Somos' quadratic recurrence constant

{{Short description|Mathematical constant}}

In mathematical analysis and number theory, Somos' quadratic recurrence constant or simply Somos' constant is a constant defined as an expression of infinitely many nested square roots. It arises when studying the asymptotic behaviour of a certain sequence and also in connection to the binary representations of real numbers between zero and one.{{cite arXiv |last=Neunhäuserer |first=Jörg |title=On the universality of Somos' constant |date=2020-10-13 |class=math.DS |eprint=2006.02882}} The constant named after Michael Somos. It is defined by:

:\sigma = \sqrt {1 \sqrt {2 \sqrt{3 \sqrt{4\sqrt{5\cdots}}}}}

which gives a numerical value of approximately:{{Cite journal |last=Hirschhorn |first=Michael D. |date=2011-11-01 |title=A note on Somosʼ quadratic recurrence constant |url=https://www.sciencedirect.com/science/article/pii/S0022314X11001284 |journal=Journal of Number Theory |volume=131 |issue=11 |pages=2061–2063 |doi=10.1016/j.jnt.2011.04.010 |issn=0022-314X}}

:\sigma = 1.661687949633594121295\dots\; {{OEIS|id=A112302}}.

Sums and products

Somos' constant can be alternatively defined via the following infinite product:

:\sigma=\prod_{k=1}^\infty k^{1/2^k} =

1^{1/2}\;2^{1/4}\; 3^{1/8}\; 4^{1/16} \dots

This can be easily rewritten into the far more quickly converging product representation

:\sigma =

\left(\frac{2}{1}\right)^{1/2}

\left(\frac{3}{2}\right)^{1/4}

\left(\frac{4}{3}\right)^{1/8}

\left(\frac{5}{4}\right)^{1/16}

\dots

which can then be compactly represented in infinite product form by:

:\sigma = \prod_{k=1}^{\infty} \left(1+ \frac{1}{k}\right)^{1/2^k}

Another product representation is given by:{{MathWorld|title=Somos's Quadratic Recurrence Constant|urlname=SomossQuadraticRecurrenceConstant}}

:\sigma = \prod_{n=1}^\infty\prod_{k=0}^n (k+1)^{(-1)^{k+n} \binom{n}{k}}

Expressions for \ln\sigma {{OEIS|id=A114124}} include:{{Cite journal |last=Mortici |first=Cristinel |date=2010-12-01 |title=Estimating the Somos' quadratic recurrence constant |url=https://www.sciencedirect.com/science/article/pii/S0022314X10001897 |journal=Journal of Number Theory |volume=130 |issue=12 |pages=2650–2657 |doi=10.1016/j.jnt.2010.06.012 |issn=0022-314X}}

:\ln \sigma = \sum_{k=1}^{\infty} \frac{\ln k}{2^k}

:\ln \sigma = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \text{Li}_k\left(\tfrac12\right)

:\ln \frac\sigma2 = \sum_{k=1}^{\infty} \frac{1}{2^k}\left(\ln\left(1+\frac{1}{k}\right)-\frac1k\right)

Integrals

Integrals for \ln\sigma are given by:{{Cite journal |last1=Guillera |first1=Jesus |last2=Sondow |first2=Jonathan |date=2008 |title=Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent |journal=The Ramanujan Journal |volume=16 |issue=3 |pages=247–270 |doi=10.1007/s11139-007-9102-0 |arxiv=math/0506319 |issn=1382-4090}}

:\ln \sigma = \int_0^1 \frac{1-x}{(x-2)\ln x} dx

:\ln \sigma = \int_0^1 \int_0^1 \frac{-x}{(2-xy)\ln(xy)} dx dy

Other formulas

The constant \sigma arises when studying the asymptotic behaviour of the sequence{{Cite book |last=Finch |first=Steven R. |url=https://books.google.com/books?id=Pl5I2ZSI6uAC |title=Mathematical Constants |date=2003-08-18 |publisher=Cambridge University Press |isbn=978-0-521-81805-6 |language=en}}

:g_0 = 1

:g_n = n g_{n-1}^2, \qquad n \ge 1

with first few terms 1, 1, 2, 12, 576, 1658880, ... {{OEIS|id=A052129}}. This sequence can be shown to have asymptotic behaviour as follows:

:g_n \sim {\sigma^{2^n}}\left(n+2-n^{-1}+4n^{-2}-21n^{-3}+138n^{-4}+O(n^{-5})\right)^{-1}

Guillera and Sondow give a representation in terms of the derivative of the Lerch transcendent \Phi(z, s, q):

:\ln\sigma = -\frac{1}{2} \frac{\partial\Phi}{\partial s}\!\left( 1/2, 0, 1 \right)

If one defines the Euler-constant function (which gives Euler's constant for z=1) as:

:\gamma(z)=\sum_{n=1}^\infty z^{n-1}\left(\frac1n - \ln\left(\frac{n+1}{n}\right)\right)

one has:{{Cite journal |last1=Chen |first1=Chao-Ping |last2=Han |first2=Xue-Feng |date=2016-09-01 |title=On Somos' quadratic recurrence constant |url=https://www.sciencedirect.com/science/article/pii/S0022314X16300257 |journal=Journal of Number Theory |volume=166 |pages=31–40 |doi=10.1016/j.jnt.2016.02.018 |issn=0022-314X}}{{Cite journal |last1=Sondow |first1=Jonathan |last2=Hadjicostas |first2=Petros |date=2007 |title=The generalized-Euler-constant function $\gamma(z)$ and a generalization of Somos's quadratic recurrence constant |journal=Journal of Mathematical Analysis and Applications |volume=332 |issue=1 |pages=292–314 |doi=10.1016/j.jmaa.2006.09.081|arxiv=math/0610499 |bibcode=2007JMAA..332..292S }}{{Cite journal |last1=Pilehrood |first1=Khodabakhsh Hessami |last2=Pilehrood |first2=Tatiana Hessami |date=2007-01-01 |title=Arithmetical properties of some series with logarithmic coefficients |url=https://link.springer.com/article/10.1007/s00209-006-0015-1 |journal=Mathematische Zeitschrift |language=en |volume=255 |issue=1 |pages=117–131 |doi=10.1007/s00209-006-0015-1 |issn=1432-1823}}

:\gamma(\tfrac12)=2\ln\frac2 \sigma

Universality

One may define a "continued binary expansion" for all real numbers in the set (0,1], similarly to the decimal expansion or simple continued fraction expansion. This is done by considering the unique base-2 representation for a number x\in(0,1] which does not contain an infinite tail of 0's (for example write one half as 0.01111..._2 instead of 0.1_2). Then define a sequence (a_k)\sube \N which gives the difference in positions of the 1's in this base-2 representation. This expansion for x is now given by:{{Cite journal |last=Neunhäuserer |first=Jörg |date=2011-11-01 |title=On the Hausdorff dimension of fractals given by certain expansions of real numbers |url=https://link.springer.com/article/10.1007/s00013-011-0320-8 |journal=Archiv der Mathematik |language=en |volume=97 |issue=5 |pages=459–466 |doi=10.1007/s00013-011-0320-8 |issn=1420-8938}}

x=\langle a_1, a_2, a_3, ... \rangle

File:SomosConstant.png and e appear to tend to Somos' constant.|400x400px]]

For example the fractional part of Pi we have:

\{\pi\} = 0.14159 \,26535 \, 89793... = 0.00100 \, 10000 \, 11111 ..._2 {{OEIS|A004601}}

The first 1 occurs on position 3 after the radix point. The next 1 appears three places after the first one, the third 1 appears five places after the second one, etc. By continuing in this manner, we obtain:

\pi-3= \langle 3, 3, 5, 1, 1, 1, 1 ... \rangle {{OEIS|A320298}}

This gives a bijective map (0,1] \mapsto \N ^\N , such that for every real number x\in(0,1] we uniquely can give:

x = \langle a_1, a_2, a_3, ... \rangle :\Leftrightarrow x= \sum _{k=1}^\infty 2^{-(a_1+...+a_k)}

It can now be proven that for almost all numbers x\in(0,1] the limit of the geometric mean of the terms a_k converges to Somos' constant. That is, for almost all numbers in that interval we have:

\sigma = \lim_{n\to\infty}\sqrt[n]{a_1a_2...a_n}

Somos' constant is universal for the "continued binary expansion" of numbers x\in(0,1] in the same sense that Khinchin's constant is universal for the simple continued fraction expansions of numbers x\in\R.

Generalizations

The generalized Somos' constants may be given by:

:\sigma_t=\prod_{k=1}^\infty k^{1/t^k} =

1^{1/t}\;2^{1/t^2}\; 3^{1/t^3}\; 4^{1/t^4}\dots

for t>1.

The following series holds:

:\ln\sigma_t=\sum_{k=1}^\infty \frac{\ln k}{t^k}

We also have a connection to the Euler-constant function:

:\gamma(\tfrac1t)=t\ln\left(\frac{t}{(t-1)\sigma_t^{t-1}}\right)

and the following limit, where \gamma is Euler's constant:

:\lim_{t\to 0^+} t\sigma_{t+1}^{t}=e^{-\gamma}

See also

References