List of mathematical constants
{{Short description|None}}
{{pp-pc}}
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems.{{Cite web|last=Weisstein|first=Eric W.|title=Constant|url=https://mathworld.wolfram.com/Constant.html|access-date=2020-08-08|website=mathworld.wolfram.com|language=en}} For example, the constant π may be defined as the ratio of the length of a circle's circumference to its diameter. The following list includes a decimal expansion and set containing each number, ordered by year of discovery.
The column headings may be clicked to sort the table alphabetically, by decimal value, or by set. Explanations of the symbols in the right hand column can be found by clicking on them.
List
{{sort under}}
- {{Mvar|p}}: Halted program
- {{math|{{Abs|{{mvar|p}}}}}}: Size in bits of program {{Mvar|p}}
- {{Mvar|P}}: Domain of all programs that stop.
{{See also|Halting problem}}
|1975
|data-sort-value="2" style="background:#ffa6a6;|✗
|data-sort-value="2" style="background:#ffa6a6;|✗
|data-sort-value="2" style="background:#ffa6a6;|✗
|-
|Robbins constant{{cite book|url=https://archive.org/details/mathematicalcons0000finc|url-access=registration|quote=Schmutz.|title=Mathematical Constants|author=Steven R. Finch|publisher=Cambridge University Press|year=2003|isbn=978-3-540-67695-9|page=[https://archive.org/details/mathematicalcons0000finc/page/479 479]}}
|
|0.66170 71822 67176 23515 {{MathWorld|RobbinsConstant|Robbins Constant}}{{OEIS2C|A073012}}
|
|data-sort-value="2" style="background:#ffa6a6;|✗
|data-sort-value="2" style="background:#ffa6a6;|✗
|data-sort-value="0" style="background:#a6ffa7;|✓
|-
|Weierstrass constant{{cite book|url=https://books.google.com/books?id=aFDWuZZslUUC&q=%22Weierstrass+Constant%22&pg=PA3184|title=CRC Concise Encyclopedia of Mathematics, Second Edition|author=Eric W. Weisstein|publisher=CRC Press|year=2003|isbn=978-1-58488-347-0|page=151}}
|
|0.47494 93799 87920 65033 {{MathWorld|WeierstrassConstant|Weierstrass Constant}}{{OEIS2C|A094692}}
|
| data-sort-value="1978" |Before 1978Waldschmidt, M. "Nombres transcendants et fonctions sigma de Weierstrass." C. R. Math. Rep. Acad. Sci. Canada 1, 111-114, 1978/79.
|data-sort-value="2" style="background:#ffa6a6;|✗
|data-sort-value="2" style="background:#ffa6a6;|✗
|data-sort-value="1" style="background:#fcffa6;|?
|-
|Fransén–Robinson constant{{cite book|url=http://www.advancesindifferenceequations.com/content/pdf/1687-1847-2012-22.pdf|title=Orthogonal and diagonal dimension fluxes of hyperspherical function|author1=Dusko Letic|author2=Nenad Cakic|author3=Branko Davidovic|author4=Ivana Berkovic|publisher=Springer}}
|
|2.80777 02420 28519 36522 {{MathWorld|Fransen-RobinsonConstant|Fransen-Robinson Constant}}{{OEIS2C|A058655}}
|
|1978
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|-
|Feigenbaum constant α{{cite book|url=https://books.google.com/books?id=DhCbYXzLFLsC&q=2.502907875095892822283902873218&pg=PA7|title=Chaos in Electric Drive Systems: Analysis, Control and Application|author1=K. T. Chau|author2=Zheng Wang|publisher=John Wiley & Son|year=201|isbn=978-0-470-82633-1|page=7}}
|
|2.50290 78750 95892 82228 {{refn|group=Mw|name=Feigenbaum Constant}}{{OEIS2C|A006891}}
|Ratio between the width of a tine and the width of one of its two subtines in a bifurcation diagram
|1979
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|-
|Second du Bois-Reymond constant{{cite book|url=https://archive.org/details/mathematicalcons0000finc|url-access=registration|title=Mathematical Constants|author=Steven R. Finch|publisher=Cambridge University Press|year=2003|isbn=978-3-540-67695-9|page=[https://archive.org/details/mathematicalcons0000finc/page/238 238]}}
|
|0.19452 80494 65325 11361 {{MathWorld|duBois-ReymondConstants|du Bois-Reymond Constants}}{{OEIS2C|A062546}}
|
|data-sort-value="2" style="background:#ffa6a6;|✗
|data-sort-value="2" style="background:#ffa6a6;|✗
|data-sort-value="1" style="background:#fcffa6;|?
|-
|Erdős–Tenenbaum–Ford constant
|
|0.08607 13320 55934 20688 {{OEIS2C|A074738}}
|
|1984
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|-
|Conway's constant{{cite book|url=https://books.google.com/books?id=gmCSpNhXMooC&q=Conway%20Constant&pg=PA45|title=Mathematics Frontiers|author=Facts On File, Incorporated|year=1997|isbn=978-0-8160-5427-5|page=46|publisher=Infobase }}
|
|1.30357 72690 34296 39125 {{MathWorld|ConwaysConstant|Conway's Constant}}{{OEIS2C|A014715}}
|Real root of the polynomial:
x^{71}-x^{69}-2x^{68}-x^{67}+2x^{66}+2x^{65}+x^{64}-x^{63}-x^{62}-x^{61}-x^{60}\\
-x^{59}+2x^{58}+5x^{57}+3x^{56}-2x^{55}-10x^{54}-3x^{53}-2x^{52}+6x^{51}+6x^{50}\\
+x^{49}+9x^{48}-3x^{47}-7x^{46}-8x^{45}-8x^{44}+10x^{43}+6x^{42}+8x^{41}-5x^{40}\\
-12x^{39}+7x^{38}-7x^{37}+7x^{36}+x^{35}-3x^{34}+10x^{33}+x^{32}-6x^{31}-2x^{30}\\
-10x^{29}-3x^{28}+2x^{27}+9x^{26}-3x^{25}+14x^{24}-8x^{23}-7x^{21}+9x^{20}\\
+3x^{19}\!-4x^{18}\!-10x^{17}\!-7x^{16}\!+12x^{15}\!+7x^{14}\!+2x^{13}\!-12x^{12}\!-4x^{11}\!-2x^{10}\\
+5x^{9}+x^{7}-7x^{6}+7x^{5}-4x^{4}+12x^{3}-6x^{2}+3x-6\ =\ 0 \quad\quad\quad
\end{smallmatrix}
|1987
|data-sort-value="2" style="background:#ffa6a6;|✗
|data-sort-value="0" style="background:#a6ffa7;|✓
|data-sort-value="0" style="background:#a6ffa7;|✓
|-
|Hafner–Sarnak–McCurley constant{{cite book|url=https://books.google.com/books?id=Pl5I2ZSI6uAC&q=%22Hafner-Sarnak-McCurley+constant%22&pg=PA110|title=Mathematical Constants|author=Steven R. Finch|year=2003|isbn=978-3-540-67695-9|page=110|publisher=Cambridge University Press }}
|
|0.35323 63718 54995 98454 {{MathWorld|Hafner-Sarnak-McCurleyConstant|Hafner-Sarnak-McCurley Constant}}{{OEIS2C|A085849}}
|
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|-
|Backhouse's constant{{cite book|url=https://books.google.com/books?id=aFDWuZZslUUC&q=Backhouse+constant&pg=PA151|title=CRC Concise Encyclopedia of Mathematics, Second Edition|author=Eric W. Weisstein|publisher=CRC Press|year=2003|isbn=978-1-58488-347-0|page=151}}
|
|1.45607 49485 82689 67139 {{MathWorld|BackhousesConstant|Backhouse's Constant}}{{OEIS2C|A072508}}
|
where pk is the kth prime number
|1995
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|-
|Viswanath constant{{cite book|url=https://www.ams.org/journals/mcom/2000-69-231/S0025-5718-99-01145-X/S0025-5718-99-01145-X.pdf|title=RANDOM FIBONACCI SEQUENCES AND THE NUMBER 1.13198824...|author=DIVAKAR VISWANATH|publisher=MATHEMATICS OF COMPUTATION|year=1999}}
|
|1.13198 82487 943 {{MathWorld|RandomFibonacciSequence|Random Fibonacci Sequence}}{{OEIS2C|A078416}}
| where fn = fn−1 ± fn−2, where the signs + or − are chosen at random with equal probability 1/2
|1997
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|-
|Komornik–Loreti constant{{cite book|url=http://dmg.tuwien.ac.at/drmota/DiplomarbeitLanz.pdf|title=k-Automatic Reals|author=Christoph Lanz|publisher=Technischen Universität Wien}}
|
|1.78723 16501 82965 93301 {{MathWorld|Komornik-LoretiConstant|Komornik-Loreti Constant}}{{OEIS2C|A055060}}
|Real number such that , or
where tk is the kth term of the Thue–Morse sequence
|1998
|data-sort-value="2" style="background:#ffa6a6;|✗
|data-sort-value="2" style="background:#ffa6a6;|✗
|data-sort-value="1" style="background:#fcffa6;|?
|-
|
|0.70258
|
|1999
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|-
|Heath-Brown–Moroz constant{{cite book|url=https://books.google.com/books?id=NuDimaRIVVsC&q=%22Heath-Brown%20and%20Moroz%22&pg=PA29|title=Analytic Number Theory|author=J. B. Friedlander|author2=A. Perelli|author3=C. Viola|author4=D.R. Heath-Brown|author5=H.Iwaniec|author6=J. Kaczorowski|publisher=Springer|year=2002|isbn=978-3-540-36363-7|page=29}}
|
|0.00131 76411 54853 17810 {{MathWorld|Heath-Brown-MorozConstant|Heath-Brown-Moroz Constant}}{{OEIS2C|A118228}}
|
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|-
|MRB constant{{cite book|url=http://www.perfscipress.com/papers/UniversalTOC25.pdf|title=Unified algorithms for polylogarithm, L-series, and zeta variants|author=Richard E. Crandall|publisher=perfscipress.com|year=2012|archive-url=https://web.archive.org/web/20130430193005/http://www.perfscipress.com/papers/UniversalTOC25.pdf|archive-date=2013-04-30|url-status=usurped}}{{cite arXiv|eprint=0912.3844|class=math.CA|author=RICHARD J. MATHAR|title=NUMERICAL EVALUATION OF THE OSCILLATORY INTEGRAL OVER exp(I pi x)x^1/x BETWEEN 1 AND INFINITY|year=2010}}{{cite book|url=http://marvinrayburns.com/Original_MRB_Post.html|title=Root constant|author=M.R.Burns|publisher=Marvin Ray Burns|year=1999}}
|
|0.18785 96424 62067 12024 {{MathWorld|MRBConstant|MRB Constant}}MRB constant{{OEIS2C|A037077}}
|
|1999
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|-
|Prime constant{{Cite book |last=Hardy |first=G. H. |url=https://www.worldcat.org/oclc/214305907 |title=An introduction to the theory of numbers |date=2008 |publisher=Oxford University Press |others=E. M. Wright, D. R. Heath-Brown, Joseph H. Silverman |isbn=978-0-19-921985-8 |edition=6th |location=Oxford |oclc=214305907}}
|
|0.41468 25098 51111 66024 {{OEIS2C|A051006}}
|
|data-sort-value="2" style="background:#ffa6a6;|✗
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|-
|Somos' quadratic recurrence constant{{cite journal|author1=Jesus Guillera|author2=Jonathan Sondow|year=2008|title=Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent|journal=The Ramanujan Journal|volume=16|issue=3|pages=247–270|arxiv=math/0506319|doi=10.1007/s11139-007-9102-0|s2cid=119131640}}
|
|1.66168 79496 33594 12129 {{MathWorld|SomossQuadraticRecurrenceConstant|Somos's Quadratic Recurrence Constant}}{{OEIS2C|A112302}}
|
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|-
|Foias constant{{cite book|url=http://ssmr.ro/gazeta/gma/2007/gma-1-2007.pdf|title=Gazeta Matemetica Seria a revista de cultur Matemetica Anul XXV(CIV)Nr. 1, Constante de tip Euler generalízate|author=Andrei Vernescu|year=2007|page=14}}
|
|1.18745 23511 26501 05459 {{refn|group=Mw|name=Foias|{{MathWorld|FoiasConstant|Foias Constant}}}}{{OEIS2C|A085848}}
|
Foias constant is the unique real number such that if x1 = α then the sequence diverges to infinity.
|2000
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|-
|Logarithmic capacity of the unit disk{{cite book|url=http://www.people.fas.harvard.edu/~sfinch/csolve/capa.pdf|title=Electrical Capacitance|author=Steven Finch|publisher=Harvard.edu|year=2014|page=1|access-date=2015-10-12|archive-url=https://web.archive.org/web/20160419150944/http://www.people.fas.harvard.edu/~sfinch/csolve/capa.pdf|archive-date=2016-04-19|url-status=dead}}{{cite journal
| last = Ransford | first = Thomas
| doi = 10.1007/BF03321780
| issue = 2
| journal = Computational Methods and Function Theory
| mr = 2791324
| pages = 555–578
| title = Computation of logarithmic capacity
| volume = 10
| year = 2010}}
|
|0.59017 02995 08048 11302{{MathWorld|LogarithmicCapacity|Logarithmic Capacity}}{{OEIS2C|A249205}}
| where is the lemniscate constant.
| data-sort-value="2003" |Before 2003
|data-sort-value="2" style="background:#ffa6a6;|✗
|data-sort-value="2" style="background:#ffa6a6;|✗
|data-sort-value="1" style="background:#fcffa6;|?
|-
|
|0.67823 44919 17391 97803{{MathWorld|TaniguchisConstant|Taniguchis Constant}}{{OEIS2C|A175639}}
|
| data-sort-value="2005" |Before 2005
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|data-sort-value="1" style="background:#fcffa6;|?
|}
Mathematical constants sorted by their representations as continued fractions
The following list includes the continued fractions of some constants and is sorted by their representations. Continued fractions with more than 20 known terms have been truncated, with an ellipsis to show that they continue. Rational numbers have two continued fractions; the version in this list is the shorter one. Decimal representations are rounded or padded to 10 places if the values are known.
class="wikitable sortable" | ||||
Name
! Symbol ! Set ! Decimal expansion ! Notes | ||||
---|---|---|---|---|
Zero
| 0 | 0.00000 00000 | [0; ] | ||
Golomb–Dickman constant
| | 0.62432 99885 | [0; 1, 1, 1, 1, 1, 22, 1, 2, 3, 1, 1, 11, 1, 1, 2, 22, 2, 6, 1, 1, …]{{OEIS2C|A225336}} | E. Weisstein noted that the continued fraction has an unusually large number of 1s.{{MathWorld|Golomb-DickmanConstantContinuedFraction|Golomb-Dickman Constant Continued Fraction}} | |
Cahen's constant
| | 0.64341 05463 | [0; 1, 1, 1, 22, 32, 132, 1292, 252982, 4209841472, 2694251407415154862, …]{{OEIS2C|A006280}} | All terms are squares and truncated at 10 terms due to large size. Davison and Shallit used the continued fraction expansion to prove that the constant is transcendental. | |
Euler–Mascheroni constant
| | 0.57721 56649{{sfn|Cuyt|Petersen|Verdonk|Waadeland|2008|p=182}} | [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, …] {{sfn|Cuyt|Petersen|Verdonk|Waadeland|2008|p=182}}{{OEIS2C|A002852}} | Using the continued fraction expansion, it was shown that if {{math|γ}} is rational, its denominator must exceed 10244663. | |
First continued fraction constant
| | 0.69777 46579 | [0; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, …] | Equal to the ratio of modified Bessel functions of the first kind evaluated at 2. | |
Catalan's constant
| | 0.91596 55942{{sfn|Borwein|van der Poorten|Shallit|Zudilin|2014|p=190}} | [0; 1, 10, 1, 8, 1, 88, 4, 1, 1, 7, 22, 1, 2, 3, 26, 1, 11, 1, 10, 1, …] {{sfn|Borwein|van der Poorten|Shallit|Zudilin|2014|p=190}}{{OEIS2C|A014538}} | Computed up to {{val|4851389025}} terms by E. Weisstein.{{MathWorld|CatalansConstantContinuedFraction|Catalan's Constant Continued Fraction}} | |
One half
| {{sfrac|1|2}} | 0.50000 00000 | [0; 2] | ||
Prouhet–Thue–Morse constant
| | 0.41245 40336 | [0; 2, 2, 2, 1, 4, 3, 5, 2, 1, 4, 2, 1, 5, 44, 1, 4, 1, 2, 4, 1, …]{{OEIS2C|A014572}} | Infinitely many partial quotients are 4 or 5, and infinitely many partial quotients are greater than or equal to 50.{{cite journal |last1=Bugeaud |first1=Yann |last2=Queffélec |first2=Martine |title=On Rational Approximation of the Binary Thue-Morse-Mahler Number |journal=Journal of Integer Sequences |date=2013 |volume=16 |issue=13.2.3 |url=https://cs.uwaterloo.ca/journals/JIS/VOL16/Bugeaud/bugeaud3.html}} | |
Copeland–Erdős constant
| | 0.23571 11317 | [0; 4, 4, 8, 16, 18, 5, 1, 1, 1, 1, 7, 1, 1, 6, 2, 9, 58, 1, 3, 4, …]{{OEIS2C|A030168}} | Computed up to {{val|1011597392}} terms by E. Weisstein. He also noted that while the Champernowne constant continued fraction contains sporadic large terms, the continued fraction of the Copeland–Erdős Constant do not exhibit this property.{{MathWorld|Copeland-ErdosConstantContinuedFraction|Copeland–Erdős Constant Continued Fraction}} | |
Base 10 Champernowne constant
| | 0.12345 67891 | [0; 8, 9, 1, 149083, 1, 1, 1, 4, 1, 1, 1, 3, 4, 1, 1, 1, 15, {{val|4.57540e165|fmt=none}}, 6, 1, …] {{OEIS2C|A030167}} | Champernowne constants in any base exhibit sporadic large numbers; the 40th term in has 2504 digits. | |
One
| 1 | 1.00000 00000 | [1; ] | ||
Phi, Golden ratio
| | 1.61803 39887{{sfn|Cuyt|Petersen|Verdonk|Waadeland|2008|p=185}} | [1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …] {{sfn|Cuyt|Petersen|Verdonk|Waadeland|2008|p=186}} | The convergents are ratios of successive Fibonacci numbers. | |
Brun's constant
| | 1.90216 05831 | [1; 1, 9, 4, 1, 1, 8, 3, 4, 7, 1, 3, 3, 1, 2, 1, 1, 12, 4, 2, 1, …] | The nth roots of the denominators of the nth convergents are close to Khinchin's constant, suggesting that is irrational. If true, this will prove the twin prime conjecture.{{cite arXiv |last=Wolf |first=Marek |date=22 February 2010 |title=Remark on the irrationality of the Brun's constant |eprint=1002.4174 |class=math.NT}} | |
Square root of 2
| | 1.41421 35624 | [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …] | The convergents are ratios of successive Pell numbers. | |
Two
| 2 | 2.00000 00000 | [2; ] | ||
Euler's number
| | 2.71828 18285{{sfn|Cuyt|Petersen|Verdonk|Waadeland|2008|p=176}} | [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, …] {{sfn|Cuyt|Petersen|Verdonk|Waadeland|2008|p=179}}{{OEIS2C|A003417}} | The continued fraction expansion has the pattern [2; 1, 2, 1, 1, 4, 1, ..., 1, 2n, 1, ...]. | |
Khinchin's constant
| | 2.68545 20011{{sfn|Cuyt|Petersen|Verdonk|Waadeland|2008|p=190}} | [2; 1, 2, 5, 1, 1, 2, 1, 1, 3, 10, 2, 1, 3, 2, 24, 1, 3, 2, 3, 1, …] {{sfn|Cuyt|Petersen|Verdonk|Waadeland|2008|p=191}}{{OEIS2C|A002211}} | For almost all real numbers x, the coefficients of the continued fraction of x have a finite geometric mean known as Khinchin's constant. | |
Three
| 3 | 3.00000 00000 | [3; ] | ||
Pi
| | 3.14159 26536 | [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, …] {{OEIS2C|A001203}} | The first few convergents (3, 22/7, 333/106, 355/113, ...) are among the best-known and most widely used historical approximations of {{math|π}}. |
Sequences of constants
class="wikitable sortable" |
Name
! Symbol ! Formula ! Year ! Set |
---|
Harmonic number
| | | data-sort-value="-400" | Antiquity |
Gregory coefficients
| | | 1670 |
Bernoulli number
| | | 1689 |
Hermite constants{{cite web | url=https://mathworld.wolfram.com/HermiteConstants.html | title=Hermite Constants }}
| | For a lattice L in Euclidean space Rn with unit covolume, i.e. vol(Rn/L) = 1, let λ{{Sub|1}}(L) denote the least length of a nonzero element of L. Then √γ{{Subscript|n}}n is the maximum of λ{{Sub|1}}(L) over all such lattices L. | data-sort-value="1822" | 1822 to 1901 |
Hafner–Sarnak–McCurley constant{{cite book|url=https://books.google.com/books?id=007-3SM9QmYC&q=0.607927101854026628663276779&pg=PA270|title=Process Algebra and Probabilistic Methods.|author1=Holger Hermanns|author2=Roberto Segala|publisher=Springer-Verlag|year=2000|isbn=978-3-540-67695-9|page=270}}
| | | data-sort-value="1883" |1883{{MathWorld|RelativelyPrime|Relatively Prime}} |
Stieltjes constants
| | | data-sort-value="1894"|before 1894 |
Favard constants{{cite web | url=https://mathworld.wolfram.com/FavardConstants.html | title=Favard Constants }}
| | | data-sort-value="1902" | 1902 to 1965 |
Generalized Brun's Constant
| |where the sum ranges over all primes p such that p + n is also a prime | data-sort-value="1919" |1919{{OEIS2C|A065421}} |
Champernowne constants
| |Defined by concatenating representations of successive integers in base b. |1933 |
Lagrange number
| | where is the nth smallest number such that has positive (x,y). | data-sort-value="1957"|before 1957 |
Feller's coin-tossing constants
| | is the smallest positive real root of | 1968 |
Stoneham number
| | where b,c are coprime integers. | 1973 |
Beraha constants
| | | 1974 |
Chvátal–Sankoff constants
| | | 1975 |
Hyperharmonic number
| | and | 1995 |
Gregory number
| | for rational x greater than or equal to one. | data-sort-value="1996"|before 1996 |
Metallic mean
| | |data-sort-value="1998" | before 1998 |
See also
Notes
{{reflist|group=nb}}
{{Reflist|group=lower-greek}}
References
{{reflist|colwidth=30em}}
= Site MathWorld Wolfram.com =
{{reflist|group=Mw|2}}
= Site OEIS.org =
{{reflist|group=OEIS|2}}
= Site OEIS Wiki =
{{reflist|group=Ow|2}}
Bibliography
{{refbegin|30em}}
- {{cite book|last1=Arndt|first1=Jörg|last2=Haenel|first2=Christoph|title=Pi Unleashed|publisher=Springer-Verlag|year=2006|isbn=978-3-540-66572-4 |url=https://books.google.com/books?id=QwwcmweJCDQC|access-date=2013-06-05}} English translation by Catriona and David Lischka.
- {{Citation|last=Jensen|first=Johan Ludwig William Valdemar|title=Note numéro 245. Deuxième réponse. Remarques relatives aux réponses du MM. Franel et Kluyver|journal=L'Intermédiaire des Mathématiciens|volume=II|pages=346–347|year=1895}}
- {{cite book|title=Handbook of Continued Fractions for Special Functions|author1-first=Annie A.M.|author1-last=Cuyt|author1-link=Annie Cuyt|author2-first=Vigdis|author2-last=Petersen|author3-first=Brigitte|author3-last=Verdonk|author4-first=Haakon|author4-last=Waadeland|author5-first=William B.|author5-last=Jones|publisher=Springer Science + Business Media|year=2008|isbn=9781402069499|chapter=Mathematical constants |location=Dordrecht, Netherlands}}
- {{cite book|title=Neverending Fractions: An Introduction to Continued Fractions|volume=23|series=Australian Mathematical Society Lecture Series|issn=0950-2815|author1-first=Jonathan|author1-last=Borwein|author2-first=Alf|author2-last=van der Poorten|author3-first=Jeffrey|author3-last=Shallit|author4-first=Wadim|author4-last=Zudilin|location=Cambridge, United Kingdom|publisher=Cambridge University Press|year=2014|isbn=9780521186490}}
{{refend}}
Further reading
- {{cite book |chapter-url=https://www.wolframscience.com/nks/notes-4-5--continued-fractions/ |chapter=4: Systems Based on Numbers |at=Section 5: Mathematical Constants {{mdash}} Continued fractions |first1=Stephen |last1=Wolfram |title=A New Kind of Science|title-link=A New Kind of Science}}
External links
- [https://web.archive.org/web/20181030072352/http://isc.carma.newcastle.edu.au/standard Inverse Symbolic Calculator, Plouffe's Inverter]
- [https://mathworld.wolfram.com/topics/Constants.html Constants – from Wolfram MathWorld]
- [https://oeis.org/wiki/Index_to_OEIS On-Line Encyclopedia of Integer Sequences (OEIS)]
- [https://web.archive.org/web/20120912131952/http://www.people.fas.harvard.edu/~sfinch/ Steven Finch's page of mathematical constants]
- [http://numbers.computation.free.fr/Constants/constants.html Xavier Gourdon and Pascal Sebah's page of numbers, mathematical constants and algorithms]
{{Mathematical symbols notation language}}
{{DEFAULTSORT:Mathematical Constants and Functions}}