Prices of chemical elements
{{Short description|none}}
{{see also|Diamonds as an investment|Scandium#Price|Rhodium#Mining and price|Palladium as an investment|Silver as an investment|Tin#Price and exchanges|Iridium#Production|Platinum as an investment|Gold as an investment|Bismuth#Price|Uranium market}}
{{Use dmy dates|cs1-dates=ly|date=April 2020}}
This is a list of prices of chemical elements. Listed here are mainly average market prices for bulk trade of commodities. Data on elements' abundance in Earth's crust is added for comparison.
{{As of|2020}}, the most expensive non-synthetic element by both mass and volume is rhodium. It is followed by caesium, iridium and palladium by mass and iridium, gold and platinum by volume. Carbon in the form of diamond can be more expensive than rhodium. Per-kilogram prices of some synthetic radioisotopes range to trillions of dollars. While the difficulty of obtaining macroscopic samples of synthetic elements in part explains their high value, there has been interest in converting base metals to gold (Chrysopoeia) since ancient times, but only deeper understanding of nuclear physics has allowed the actual production of a tiny amount of gold from other elements for research purposes as demonstrated by Glenn Seaborg.{{Cite journal |last1 = Aleklett |first1 = K. |last2 = Morrissey |first2 = D. |last3 = Loveland |first3 = W. |last4 = McGaughey |first4 = P. |last5 = Seaborg |first5 = G. |year = 1981 |title = Energy dependence of 209Bi fragmentation in relativistic nuclear collisions |journal = Physical Review C |volume = 23 |issue = 3 |page = 1044 |bibcode = 1981PhRvC..23.1044A |doi = 10.1103/PhysRevC.23.1044 }}{{cite news |url = https://www.telegraph.co.uk/education/4791069/The-Philosophers-Stone.html |newspaper = The Daily Telegraph |first = Robert |last = Matthews |title = The Philosopher's Stone |date = December 2, 2001 |access-date = September 22, 2020 }} However, both this and other routes of synthesis of precious metals via nuclear reactions is orders of magnitude removed from economic viability.
Chlorine, sulfur and carbon (as coal) are cheapest by mass. Hydrogen, nitrogen, oxygen and chlorine are cheapest by volume at atmospheric pressure.
When there is no public data on the element in its pure form, price of a compound is used, per mass of element contained. This implicitly puts the value of compounds' other constituents, and the cost of extraction of the element, at zero. For elements whose radiological properties are important, individual isotopes and isomers are listed. The price listing for radioisotopes is not exhaustive.
Chart<!-- Table copied from [[List of chemical elements]] on 2019-02-07 [[Special:Permalink/939365585]] -->
{{sticky header}}{{sort under}}
class="wikitable sortable sticky-header-multi sort-under"
! rowspan="2" | Z ! rowspan="2" | Symbol ! rowspan="2" | Name ! data-sort-type="number ! "rowspan="2" | Density{{efn-la|name=fn-density|Density for 0 °C, 101.325 kPa.See: Densities of the elements (data page) For individual isotopes except deuterium, density of base element is used. Values in parentheses are theoretical predictions.}} {{nowrap|1={{nobold|1=({{sfrac|kg|L}})}}}} ! data-sort-type="number" ! rowspan="2" | Abundance and total mass in Earth's crust{{efn-la|name=fn-abundance|Unless otherwise indicated, elements are primordial – they occur naturally, and not through decay.}} {{nowrap|1={{nobold|1=({{sfrac|mg|kg}})}}}} ! data-sort-type="number" ! colspan="2" | Price{{refn|name=fn-currency|Values used for currency conversion:
}} ! rowspan="2" | Year ! rowspan="2" | Source ! rowspan="2" | Notes | |||||||||
USD/kg
! USD/L{{efn-la|name=fn-priceVolume|Price per volume for 0 °C, 101.325 kPa, pure element. For individual isotopes except deuterium, density of base element is used.}} | |||||||||
---|---|---|---|---|---|---|---|---|---|
1 | H | Hydrogen | 0.00008988 | 1400 ({{val|3.878|e=19|u=kg}}) | {{val|1.39}} | {{val|0.000125}} | 2012 | DOE Hydrogen | {{efn| Prices of hydrogen produced by distributed steam methane reforming, as predicted by H2A Production Model from United States Department of Energy, assuming price of natural gas of US$3/MMBtu (US$10/MWh; US$0.10/m3). Does not include cost of storage and distribution.}} |
1 | 2H (D) | Deuterium | 0.0001667 | {{efn| | {{val|13400}} | {{val|2.23}} | 2020 | CIL | {{efn| 99.8% pure compressed deuterium gas, in lot size of 850 L (142 g). Also sold by same supplier in the form of heavy water at price of {{val|3940}} USD per kg deuterium.
In 2016, Iran sold 32 tons of heavy water to United States for {{val|1336}} USD per kg deuterium.}} |
2 | He | Helium | 0.0001785 | 0.008 ({{val|2.216|e=14|u=kg}}) | {{val|24.0}} | {{val|0.00429}} | 2018 | USGS MCS | {{efn| Crude helium sold to non-government users in United States in 2018. In the same year, stockpiles of US government helium were sold on auctions for average price of US$0.00989/L.}} |
3 | Li | Lithium | 0.534 | 20 ({{val|5.54|e=17|u=kg}}) | {{val|81.4}}–{{val|85.6}} | {{val|43.4}}–{{val|45.7}} | 2020 | SMM{{efn-la|name=src-smm|Spot market price range on 3 February 2020.}} | {{efn| Min. 99% pure.}} |
4 | Be | Beryllium | 1.85 | 2.8 ({{val|7.756|e=16|u=kg}}) | {{val|857}} | {{val|1590}} | 2020 | ISE 2020{{efn-la|name=src-ise-2020-strategic|Market price on 5 February 2020}} | {{efn| Min. 99% pure.}} |
5 | B | Boron | 2.34 | 10 ({{val|2.77|e=17|u=kg}}) | {{val|3.68}} | {{val|8.62}} | 2019 | CEIC Data{{efn-la|name=src-ceicdata|Average price in November 2019. Data from China Petroleum and Chemical Industry Federation.}} | {{efn| In the form of boric acid, price per boron contained. Min. 99% pure.}} |
6 | C | Carbon | 2.267 | 200 ({{val|5.54|e=18|u=kg}}) | {{val|0.122}} | {{val|0.28}} | 2018 | EIA Coal | {{efn| In the form of anthracite, price per carbon contained, assuming 90% carbon content. There is a wide variation of price of carbon depending on its form. Lower ranks of coal can be less expensive, for example sub-bituminous coal can cost around US$0.038/kg carbon. Graphite flakes can cost around US$0.9/kg carbon. Price of synthetic industrial diamond for grinding and polishing can range from 1200 to {{val|13300}} USD/kg, while cost per weight of large synthetic diamonds for industrial applications can be on the order of million dollars per kilogram.}} |
7 | N | Nitrogen | 0.0012506 | 19 ({{val|5.263|e=17|u=kg}}) | {{val|0.140}} | {{val|0.000175}} | 2001 | Hypertextbook{{refn|name=src-nitrogen|1=In Cryocoolers 11, cited in Hypertextbook}} | {{efn| As liquid nitrogen.}} |
8 | O | Oxygen | 0.001429 | 461000 ({{val|1.277|e=22|u=kg}}) | {{val|0.154}} | {{val|0.000220}} | 2001 | Hypertextbook{{refn|name=src-nitrogen}} | {{efn| As liquid oxygen.}} |
9 | F | Fluorine | 0.001696 | 585 ({{val|1.62|e=19|u=kg}}) | {{val|1.84}}–{{val|2.16}} | {{val|0.00311}} – {{val|0.00365}} | 2017 | Echemi | {{efn| In the form of anhydrous hydrofluoric acid, price per fluorine contained. Range of prices on Chinese market, week of 1–7 December 2017.}} |
10 | Ne | Neon | 0.0008999 | 0.005 ({{val|1.385|e=14|u=kg}}) | {{val|240}} | {{val|0.21}} | 1999 | Ullmann | {{efn| Approximate European price for buying small quantities.}} |
11 | Na | Sodium | 0.971 | 23600 ({{val|6.537|e=20|u=kg}}) | {{val|2.57}}–{{val|3.43}} | {{val|2.49}}–{{val|3.33}} | 2020 | SMM{{efn-la|name=src-smm}} | {{efn| Min 99.7% pure industrial grade sodium.}} |
12 | Mg | Magnesium | 1.738 | 23300 ({{val|6.454|e=20|u=kg}}) | {{val|2.32}} | {{val|4.03}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor|Price average for entire year 2019.}} | {{efn| Min 99.9% pure.}} |
13 | Al | Aluminium | 2.698 | 82300 ({{val|2.28|e=21|u=kg}}) | {{val|1.79}} | {{val|4.84}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| High-grade primary aluminium, at London Metal Exchange warehouse.}} |
14 | Si | Silicon | 2.3296 | 282000 ({{val|7.811|e=21|u=kg}}) | {{val|1.70}} | {{val|3.97}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Min. 99.1% pure, max. 0.4% iron, 0.4% aluminium, 0.1% calcium. 10–100 mm.}} |
15 | P | Phosphorus | 1.82 | 1050 ({{val|2.909|e=19|u=kg}}) | {{val|2.69}} | {{val|4.90}} | 2019 | CEIC Data{{efn-la|name=src-ceicdata}} | {{efn| Min. 99.9% pure yellow phosphorus.}} |
16 | S | Sulfur | 2.067 | 350 ({{val|9.695|e=18|u=kg}}) | {{val|0.0926}} | {{val|0.191}} | 2019 | CEIC Data{{efn-la|name=src-ceicdata}} | |
17 | Cl | Chlorine | 0.003214 | 145 ({{val|4.075|e=18|u=kg}}) | {{val|0.082}} | {{val|0.00026}} | 2013 | CnAgri | {{efn| As chlorine is manufactured together with sodium hydroxide in chloralkali process, relative demand for one product changes the price for the other. When demand for sodium hydroxide is relatively high, chlorine price can fall to arbitrarily low levels, even to zero.}} |
18 | Ar | Argon | 0.0017837 | 3.5 ({{val|9.695|e=16|u=kg}}) | {{val|0.931}} | {{val|0.00166}} | 2019 | UNLV | {{efn| Liquid argon supply contract for University of Nevada, Las Vegas.}} |
19 | K | Potassium | 0.862 | 20900 ({{val|5.789|e=20|u=kg}}) | {{val|12.1}}–{{val|13.6}} | {{val|10.5}}–{{val|11.7}} | 2020 | SMM{{efn-la|name=src-smm}} | {{efn| Min 98.5% pure industrial grade potassium.}} |
20 | Ca | Calcium | 1.54 | 41500 ({{val|1.15|e=21|u=kg}}) | {{val|2.21}}–{{val|2.35}} | {{val|3.41}}–{{val|3.63}} | 2020 | SMM{{efn-la|name=src-smm}} | {{efn| Blocks of 98.5% pure calcium obtained by reduction process.}} |
21 | Sc | Scandium | 2.989 | 22 ({{val|6.094|e=17|u=kg}}) | {{val|3460}} | {{val|10300}} | 2020 | ISE 2020{{efn-la|name=src-ise-2020-rare|Market price on 4 February 2020}} | {{efn| Min. 99.99% pure.}} |
22 | Ti | Titanium | 4.54 | 5650 ({{val|1.565|e=20|u=kg}}) | {{val|11.1}}–{{val|11.7}} | {{val|50.5}}–{{val|53.1}} | 2020 | SMM{{efn-la|name=src-smm}} | {{efn| Min. 99.6% pure titanium sponge.}} |
23 | V | Vanadium | 6.11 | 120 ({{val|3.324|e=18|u=kg}}) | {{val|357}}–{{val|385}} | {{val|2180}}–{{val|2350}} | 2020 | SMM{{efn-la|name=src-smm}} | {{efn| Min. 99.5% pure.}} |
24 | Cr | Chromium | 7.15 | 102 ({{val|2.825|e=18|u=kg}}) | {{val|9.40}} | {{val|67.2}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Min. 99.2% pure.}} |
25 | Mn | Manganese | 7.44 | 950 ({{val|2.632|e=19|u=kg}}) | {{val|1.82}} | {{val|13.6}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Electrolytic manganese, min. 99.7% pure.}} |
26 | Fe | Iron | 7.874 | 56300 ({{val|1.565|e=21|u=kg}}) | {{val|0.424}} | {{val|3.34}} | 2020 | SMM{{efn-la|name=src-smm}} | {{efn| L8-10 pig iron. At Tangshan, China.}} |
27 | Co | Cobalt | 8.86 | 25 ({{val|6.925|e=17|u=kg}}) | {{val|32.8}} | {{val|291}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Spot price. Min. 99.8% pure. At London Metal Exchange warehouse.}} |
28 | Ni | Nickel | 8.912 | 84 ({{val|2.327|e=18|u=kg}}) | {{val|13.9}} | {{val|124}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Primary nickel. Spot price. Min. 99.8% pure. At London Metal Exchange warehouse.}} |
29 | Cu | Copper | 8.96 | 60 ({{val|1.662|e=18|u=kg}}) | {{val|6.00}} | {{val|53.8}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Spot price. Grade A. At London Metal Exchange warehouse.}} |
30 | Zn | Zinc | 7.134 | 70 ({{val|1.939|e=18|u=kg}}) | {{val|2.55}} | {{val|18.2}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Min. 99.995% pure special high grade zinc metal. Spot price. At London Metal Exchange warehouse.}} |
31 | Ga | Gallium | 5.907 | 19 ({{val|5.263|e=17|u=kg}}) | {{val|148}} | {{val|872}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Min. 99.99% pure. Free on Board China.}} |
32 | Ge | Germanium | 5.323 | 1.5 ({{val|4.155|e=16|u=kg}}) | {{val|914}}–{{val|1010}} | {{val|4860}}–{{val|5390}} | 2020 | SMM{{efn-la|name=src-smm}} | {{efn| Ingot. 50 Ω/cm.}} |
33 | As | Arsenic | 5.776 | 1.8 ({{val|4.986|e=16|u=kg}}) | {{val|0.999}}–{{val|1.31}} | {{val|5.77}}–{{val|7.58}} | 2020 | SMM{{efn-la|name=src-smm}} | {{efn| Min. 99.5% pure.}} |
34 | Se | Selenium | 4.809 | 0.05 ({{val|1.385|e=15|u=kg}}) | {{val|21.4}} | {{val|103}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Selenium powder, min. 99.9% pure.}} |
35 | Br | Bromine | 3.122 | 2.4 ({{val|6.648|e=16|u=kg}}) | {{val|4.39}} | {{val|13.7}} | 2019 | CEIC Data{{efn-la|name=src-ceicdata}} | |
36 | Kr | Krypton | 0.003733 | {{sort|.0001|1×10−4}} ({{val|2.77|e=12|u=kg}}) | {{val|290}} | {{val|1.1}} | 1999 | Ullmann | {{efn| Approximate European price for buying small quantities.}} |
37 | Rb | Rubidium | 1.532 | 90 ({{val|2.493|e=18|u=kg}}) | {{val|15500}} | {{val|23700}} | 2018 | USGS MCS | {{efn| 100 g ampoules of 99.75% pure rubidium metal.}} |
38 | Sr | Strontium | 2.64 | 370 ({{val|1.025|e=19|u=kg}}) | {{val|6.53}}–{{val|6.68}} | {{val|17.2}}–{{val|17.6}} | 2019 | ISE 2019 | {{efn| Min. 99% pure, Ex Works China.}} |
39 | Y | Yttrium | 4.469 | 33 ({{val|9.141|e=17|u=kg}}) | {{val|31.0}} | {{val|139}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Min. 99% pure, Free on Board China.}} |
40 | Zr | Zirconium | 6.506 | 165 ({{val|4.571|e=18|u=kg}}) | {{val|35.7}}–{{val|37.1}} | {{val|232}}–{{val|241}} | 2020 | SMM{{efn-la|name=src-smm}} | {{efn| Zirconium sponge, min. 99% pure.}} |
41 | Nb | Niobium | 8.57 | 20 ({{val|5.54|e=17|u=kg}}) | {{val|61.4}}–{{val|85.6}} | {{val|526}}–{{val|734}} | 2020 | SMM{{efn-la|name=src-smm}} | {{efn| Min. 99.9% pure.}} |
42 | Mo | Molybdenum | 10.22 | 1.2 ({{val|3.324|e=16|u=kg}}) | {{val|40.1}} | {{val|410}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Min. 99.95% pure.}} |
43 | Tc | Technetium | 11.5 | {{sort|.000000003|~ 3×10−9}}{{efn-la|name=fn-transient|This element is transient – it occurs only through decay (and in the case of plutonium, also in traces deposited from supernovae onto Earth).}} ({{val|8.31|e=7|u=kg}}) | {{val|100000}} | {{val|1200000}} | 2004{{efn-la|name=fn-orEarlier|or earlier}} | CRC Handbook{{efn-la|name=src-crcHandbook|The values reported are present in 85th edition of CRC Handbook of Chemistry and Physics (and possibly earlier) and remain unchanged to at least 97th edition.}} | |
43 | 99mTc | Technetium-99m | 11.5 | {{val|1.9e12}} | {{val|22e12}} | 2008 | NRC | {{efn| In the form of medical doses of sodium pertechnetate made on-site in technetium-99m generators. Price per technetium contained. Range of prices for medical doses available in the United States. Technetium-99m has half-life of 6 hours, which limits its ability to be directly traded.}} | |
44 | Ru | Ruthenium | 12.37 | 0.001 ({{val|2.77|e=13|u=kg}}) | {{val|10400}} – {{val|10600}} | {{val|129000}} – {{val|131000}} | 2020 | SMM{{efn-la|name=src-smm}} | {{efn| 99.95% pure.}} |
45 | Rh | Rhodium | 12.41 | 0.001 ({{val|2.77|e=13|u=kg}}) | {{val|147000}} | {{val|1820000}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| 99.95% pure.}} |
46 | Pd | Palladium | 12.02 | 0.015 ({{val|4.155|e=14|u=kg}}) | {{val|49500}} | {{val|595000}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| 99.95% pure. London bullion market afternoon fix. In warehouse.}} |
47 | Ag | Silver | 10.501 | 0.075 ({{val|2.0775|e=15|u=kg}}) | {{val|521}} | {{val|5470}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| 99.5% pure. Spot price. At London Metal Exchange warehouse.}} |
48 | Cd | Cadmium | 8.69 | 0.159 ({{val|4.4043|e=15|u=kg}}) | {{val|2.73}} | {{val|23.8}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Ingot, min. 99.99% pure.}} |
49 | In | Indium | 7.31 | 0.25 ({{val|6.925|e=15|u=kg}}) | {{val|167}} | {{val|1220}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Min. 99.99% pure.}} |
50 | Sn | Tin | 7.287 | 2.3 ({{val|6.371|e=16|u=kg}}) | {{val|18.7}} | {{val|136}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Min. 99.85% pure. Spot price. At London Metal Exchange warehouse.}} |
51 | Sb | Antimony | 6.685 | 0.2 ({{val|5.54|e=15|u=kg}}) | {{val|5.79}} | {{val|38.7}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Ingot, min. 99.65% pure.}} |
52 | Te | Tellurium | 6.232 | 0.001 ({{val|2.77|e=13|u=kg}}) | {{val|63.5}} | {{val|396}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Min. 99.99% pure. Europe.}} |
53 | I | Iodine | 4.93 | 0.45 ({{val|1.2465|e=16|u=kg}}) | {{val|35}} | {{val|173}} | 2019 | Industrial Minerals | {{efn| Min 99.5% pure. Spot market price on 2 August 2019.}} |
54 | Xe | Xenon | 0.005887 | {{sort|.00003|3×10−5}} ({{val|8.31|e=11|u=kg}}) | {{val|1800}} | {{val|11}} | 1999 | Ullmann | {{efn| Approximate European price for buying small quantities.}} |
55 | Cs | Caesium | 1.873 | 3 ({{val|8.31|e=16|u=kg}}) | {{val|61800}} | {{val|116000}} | 2018 | USGS MCS | {{efn| 1 g ampoules of 99.8% pure caesium.}} |
56 | Ba | Barium | 3.594 | 425 ({{val|1.177|e=19|u=kg}}) | {{val|0.246}}–{{val|0.275}} | {{val|0.886}}–{{val|0.990}} | 2016 | USGS MYB 2016 | {{efn| In the form of chemical-grade barite (barium sulfate) exported from China to United States. Price per barium contained, includes cost, insurance, and freight. Barium sulfate is the primary feedstock for production of barium chemicals.}} |
57 | La | Lanthanum | 6.145 | 39 ({{val|1.08|e=18|u=kg}}) | {{val|4.78}}–{{val|4.92}} | {{val|29.4}}–{{val|30.3}} | 2020 | SMM{{efn-la|name=src-smm}} | {{efn| Min. 99% pure.}} |
58 | Ce | Cerium | 6.77 | 66.5 ({{val|1.84205|e=18|u=kg}}) | {{val|4.57}}–{{val|4.71}} | {{val|30.9}}–{{val|31.9}} | 2020 | SMM{{efn-la|name=src-smm}} | {{efn| Min. 99% pure.}} |
59 | Pr | Praseodymium | 6.773 | 9.2 ({{val|2.5484|e=17|u=kg}}) | {{val|103}} | {{val|695}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Min. 99% pure, Free on Board China.}} |
60 | Nd | Neodymium | 7.007 | 41.5 ({{val|1.14955|e=18|u=kg}}) | {{val|57.5}} | {{val|403}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Min. 99% pure, Free on Board China.}} |
61 | 147Pm | Promethium-147 | 7.26 | {{efn| | {{val|460000}} | {{val|3400000}} | 2003 | Radiochemistry Society | {{efn| From Periodic Table of the Elements published on website of Radiochemistry Society. There is no further information as to source or specifics of this price.}} |
62 | Sm | Samarium | 7.52 | 7.05 ({{val|1.95285|e=17|u=kg}}) | {{val|13.9}} | {{val|104}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Min. 99% pure, Free on Board China.}} |
63 | Eu | Europium | 5.243 | 2 ({{val|5.54|e=16|u=kg}}) | {{val|31.4}} | {{val|165}} | 2020 | ISE 2020{{efn-la|name=src-ise-2020-rare}} | {{efn| Min. 99.999% pure.}} |
64 | Gd | Gadolinium | 7.895 | 6.2 ({{val|1.7174|e=17|u=kg}}) | {{val|28.6}} | {{val|226}} | 2020 | ISE 2020{{efn-la|name=src-ise-2020-rare}} | {{efn| Min. 99.5% pure.}} |
65 | Tb | Terbium | 8.229 | 1.2 ({{val|3.324|e=16|u=kg}}) | {{val|658}} | {{val|5410}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Min. 99% pure, Free on Board China.}} |
66 | Dy | Dysprosium | 8.55 | 5.2 ({{val|1.4404|e=17|u=kg}}) | {{val|307}} | {{val|2630}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Min. 99% pure, Free on Board China.}} |
67 | Ho | Holmium | 8.795 | 1.3 ({{val|3.601|e=16|u=kg}}) | {{val|57.1}} | {{val|503}} | 2020 | ISE 2020{{efn-la|name=src-ise-2020-rare}} | {{efn| Min. 99.5% pure.}} |
68 | Er | Erbium | 9.066 | 3.5 ({{val|9.695|e=16|u=kg}}) | {{val|26.4}} | {{val|240}} | 2020 | ISE 2020{{efn-la|name=src-ise-2020-rare}} | {{efn| Min. 99.5% pure.}} |
69 | Tm | Thulium | 9.321 | 0.52 ({{val|1.4404|e=16|u=kg}}) | {{val|3000}} | {{val|28000}} | 2003 | IMAR{{efn-la|name=src-imar-ree|1=Source lists prices of other rare earth elements (some of which are significantly different than the ones presented in table above):
}} | {{efn| Price quotes from Canadian producer, for 1 kg order. 99.5–99.99% purity, Free on Board Vancouver, Canada. }} |
70 | Yb | Ytterbium | 6.965 | 3.2 ({{val|8.864|e=16|u=kg}}) | {{val|17.1}} | {{val|119}} | 2020 | ISE 2020{{efn-la|name=src-ise-2020-rare}} | {{efn| Min. 99.99% pure.}} |
71 | Lu | Lutetium | 9.84 | 0.8 ({{val|2.216|e=16|u=kg}}) | {{val|643}} | {{val|6330}} | 2020 | ISE 2020{{efn-la|name=src-ise-2020-rare}} | {{efn| Min. 99.99% pure.}} |
72 | Hf | Hafnium | 13.31 | 3 ({{val|8.31|e=16|u=kg}}) | {{val|900}} | {{val|12000}} | 2017 | USGS MCS | {{efn| Unwrought hafnium.}} |
73 | Ta | Tantalum | 16.654 | 2 ({{val|5.54|e=16|u=kg}}) | {{val|298}}–{{val|312}} | {{val|4960}}–{{val|5200}} | 2019 | ISE 2019 | {{efn| Min. 99.95% pure. Ex Works China.}} |
74 | W | Tungsten | 19.25 | 1.3 ({{val|3.601|e=16|u=kg}}) | {{val|35.3}} | {{val|679}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Powder, particle size 2–10 μm, 99.7% pure. Free on Board China.}} |
75 | Re | Rhenium | 21.02 | {{sort|.0007|7×10−4}} ({{val|1.939|e=13|u=kg}}) | {{val|3010}}–{{val|4150}} | {{val|63300}} – {{val|87300}} | 2020 | SMM{{efn-la|name=src-smm}} | {{efn| 99.99% pure.}} |
76 | Os | Osmium | 22.61 | 0.002 ({{val|5.54|e=13|u=kg}}) | {{val|1922040}} | {{val|43427016}} | 2025 | Osmium-preis{{Cite web |title=Osmium: Preis |url=https://www.osmium-preis.com/ |access-date=2025-04-10 |website=Osmium |language=DE}} | |
77 | Ir | Iridium | 22.56 | 0.001 ({{val|2.77|e=13|u=kg}}) | {{val|144000}} | {{val|3276000}} | 2025 | Umicore{{Cite web |title=Iridium price {{!}} Umicore Precious Metals Management |url=https://pmm.umicore.com/en/prices/iridium/ |access-date=2025-01-29 |website=pmm.umicore.com |language=en}} | |
78 | Pt | Platinum | 21.46 | 0.005 ({{val|1.385|e=14|u=kg}}) | {{val|27800}} | {{val|596000}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| 99.95% pure. London bullion market morning fix. In warehouse.}} |
79 | Au | Gold | 19.282 | 0.004 ({{val|1.108|e=14|u=kg}}) | {{val|75430}} | {{val|1454441}} | 2024 | London gold fix | {{efn| 99.9% pure. Afternoon London gold fix.}} |
80 | Hg | Mercury | 13.5336 | 0.085 ({{val|2.3545|e=15|u=kg}}) | {{val|30.2}} | {{val|409}} | 2017 | USGS MCS | {{efn| Average European Union price of 99.99% pure mercury.}} |
81 | Tl | Thallium | 11.85 | 0.85 ({{val|2.3545|e=16|u=kg}}) | {{val|4200}} | {{val|49800}} | 2017 | USGS MCS | |
82 | Pb | Lead | 11.342 | 14 ({{val|3.878|e=17|u=kg}}) | {{val|2.00}} | {{val|22.6}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Min. 99.97% pure. Spot price. At London Metal Exchange warehouse.}} |
83 | Bi | Bismuth | 9.807 | 0.009 ({{val|2.493|e=14|u=kg}}) | {{val|6.36}} | {{val|62.4}} | 2019 | Preismonitor{{efn-la|name=src-preismonitor}} | {{efn| Refined bismuth, min. 99.99% pure.}} |
84 | 209Po | Polonium-209 | 9.32 | {{val|49.2e12}} | {{val|458e12}} | 2004{{efn-la|name=fn-orEarlier|or earlier}} | CRC Handbook (ORNL){{efn-la|name=src-crcHandbook-ornl|Available from Oak Ridge National Laboratory as reported in CRC Handbook of Chemistry and Physics. Price does not include packing costs. The values reported are present in Handbook's 85th edition (and possibly earlier) and remain unchanged to at least 97th edition.}} | ||
85 | At | Astatine | 7 | {{sort|0.000000000000000000003|3×10−20}}{{efn-la|name=fn-transient}} ({{val|8.31|e=-4|u=kg}}) | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| Only under a tenth of microgram of astatine has ever been produced. Most stable isotope has half-life of 8.1 hours.}} | |||
86 | Rn | Radon | 0.00973 | {{sort|.0000000000004|4×10−13}}{{efn-la|name=fn-transient}} ({{val|1.108|e=4|u=kg}}) | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| Used in brachytherapy until 1960s, currently radon is not used commercially.}} | |||
87 | Fr | Francium | 1.87 | {{sort|0.000000000000000001|~ 1×10−18}}{{efn-la|name=fn-transient}} ({{val|2.77|e=-2|u=kg}}) | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| Only quantities of the order of millions of atoms have been obtained for research. Most stable isotope, 223Fr, has half-life of 22 minutes. Francium has no commercial or medical uses.}} | |||
88 | Ra | Radium | 5.5 | {{sort|.0000009|9×10−7}}{{efn-la|name=fn-transient}} ({{val|2.493|e=10|u=kg}}) | colspan="4" align="center" data-sort-value="" | Negative price. | {{efn| Radium was historically used in the treatment of cancer, but stopped being used when more effective treatments were introduced. As medical facilities had to pay for its disposal, its price can be considered negative.}} | |||
89 | 225Ac | Actinium-225 | 10.07 | {{val|29e12}} | {{val|290e12}} | 2004{{efn-la|name=fn-orEarlier|or earlier}} | CRC Handbook (ORNL){{efn-la|name=src-crcHandbook-ornl}} | ||
90 | Th | Thorium | 11.72 | 9.6 ({{val|2.6592|e=17|u=kg}}) | {{val|287}} | {{val|3360}} | 2010 | USGS MYB 2012 | {{efn| As 99.9% pure thorium oxide, price per thorium contained. Free on Board port of entry, duty paid.}} |
91 | Pa | Protactinium | 15.37 | {{sort|.0000014|1.4×10−6}}{{efn-la|name=fn-transient}} ({{val|3.878|e=10|u=kg}}) | colspan="4" align="center" data-sort-value="" | No reliable price available. | {{efn| In 1959–1961 Great Britain Atomic Energy Authority produced 125 g of 99.9% pure protactinium at a cost of ${{val|500000}}, giving the cost of {{val|4000000}} USD per kg. Periodic Table of Elements at Los Alamos National Laboratory website at one point listed protactinium-231 as available from Oak Ridge National Laboratory at a price of {{val|280000}} USD/kg.}} | |||
92 | U | Uranium | 18.95 | 2.7 ({{val|7.479|e=16|u=kg}}) | {{val|101}} | {{val|1910}} | 2018 | EIA Uranium Marketing | {{efn| Mainly as triuranium octoxide, price per uranium contained.}} |
93 | Np | Neptunium | 20.45 | {{sort|0.000000000003|≤ 3×10−12}}{{efn-la|name=fn-transient}} ({{val|8.31|e=4|u=kg}}) | {{val|660000}} | {{val|13500000}} | 2003{{efn-la|name=fn-orEarlier|or earlier}} | Pomona | {{efn| Periodic Table published by Pomona College Chemistry Department lists neptunium-237 as available from Oak Ridge National Laboratory at {{val|660}} USD/g plus packing costs.}} |
94 | 239Pu | Plutonium-239 | 19.84 | {{efn| | {{val|6490000}} | {{val|129000000}} | 2019 | DOE OSTI | {{efn| Certified reference material sample in the form of plutonium(IV) oxide, price per plutonium-239 contained.}} |
95 | 241Am | Americium-241 | 13.69 | {{sort|0|0}} | {{val|728000}} | {{val|9970000}} | 1998 | NWA{{efn-la|name=src-nwfaq|This source also lists price of Americium-243 as 180 USD/mg, which is much higher than reported in CRC Handbook of Chemistry and Physics and used in this table.}} | {{efn| Available from Oak Ridge National Laboratory as reported in Nuclear Weapons FAQ.}} |
95 | 243Am | Americium-243 | 13.69 | {{sort|0|0}} | {{val|750000}} | {{val|10300000}} | 2004{{efn-la|name=fn-orEarlier|or earlier}} | CRC Handbook (ORNL){{efn-la|name=src-crcHandbook-ornl}} | |
96 | 244Cm | Curium-244 | 13.51 | {{sort|0|0}} | {{val|185000000}} | {{val|2.50e9}} | 2004{{efn-la|name=fn-orEarlier|or earlier}} | CRC Handbook (ORNL){{efn-la|name=src-crcHandbook-ornl}} | |
96 | 248Cm | Curium-248 | 13.51 | {{sort|0|0}} | {{val|160e9}} | {{val|2.16e12}} | 2004{{efn-la|name=fn-orEarlier|or earlier}} | CRC Handbook (ORNL){{efn-la|name=src-crcHandbook-ornl}} | |
97 | 249Bk | Berkelium-249 | 14.79 | {{sort|0|0}} | {{val|185e9}} | {{val|2.74e12}} | 2004{{efn-la|name=fn-orEarlier|or earlier}} | CRC Handbook (ORNL){{efn-la|name=src-crcHandbook-ornl}} | |
98 | 249Cf | Californium-249 | 15.1 | {{sort|0|0}} | {{val|185e9}} | {{val|2.79e12}} | 2004{{efn-la|name=fn-orEarlier|or earlier}} | CRC Handbook (ORNL){{efn-la|name=src-crcHandbook-ornl}} | |
98 | 252Cf | Californium-252 | 15.1 | {{sort|0|0}} | {{val|60.0e9}} | {{val|906e9}} | 2004{{efn-la|name=fn-orEarlier|or earlier}} | CRC Handbook (ORNL){{efn-la|name=src-crcHandbook-ornl}} | |
99 | Es | Einsteinium | 8.84 | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| Only microgram quantities have ever been produced. Most stable known isotope has half-life of 471.7 days.}} | |||
100 | Fm | Fermium | {{sort|9.7|(9.7)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| Only tracer amounts have ever been produced.{{rp|13.2.6.}} Most stable known isotope has half-life of 100.5 days.}} | |||
101 | Md | Mendelevium | {{sort|10.3|(10.3)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| Only around 106 atoms have been produced in experiments.{{rp|13.3.6.}} Most stable known isotope has half-life of 51 days.}} | |||
102 | No | Nobelium | {{sort|9.9|(9.9)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| Only around 105 atoms have been produced in experiments.{{rp|13.4.6.}} Most stable known isotope has half-life of 58 minutes.}} | |||
103 | Lr | Lawrencium | {{sort|15.6|(15.6)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| Only around 1000 atoms have been produced in experiments.{{rp|13.5.6.}} Most stable known isotope has half-life of 11 hours.}} | |||
104 | Rf | Rutherfordium | {{sort|23.2|(23.2)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| Only a few thousand atoms have been produced in experiments. Most stable known isotope has half-life of 2.5 hours.}} | |||
105 | Db | Dubnium | {{sort|29.3|(29.3)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| Atoms of dubnium have been prepared experimentally at a rate of at most one per minute. Most stable known isotope has half-life of 29 hours.}} | |||
106 | Sg | Seaborgium | {{sort|35.0|(35.0)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| Only tens of atoms have been produced in experiments. The most stable known isotope has half-life of 14 minutes.}} | |||
107 | Bh | Bohrium | {{sort|37.1|(37.1)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| Only tens of atoms have been produced in experiments. Most stable known isotope has half-life of 1 minute.}} | |||
108 | Hs | Hassium | {{sort|40.7|(40.7)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| Only tens of atoms have been produced in experiments. Most stable known isotope has half-life of 16 seconds.}} | |||
109 | Mt | Meitnerium | {{sort|37.4|(37.4)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| Only produced in experiments on a per-atom basis. Most stable known isotope has half-life of 8 seconds.}} | |||
110 | Ds | Darmstadtium | {{sort|34.8|(34.8)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| Only produced in experiments on a per-atom basis. Most stable known isotope has half-life of 9.6 seconds.}} | |||
111 | Rg | Roentgenium | {{sort|28.7|(28.7)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| Only produced in experiments on a per-atom basis. Most stable known isotope has half-life of 2.1 minutes.}} | |||
112 | Cn | Copernicium | {{sort|14.0|(14.0)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| Only tens of atoms have been produced in experiments. Most stable known isotope has half-life of 29 seconds.}} | |||
113 | Nh | Nihonium | {{sort|16|(16)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| As of 2015, less than 100 atoms have been produced in experiments. Most stable known isotope has half-life of 8 seconds.}} | |||
114 | Fl | Flerovium | {{sort|9.928|(9.928)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| As of 2015, less than 100 atoms have been produced in experiments. Most stable known isotope has half-life of 1.9 seconds.}} | |||
115 | Mc | Moscovium | {{sort|13.5|(13.5)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| As of 2015, less than 100 atoms have been produced in experiments. Most stable known isotope has half-life of 0.65 seconds.}} | |||
116 | Lv | Livermorium | {{sort|12.9|(12.9)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| As of 2015, less than 100 atoms have been produced in experiments. Most stable known isotope has half-life of 53 ms.}} | |||
117 | Ts | Tennessine | {{sort|7.2|(7.2)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| As of 2015, less than 100 atoms have been produced in experiments. Most stable known isotope has half-life of 51 ms.}} | |||
118 | Og | Oganesson | {{sort|7|(7)}} | {{sort|0|0}} | colspan="4" align="center" data-sort-value="" | Not traded. | {{efn| As of 2015, less than ten atoms have been produced in experiments. Most stable known isotope has half-life of 0.7 ms.}} |
See also
Notes
{{notelist-la}}
References
{{reflist|refs=
|first1=Sara
|last1=Dillich
|first2=Todd
|last2=Ramsden
|first3=Marc
|last3=Melaina
|date=19 September 2012
|title=DOE Hydrogen and Fuel Cells Program Record #12024: Hydrogen Production Cost Using Low-Cost Natural Gas
|url=https://www.hydrogen.energy.gov/pdfs/12024_h2_production_cost_natural_gas.pdf
|publisher=United States Department of Energy
|editor-first=Sunita
|editor-last=Satyapal
|page=5
|archive-url=https://web.archive.org/web/20170215165854/https://www.hydrogen.energy.gov/pdfs/12024_h2_production_cost_natural_gas.pdf
|archive-date=2017-02-15
|url-status=live
}}
|title=DEUTERIUM (D, 99.8%) (D2,99.6%+HD,0.4%)
|publisher=Cambridge Isotope Laboratories
|url=https://shop.isotope.com/productdetails.aspx?itemno=DLM-408-PK
|archive-url=https://web.archive.org/web/20200416090936/https://shop.isotope.com/productdetails.aspx?itemno=DLM-408-PK
|archive-date=2020-04-16
|url-status=live
}}
|chapter=Mineral Commodity Summaries 2019
|date=2019
|chapter-url=https://minerals.usgs.gov/minerals/pubs/mcs/
|publisher=United States Geological Survey
|doi=10.3133/70202434
|doi-access=
|isbn=978-1-4113-4283-5
|archive-url=https://web.archive.org/web/20200202154617/https://www.usgs.gov/centers/nmic/mineral-commodity-summaries
|archive-date=2020-02-02
|url-status=live
|title=Mineral Commodity Summaries
}}
|title=Lithium Metal
|date=3 February 2020
|url=https://price.metal.com/spots/Cobalt-Lithium/201102250219
|archive-url=https://archive.today/20200203225913/https://price.metal.com/spots/Cobalt-Lithium/201102250219
|website=price.metal.com
|archive-date=2020-02-03
|url-status=dead
|publisher=Shanghai Metals Market
}}
|title=Strategic metals prices in February 2020
|date=5 February 2020
|url=https://en.institut-seltene-erden.de/prices-for-strategic-metals-in-february-2020/
|archive-url=https://web.archive.org/web/20200205150847/https://en.institut-seltene-erden.de/prices-for-strategic-metals-in-february-2020/
|archive-date=2020-02-05
|url-status=live
|publisher=Institute of Rare Earths and Metals
|title=Rare earth prices in February 2020
|date=4 February 2020
|url=https://en.institut-seltene-erden.de/rare-earth-prices-in-february-2020/
|archive-url=https://web.archive.org/web/20200204143305/https://en.institut-seltene-erden.de/rare-earth-prices-in-february-2020/
|archive-date=2020-02-04
|url-status=live
|publisher=Institute of Rare Earths and Metals
}}
|title=China Petroleum & Chemical Industry Association: Petrochemical Price: Inorganic Chemical Material
|url=https://www.ceicdata.com/en/china/china-petroleum--chemical-industry-association-petrochemical-price-inorganic-chemical-material
|website=CEIC Data
|archive-url=https://web.archive.org/web/20200203184102/https://www.ceicdata.com/en/china/china-petroleum--chemical-industry-association-petrochemical-price-inorganic-chemical-material
|archive-date=2020-02-03
|url-status=dead
}}
|title=Coal prices and outlook
|date=12 November 2019
|url=https://www.eia.gov/energyexplained/coal/prices-and-outlook.php
|website=Energy Explained
|publisher=U.S. Energy Information Administration
|archive-url=https://web.archive.org/web/20200330015808/https://www.eia.gov/energyexplained/coal/prices-and-outlook.php
|archive-date=2020-03-30
|url-status=live
}}
|last1=Salerno
|first1=Louis J.
|last2=Gaby
|first2=J.
|last3=Johnson
|first3=R.
|last4=Kittel
|first4=Peter
|last5=Marquardt
|first5=Eric D.
|chapter=Terrestrial Applications of Zero-Boil-Off Cryogen Storage
|date=2002
|chapter-url=https://link.springer.com/chapter/10.1007%2F0-306-47112-4_98
|title=Cryocoolers 11
|pages=810
|editor-last=Ross
|editor-first=R. G.
|publisher=Kluwer Academic Publishers
|language=en
|doi=10.1007/0-306-47112-4_98
|isbn=978-0-306-46567-3
}}
|first=Karen
|last=Fan
|date=2007
|title=Price of Liquid Nitrogen
|editor-first=Glenn
|editor-last=Elert
|work=The Physics Factbook
|url=https://hypertextbook.com/facts/2007/KarenFan.shtml
|archive-url=https://web.archive.org/web/20190723072752/https://hypertextbook.com/facts/2007/KarenFan.shtml
|archive-date=2019-07-23
|url-status=live
}}
|title=Hydrofluoric Acid Market Remained Largely Stable This Week (Dec 1-7, 2017)
|date=7 December 2017
|url=https://www.echemi.com/cms/9883.html
|website=Echemi
|archive-url=https://web.archive.org/web/20200331083049/https://www.echemi.com/cms/9883.html
|archive-date=2020-03-31
|url-status=live
}}
|last1=Häussinger
|first1=Peter
|last2=Glatthaar
|first2=Reinhard
|last3=Rhode
|first3=Wilhelm
|last4=Kick
|first4=Helmut
|last5=Benkmann
|first5=Christian
|last6=Weber
|first6=Josef
|last7=Wunschel
|first7=Hans-Jörg
|last8=Stenke
|first8=Viktor
|last9=Leicht
|first9=Edith
|last10=Stenger
|first10=Hermann
|chapter=Noble Gases
|doi=10.1002/14356007.a17_485
|date=15 March 2001
|encyclopedia=Ullmann's Encyclopedia of Industrial Chemistry
|editor-first=Barbara
|editor-last=Elvers
|display-editors=etal
|edition=7th
|publisher=Wiley-VCH
|language=en
|isbn=978-3-527-32943-4
|volume=24
|at=sec. 9.
}}
|title=Sodium
|date=3 February 2020
|url=https://price.metal.com/spots/Other-Minor-Metals/201102250465
|archive-url=https://archive.today/20200203231942/https://price.metal.com/spots/Other-Minor-Metals/201102250465
|website=price.metal.com
|archive-date=2020-02-03
|url-status=dead
|publisher=Shanghai Metals Market
}}
|date=22 January 2020
|title=Preismonitor
|url=https://www.bgr.bund.de/DE/Themen/Min_rohstoffe/Produkte/Preisliste/pm_19_12.pdf
|publisher=Federal Institute for Geosciences and Natural Resources
|language=de
|archive-url=https://web.archive.org/web/20200125021323/https://www.bgr.bund.de/DE/Themen/Min_rohstoffe/Produkte/Preisliste/pm_19_12.pdf
|archive-date=2020-01-25
|url-status=live
}}
|date=15 October 2013
|title=Liquid Chlorine Demands Goes Up with Substantial Price Hike
|url=http://en.cnagri.com/news/insight/20131015/297722.html
|website=CnAgri
|publisher=Beijing Orient Agribusiness Consultant
|archive-url=https://web.archive.org/web/20200114154522/http://en.cnagri.com/news/insight/20131015/297722.html
|archive-date=2020-01-14
|url-status=live
}}
|title=Agreement Information 6238
|date=12 August 2011
|url=https://www.unlv.edu/purchasing/agreements6238
|archive-url=https://web.archive.org/web/20191221153502/https://www.unlv.edu/purchasing/agreements6238
|archive-date=2019-12-21
|url-status=dead
|publisher=University of Nevada, Las Vegas
}}
|title=Potassium
|date=3 February 2020
|url=https://price.metal.com/spots/Other-Minor-Metals/201102250280
|website=price.metal.com
|archive-url=https://archive.today/20200203211556/https://price.metal.com/spots/Other-Minor-Metals/201102250280
|archive-date=2020-02-03
|url-status=dead
|publisher=Shanghai Metals Market
}}
|title=Calcium 98.5%
|date=3 February 2020
|url=https://price.metal.com/spots/Other-Minor-Metals/201102250322
|archive-url=https://archive.today/20200203212051/https://price.metal.com/spots/Other-Minor-Metals/201102250322
|website=price.metal.com
|archive-date=2020-02-03
|url-status=dead
|publisher=Shanghai Metals Market
}}
|title=Titanium Sponge
|date=3 February 2020
|url=https://price.metal.com/spots/Other-Minor-Metals/201211080001
|archive-url=https://archive.today/20200203230442/https://price.metal.com/spots/Other-Minor-Metals/201211080001
|website=price.metal.com
|archive-date=2020-02-03
|url-status=dead
|publisher=Shanghai Metals Market
}}
|title=Vanadium
|date=3 February 2020
|url=https://price.metal.com/spots/Other-Minor-Metals/201102250299
|archive-url=https://archive.today/20200203230651/https://price.metal.com/spots/Other-Minor-Metals/201102250299
|website=price.metal.com
|archive-date=2020-02-03
|url-status=dead
|publisher=Shanghai Metals Market
}}
|title= Tang Shan(Pig Iron)
|date=3 February 2020
|url=https://price.metal.com/spots/Pig-Iron/201808140002
|archive-url=https://archive.today/20200203202438/https://price.metal.com/spots/Pig-Iron/201808140002
|website=price.metal.com
|archive-date=2020-02-03
|url-status=dead
|publisher=Shanghai Metals Market
}}
|title=Germanium Ingot
|date=3 February 2020
|url=https://price.metal.com/spots/Indium-Germanium-Gallium/201102250090
|archive-url=https://archive.today/20200203230853/https://price.metal.com/spots/Indium-Germanium-Gallium/201102250090
|website=price.metal.com
|archive-date=2020-02-03
|url-status=dead
|publisher=Shanghai Metals Market
}}
|title=Arsenic Metal
|date=3 February 2020
|url=https://price.metal.com/spots/Other-Minor-Metals/201102250593
|archive-url=https://archive.today/20200203231026/https://price.metal.com/spots/Other-Minor-Metals/201102250593
|website=price.metal.com
|archive-date=2020-02-03
|url-status=dead
|publisher=Shanghai Metals Market
}}
|title=Current prices of strategic metals
|date=July 2019
|url=https://en.institut-seltene-erden.de/current-prices-of-strategic-metals/
|publisher=Institute of Rare Earths and Metals
|archive-url=https://web.archive.org/web/20200114170535/https://en.institut-seltene-erden.de/current-prices-of-strategic-metals/
|archive-date=2020-01-14
|url-status=live
}}
|title=Zirconium Sponge
|date=3 February 2020
|url=https://price.metal.com/spots/Other-Minor-Metals/201102250232
|archive-url=https://archive.today/20200203232234/https://price.metal.com/spots/Other-Minor-Metals/201102250232
|website=price.metal.com
|archive-date=2020-02-03
|url-status=dead
|publisher=Shanghai Metals Market
}}
|title=Niobium
|date=3 February 2020
|url=https://price.metal.com/spots/Other-Minor-Metals/201102250606
|archive-url=https://archive.today/20200203220140/https://price.metal.com/spots/Other-Minor-Metals/201102250606
|website=price.metal.com
|archive-date=2020-02-03
|url-status=dead
|publisher=Shanghai Metals Market
}}
|author=National Research Council
|author-link=National Research Council (United States)
|date=2009
|chapter=6. Molybdenum-99/Technetium-99m Production Costs
|title=Medical Isotope Production without Highly Enriched Uranium
|chapter-url=https://www.ncbi.nlm.nih.gov/books/NBK215132/
|publisher=The National Academies Press
|publication-place=Washington, D.C.
|doi=10.17226/12569
|pmid=25009932
|isbn=978-0-309-13039-4
}}
|first=C. R.
|last=Hammond
|editor-first=David R.
|editor-last=Lide
|chapter=The Elements
|title=Properties of the Elements and Inorganic Compounds
|date=2004
|work=CRC Handbook of Chemistry and Physics
|isbn=978-0849304859
|edition=85th
|publisher=CRC Press
|pages=4-3–4-36
}}
|first=C. R.
|last=Hammond
|editor-first=W. M.
|editor-last=Haynes
|editor-first2=David R.
|editor-last2=Lide
|editor-first3=Thomas J.
|editor-last3=Bruno
|chapter=The Elements
|title=Properties of the Elements and Inorganic Compounds
|date=2016
|work=CRC Handbook of Chemistry and Physics
|isbn=978-1498754286
|edition=97th
|publisher=CRC Press
|pages=4-3–4-42
}}
|title=Ruthenium
|date=3 February 2020
|url=https://price.metal.com/spots/Precious-Metals/201102250083
|archive-url=https://archive.today/20200203201134/https://price.metal.com/spots/Precious-Metals/201102250083
|website=price.metal.com
|archive-date=2020-02-03
|url-status=dead
|publisher=Shanghai Metals Market
}}
|first=Michael
|last=Greenfield
|date=2 August 2019
|title=Iodine prices hold firm although sellers' report higher deal values
|url=https://www.indmin.com/Article/3887037/Iodine/Iodine-prices-hold-firm-although-sellers-report-higher-deal-values.html
|website=Industrial Minerals
|archive-url=https://web.archive.org/web/20191119144146/https://www.indmin.com/Article/3887037/Iodine/Iodine-prices-hold-firm-although-sellers-report-higher-deal-values.html
|archive-date=2019-11-19
|url-status=live
}}
|first=Michele E.
|last=McRae
|date=December 2019
|title=Barite
|url=https://www.usgs.gov/centers/nmic/barite-statistics-and-information
|doi=10.3133/mybvi
|doi-access=
|work=Minerals Yearbook 2016
|publisher=United States Geological Survey
|volume=I
|page=9.3
|url-access=subscription
}}
|title=Lanthanum
|date=3 February 2020
|url=https://price.metal.com/spots/Rare-Earth/201102250302
|archive-url=https://archive.today/20200203200635/https://price.metal.com/spots/Rare-Earth/201102250302
|website=price.metal.com
|archive-date=2020-02-03
|url-status=dead
|publisher=Shanghai Metals Market
}}
|title=Cerium
|date=3 February 2020
|url=https://price.metal.com/spots/Rare-Earth/201102250153
|archive-url=https://archive.today/20200203195413/https://price.metal.com/spots/Rare-Earth/201102250153
|website=price.metal.com
|archive-date=2020-02-03
|url-status=dead
|publisher=Shanghai Metals Market
}}
|title=Promethium
|date=2003
|url=https://www.radiochemistry.org/periodictable/elements/61.html
|website=Radiochemistry Society
|archive-url=https://web.archive.org/web/20181116014905/http://www.radiochemistry.org/periodictable/elements/61.html
|archive-date=2018-11-16
|url-status=live
}}
|first1=Stephen B.
|last1=Castor
|first2=James B.
|last2=Hedrick
|date=2006
|chapter=Rare Earth Elements
|title=Industrial Minerals & Rocks: Commodities, Markets, and Uses
|editor-first=Jessica Elzea
|editor-last=Kogel
|editor-first2=Nikhil C.
|editor-last2=Trivedi
|editor-first3=James M.
|editor-last3=Barker
|editor-first4=Stanley T.
|editor-last4=Krukowski
|publisher=Society for Mining, Metallurgy, and Exploration
|isbn=978-0-87335-233-8
|edition=7th
|oclc=62805047
|page=785
}}
|title=Rhenium
|date=3 February 2020
|url=https://price.metal.com/spots/Other-Minor-Metals/201102250036
|archive-url=https://archive.today/20200203211349/https://price.metal.com/spots/Other-Minor-Metals/201102250036
|website=price.metal.com
|archive-date=2020-02-03
|url-status=dead
|publisher=Shanghai Metals Market
}}
|first=Joseph
|last=Gambogi
|date=August 2016
|title=Thorium
|url=https://www.usgs.gov/centers/nmic/thorium-statistics-and-information
|doi=10.3133/mybvi
|doi-access=
|work=Minerals Yearbook 2012
|publisher=United States Geological Survey
|volume=I
|page=76.3
|url-access=subscription
}}
|title=2018 Uranium Marketing Annual Report
|date=May 2019
|url=https://www.eia.gov/uranium/marketing/
|publisher=U.S. Energy Information Administration
|archive-url=https://web.archive.org/web/20200217112144/https://www.eia.gov/uranium/marketing/
|archive-date=2020-02-17
|url-status=live
|page=1
}}
|url=https://science.osti.gov/nbl/Certified-Reference-Materials/Prices-and-Certificates/Plutonium-CRMs
|title=Plutonium Certified Reference Materials Price Lists
|date=20 June 2019
|publisher=U.S. Department of Energy, Office of Scientific and Technical Information
|language=en-US
}}
|first=Carey
|last=Sublette
|title=Nuclear Weapons Frequently Asked Questions: Section 6.0 Nuclear Materials
|url=https://nuclearweaponarchive.org/Nwfaq/Nfaq6.html
|date=20 February 1999
|website=The Nuclear Weapon Archive
|archive-url=https://web.archive.org/web/20200325210031/http://nuclearweaponarchive.org/Nwfaq/Nfaq6.html
|archive-date=2020-03-25
|url-status=live
}}
|url=https://www.hydrogen.energy.gov/h2a_production.html
|title=DOE Hydrogen and Fuel Cells Program: DOE H2A Production Analysis
|archive-url=https://web.archive.org/web/20120306155800/http://www.hydrogen.energy.gov/h2a_production.html
|archive-date=2012-03-06
|url-status=live
|website=Hydrogen & Fuel Cells Program
|publisher=United States Department of Energy
}}
|url=https://www.airproducts.com/products/Gases/gas-facts/physical-properties/physical-properties-deuterium.aspx
|title=Physical Properties for Deuterium
|archive-url=https://web.archive.org/web/20190827215520/http://www.airproducts.com/products/Gases/gas-facts/physical-properties/physical-properties-deuterium.aspx
|archive-date=2019-08-27
|publisher=Air Products & Chemicals
}}
|title=DEUTERIUM OXIDE (D, 99%)
|publisher=Cambridge Isotope Laboratories
|url=https://shop.isotope.com/productdetails.aspx?itemno=DLM-4-99-PK
|archive-url=https://web.archive.org/web/20190616185359/https://shop.isotope.com/productdetails.aspx?itemno=DLM-4-99-PK
|archive-date=2019-06-16
|url-status=live
}}
|last=Stone
|first=Richard
|date=2016-04-22
|title=U.S. goes shopping in Iran's nuclear bazaar, will buy heavy water for science
|url=https://www.science.org/content/article/us-goes-shopping-iran-s-nuclear-bazaar-will-buy-heavy-water-science
|journal=Science
|doi=10.1126/science.aaf9962
|issn=0036-8075
|doi-access=
|url-access=subscription
}}
|first=Phil
|last=Kornbluth
|date=31 August 2018
|title=BLM reaps surprising windfall from FY 2019 Crude Helium Auction
|url=https://www.gasworld.com/blm-reaps-windfall-from-fy-2019-helium-auction/2015344.article
|website=gasworld
}}
|first=Donald W.
|last=Olson
|date=January 2020
|title=Diamond, Industrial
|url=https://www.usgs.gov/centers/nmic/industrial-diamond-statistics-and-information
|doi=10.3133/mybvi
|doi-access=
|work=Minerals Yearbook 2016
|publisher=United States Geological Survey
|volume=I
|page=21.3
|archive-url=https://web.archive.org/web/20200331034258/https://www.usgs.gov/centers/nmic/industrial-diamond-statistics-and-information
|archive-date=2020-03-31
|url-status=live
|url-access=subscription
}}
|title=Silicon Metal Yunnan (441#)
|date=6 February 2020
|url=https://price.metal.com/spots/Silicon/201102250629
|archive-url=https://archive.today/20200206154230/https://price.metal.com/spots/Silicon/201102250629
|website=price.metal.com
|archive-date=2020-02-06
|url-status=live
|publisher=Shanghai Metals Market
}}
|last1=Schmittinger
|first1=Peter
|last2=Florkiewicz
|first2=Thomas
|last3=Curlin
|first3=L. Calvert
|last4=Lüke
|first4=Benno
|last5=Scannell
|first5=Robert
|last6=Navin
|first6=Thomas
|last7=Zelfel
|first7=Erich
|last8=Bartsch
|first8=Rüdiger
|chapter=Chlorine
|doi=10.1002/14356007.a06_399.pub2
|date=15 January 2006
|encyclopedia=Ullmann's Encyclopedia of Industrial Chemistry
|editor-first=Barbara
|editor-last=Elvers
|display-editors=etal
|edition=release 2008, 7th
|publisher=Wiley-VCH
|language=en
|isbn=978-3-527-31965-7
|publication-date=2008
|at=sec. 15.
}}
|title=LME Copper Physical
|url=https://www.lme.com/en-GB/Metals/Non-ferrous/Copper/Physical
|website=London Metal Exchange
|archive-url=https://web.archive.org/web/20190623072121/https://www.lme.com/en-GB/Metals/Non-ferrous/Copper/Physical
|archive-date=2019-06-23
|url-status=live
}}
|last1=Kresse
|first1=Robert
|last2=Baudis
|first2=Ulrich
|last3=Jäger
|first3=Paul
|last4=Riechers
|first4=H. Hermann
|last5=Wagner
|first5=Heinz
|last6=Winkler
|first6=Jochen
|last7=Wolf
|first7=Hans Uwe
|chapter=Barium and Barium Compounds
|doi=10.1002/14356007.a03_325.pub2
|date=15 July 2007
|encyclopedia=Ullmann's Encyclopedia of Industrial Chemistry
|editor-first=Barbara
|editor-last=Elvers
|display-editors=etal
|edition=7th
|publisher=Wiley-VCH
|publication-date=2011
|language=en
|isbn=978-3-527-32943-4
|volume=4
|at=sec. 1.7.
}}
|title=Seeds (ca. 1940s - 1960s)
|date=2021
|url=https://www.orau.org/health-physics-museum/collection/brachytherapy/seeds.html
|publisher=Oak Ridge Associated Universities
}}
|first1=Cornelius
|last1=Keller
|first2=Walter
|last2=Wolf
|first3=Jashovam
|last3=Shani
|chapter=Radionuclides, 2. Radioactive Elements and Artificial Radionuclides
|doi=10.1002/14356007.o22_o15
|date=15 October 2011
|encyclopedia=Ullmann's Encyclopedia of Industrial Chemistry
|editor-first=Barbara
|editor-last=Elvers
|display-editors=etal
|edition=7th
|publisher=Wiley-VCH
|language=en
|isbn=978-3-527-32943-4
|volume=31
|at=sec. 1.5.
}}
|last=Orozco
|first=Luis A.
|date=2014-09-30
|title=Project Closeout Report Francium trapping facility at TRIUMF
|doi=10.2172/1214938
|osti=1214938
|doi-access=
|osti-access=free
|publisher=United States Department of Energy
}}
|first1=J. O.
|last1=Lubenau
|first2=R. F.
|last2=Mould
|date=2009
|title=The roller coaster price of radium
|url=https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=40106016
|website=International Nuclear Information System
|type=Abstract
|publisher=IAEA
|archive-url=https://archive.today/20200331135347/https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=40106016
|archive-date=31 March 2020
|url-status=live
|access-date=9 February 2020
}}
|title=Periodic Table of Elements: Protactinium
|url=https://periodic.lanl.gov/91.shtml
|archive-url=https://web.archive.org/web/20110928025549/http://periodic.lanl.gov/91.shtml
|archive-date=2011-09-28
|publisher=Los Alamos National Laboratory
|url-status=dead
}}
|title=Neptunium: The Facts
|url=https://www.chemistry.pomona.edu/chemistry/periodic_table/elements/neptunium/the%20facts.htm
|publisher=Chemistry Department of Pomona College
|archive-url=https://web.archive.org/web/20030508182021/http://www.chemistry.pomona.edu/Chemistry/periodic_table/Elements/Neptunium/the%20facts.htm
|archive-date=2003-05-08
|url-status=live
}}
|last=Öhrström
|first=Lars
|date=October 2016
|title=Brief encounters with dubnium
|journal=Nature Chemistry
|volume=8
|issue=10
|page=986
|doi=10.1038/nchem.2610
|doi-access=free
|pmid=27657876
|bibcode=2016NatCh...8..986O
|issn=1755-4330
}}
|last=Silva
|first=Robert J.
|chapter=Fermium, Mendelevium, Nobelium, and Lawrencium
|date=2006
|title=The Chemistry of the Actinide and Transactinide Elements
|edition=3
|pages=1621–1651
|editor-last=Morss
|editor-first=Lester R.
|editor2-last=Edelstein
|editor2-first=Norman M.
|editor3-last=Fuger
|editor3-first=Jean
|editor4-last=Katz
|editor4-first=Joseph Jacob
|publisher=Springer Netherlands
|language=en
|doi=10.1007/1-4020-3598-5_13
|isbn=978-1-4020-3555-5
|publication-place=Dordrecht
|oclc=262685616
}}
|last1=Even
|first1=J.
|last2=Yakushev
|first2=A.
|last3=Düllmann
|first3=C. E.
|last4=Haba
|first4=H.
|last5=Asai
|first5=M.
|last6=Sato
|first6=T. K.
|last7=Brand
|first7=H.
|last8=Di Nitto
|first8=A.
|last9=Eichler
|first9=R.
|last10=Fan
|first10=F. L.
|last11=Hartmann
|first11=W.
|date=19 September 2014
|title=Synthesis and detection of a seaborgium carbonyl complex
|journal=Science
|language=en
|volume=345
|issue=6203
|page=1493
|doi=10.1126/science.1255720
|pmid=25237098
|bibcode=2014Sci...345.1491E
|s2cid=206558746
|issn=0036-8075
}}
|last=Gäggeler
|first=H. W.
|date=2005
|title=Chemical properties of transactinides
|url=https://boris.unibe.ch/117633/1/10050_2005_Article_506202.pdf
|journal=The European Physical Journal A
|volume=25
|issue=S1
|pages=583–587
|doi=10.1140/epjad/i2005-06-202-2
|bibcode=2005EPJAS..25..583G
|s2cid=122557317
|issn=1434-6001
}}
|last1=Le Naour
|first1=Claire
|last2=Hoffman
|first2=Darleane C.
|last3=Trubert
|first3=Didier
|title=Fundamental and Experimental Aspects of Single Atom-at-a-Time Chemistry
|url=https://www.springer.com/gp/book/9783642374654
|date=2014
|work=The Chemistry of Superheavy Elements
|page=241
|editor-last=Schädel
|editor-first=Matthias
|editor2-last=Shaughnessy
|editor2-first=Dawn
|publisher=Springer-Verlag
|language=en
|doi=10.1007/978-3-642-37466-1
|isbn=978-3-642-37465-4
|s2cid=122675117
}}
|last1=Roberto
|first1=J. B.
|last2=Alexander
|first2=Charles W.
|last3=Boll
|first3=Rose Ann
|last4=Burns
|first4=J. D.
|last5=Ezold
|first5=Julie G.
|last6=Felker
|first6=Leslie Kevin
|last7=Hogle
|first7=Susan L.
|last8=Rykaczewski
|first8=Krzysztof Piotr
|date=December 2015
|title=Actinide targets for the synthesis of super-heavy elements
|url=https://www.osti.gov/pages/biblio/1240523
|journal=Nuclear Physics A
|language=en
|volume=944
|doi=10.1016/j.nuclphysa.2015.06.009
|osti=1240523
|osti-access=free
|bibcode=2015NuPhA.944...99R
|at=Table 1
|doi-access=free
}}
|first=Werner
|last=Antweiler
|title=Foreign Currency Units per 1 European Euro, 1999-2018
|website=PACIFIC Exchange Rate Service
|publisher=University of British Columbia
|url=https://fx.sauder.ubc.ca/etc/EURpages.pdf
|archive-url=https://web.archive.org/web/20200328212928/https://fx.sauder.ubc.ca/etc/EURpages.pdf
|archive-date=2020-03-28
|url-status=live
}}
|first=Werner
|last=Antweiler
|title=Database Retrieval System
|website=PACIFIC Exchange Rate Service
|publisher=University of British Columbia
|url=https://fx.sauder.ubc.ca/data.html
|archive-url=https://web.archive.org/web/20200726025748/https://fx.sauder.ubc.ca/cgi/fxdata?c=USD&b=CNY&fd=1&fm=1&fy=2010&ld=31&lm=12&ly=2020&y=monthly&q=volume&f=HTML2
|archive-date=2020-07-26
|url-status=live
}}
|title=USD / RMB
|date=3 February 2020
|url=https://price.metal.com/spots/Other-Rates/201102250100
|archive-url=https://archive.today/20200203205648/https://price.metal.com/spots/Other-Rates/201102250100
|website=price.metal.com
|archive-date=2020-02-03
|url-status=dead
|publisher=Shanghai Metals Market
}}
}}