first1=J.|last1=Blümlein|journal=Comput. Phys. Commun.|year=2009|volume=180|pages=2218–2249|doi=10.1016/j.cpc.2009.07.004|title=Structural relations of harmonic sums and Mellin transforms up to weight w=5|issue=11 |arxiv=0901.3106|bibcode=2009CoPhC.180.2218B }}

: \psi^{(m)}(z) \sim (-1)^{m+1}\sum_{k=0}^{\infty}\frac{(k+m-1)!}{k!}\frac{B_k}{z^{k+m}} \qquad m \ge 1

and

: \psi^{(0)}(z) \sim \ln(z) - \sum_{k=1}^\infty \frac{B_k}{k z^k}

where we have chosen {{math|B1 {{=}} {{sfrac|1|2}}}}, i.e. the Bernoulli numbers of the second kind.

Inequalities

The hyperbolic cotangent satisfies the inequality

:\frac{t}{2}\operatorname{coth}\frac{t}{2} \ge 1,

and this implies that the function

:\frac{t^m}{1 - e^{-t}} - \left(t^{m-1} + \frac{t^m}{2}\right)

is non-negative for all {{math|m ≥ 1}} and {{math|t ≥ 0}}. It follows that the Laplace transform of this function is completely monotone. By the integral representation above, we conclude that

:(-1)^{m+1}\psi^{(m)}(x) - \left(\frac{(m-1)!}{x^m} + \frac{m!}{2x^{m+1}}\right)

is completely monotone. The convexity inequality {{math|et ≥ 1 + t}} implies that

:\left(t^{m-1} + t^m\right) - \frac{t^m}{1 - e^{-t}}

is non-negative for all {{math|m ≥ 1}} and {{math|t ≥ 0}}, so a similar Laplace transformation argument yields the complete monotonicity of

:\left(\frac{(m-1)!}{x^m} + \frac{m!}{x^{m+1}}\right) - (-1)^{m+1}\psi^{(m)}(x).

Therefore, for all {{math|m ≥ 1}} and {{math|x > 0}},

:\frac{(m-1)!}{x^m} + \frac{m!}{2x^{m+1}} \le (-1)^{m+1}\psi^{(m)}(x) \le \frac{(m-1)!}{x^m} + \frac{m!}{x^{m+1}}.

Since both bounds are strictly positive for x>0, we have:

  • \ln\Gamma(x) is strictly convex.
  • For m=0, the digamma function, \psi(x)=\psi^{(0)}(x), is strictly monotonic increasing and strictly concave.
  • For m odd, the polygamma functions, \psi^{(1)},\psi^{(3)},\psi^{(5)},\ldots, are strictly positive, strictly monotonic decreasing and strictly convex.
  • For m even the polygamma functions, \psi^{(2)},\psi^{(4)},\psi^{(6)},\ldots, are strictly negative, strictly monotonic increasing and strictly concave.

This can be seen in the first plot above.

=Trigamma bounds and asymptote=

For the case of the trigamma function (m=1) the final inequality formula above for x>0, can be rewritten as:

:

\frac{x+\frac12}{x^2} \le \psi^{(1)}(x)\le \frac{x+1}{x^2}

so that for x\gg1: \psi^{(1)}(x)\approx\frac1x.

See also

References

{{Reflist}}

  • {{cite book|first1=Milton|last1=Abramowitz|first2=Irene A.|last2=Stegun|title=Handbook of Mathematical Functions|date=1964|publisher=Dover Publications|location=New York|isbn=978-0-486-61272-0|chapter-url=https://personal.math.ubc.ca/~cbm/aands/page_260.htm|chapter=Section 6.4}}

Category:Gamma and related functions