Euler's constant#Euler-constant function
{{Short description|Difference between logarithm and harmonic series}}
{{Redirect|0.577||.577 (disambiguation){{!}}.577}}
{{distinguish|text = Euler's number, {{math|e ≈ 2.71828}}, the base of the natural logarithm}}
{{Use shortened footnotes|date=May 2021}}
{{log(x)}}
{{Infobox mathematical constant
| name = Euler's constant
| symbol = {{mvar|γ}}
| type = Unknown
| fields_of_application = {{flatlist |
}}
| approximation = 0.57721...{{r|A001620}}
| discovery_date = 1734
| discovery_person = Leonhard Euler
| discovery_work = De Progressionibus harmonicis observationes
| named_after = {{flatlist |
}}
}}
Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma ({{math|γ}}), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by {{math|log}}:
\gamma &= \lim_{n\to\infty}\left(-\log n + \sum_{k=1}^n \frac1{k}\right)\\[5px]
&=\int_1^\infty\left(-\frac1x+\frac1{\lfloor x\rfloor}\right)\,\mathrm dx.
\end{align}
Here, {{math|⌊·⌋}} represents the floor function.
The numerical value of Euler's constant, to 50 decimal places, is:{{r|A001620}}
{{block indent|{{gaps|0.57721|56649|01532|86060|65120|90082|40243|10421|59335|93992|...}} }}
History
The constant first appeared in a 1734 paper by the Swiss mathematician Leonhard Euler, titled De Progressionibus harmonicis observationes (Eneström Index 43), where he described it as "worthy of serious consideration".{{sfn|Lagarias|2013}} Euler initially calculated the constant's value to 6 decimal places. In 1781, he calculated it to 16 decimal places. Euler used the notations {{math|C}} and {{math|O}} for the constant. The Italian mathematician Lorenzo Mascheroni attempted to calculate the constant to 32 decimal places, but made errors in the 20th–22nd and 31st–32nd decimal places; starting from the 20th digit, he calculated ...1811209008239 when the correct value is ...0651209008240. In 1790, he used the notations {{math|A}} and {{math|a}} for the constant. Other computations were done by Johann von Soldner in 1809, who used the notation {{math|H}}. The notation {{math|γ}} appears nowhere in the writings of either Euler or Mascheroni, and was chosen at a later time, perhaps because of the constant's connection to the gamma function.{{sfn|Lagarias|2013}} For example, the German mathematician Carl Anton Bretschneider used the notation {{math|γ}} in 1835,{{sfn|Bretschneider|1837|loc="{{math|1=γ = c}} = {{gaps|0,577215|664901|532860|618112|090082|3...}}" on [https://books.google.com/books?hl=fi&id=OAoPAAAAIAAJ&pg=PA260 p. 260]}} and Augustus De Morgan used it in a textbook published in parts from 1836 to 1842.{{r|DeMorgan183642}} Euler's constant was also studied by the Indian mathematician Srinivasa Ramanujan who published one paper on it in 1917.{{Cite book |last=Brent |first=Richard P. |date=1994 |chapter=Ramanujan and Euler's Constant |title=Mathematics of Computation 1943–1993: A Half-Century of Computational Mathematics |series=Proceedings of Symposia in Applied Mathematics |chapter-url=https://maths-people.anu.edu.au/~brent/pd/Euler_CARMA_10.pdf |volume=48 |pages=541–545|doi=10.1090/psapm/048/1314887 |isbn=978-0-8218-0291-5 }} David Hilbert mentioned the irrationality of {{math|γ}} as an unsolved problem that seems "unapproachable" and, allegedly, the English mathematician Godfrey Hardy offered to give up his Savilian Chair at Oxford to anyone who could prove this.
Appearances
Euler's constant appears frequently in mathematics, especially in number theory and analysis.{{Cite web |last=Sondow |first=Jonathan |date=2004 |title=The Euler constant: γ |url=http://numbers.computation.free.fr/Constants/Gamma/gamma.html |access-date=2024-11-01}} Examples include, among others, the following places: (where
=Analysis=
- The Weierstrass product formula for the gamma function and the Barnes G-function.{{cite journal |last=Davis |first=P. J. |date=1959 |title=Leonhard Euler's Integral: A Historical Profile of the Gamma Function |url=http://mathdl.maa.org/mathDL/22/?pa=content&sa=viewDocument&nodeId=3104 |url-status=dead |journal=American Mathematical Monthly |volume=66 |issue=10 |pages=849–869 |doi=10.2307/2309786 |jstor=2309786 |archive-url=https://web.archive.org/web/20121107190256/http://mathdl.maa.org/mathDL/22/?pa=content&sa=viewDocument&nodeId=3104 |archive-date=7 November 2012 |access-date=3 December 2016}}{{Cite web |title=DLMF: §5.17 Barnes' 𝐺-Function (Double Gamma Function) ‣ Properties ‣ Chapter 5 Gamma Function |url=https://dlmf.nist.gov/5.17 |access-date=2024-11-01 |website=dlmf.nist.gov}}
- The asymptotic expansion of the gamma function, .
- Evaluations of the digamma function at rational values.{{Cite web |last=Weisstein |first=Eric W. |title=Digamma Function |url=https://mathworld.wolfram.com/DigammaFunction.html |access-date=2024-10-30 |website=mathworld.wolfram.com |language=en}}
- The Laurent series expansion for the Riemann zeta function*, where it is the first of the Stieltjes constants.{{Cite web |last=Weisstein |first=Eric W. |title=Stieltjes Constants |url=https://mathworld.wolfram.com/StieltjesConstants.html |access-date=2024-11-01 |website=mathworld.wolfram.com |language=en}}
- Values of the derivative of the Riemann zeta function and Dirichlet beta function.{{rp|137}}
- In connection to the Laplace and Mellin transform.{{Cite book |last=Williams |first=John |title=Laplace transforms |date=1973 |publisher=Allen & Unwin |isbn=978-0-04-512021-5 |series=Problem solvers |location=London}}{{Cite web |title=DLMF: §2.5 Mellin Transform Methods ‣ Areas ‣ Chapter 2 Asymptotic Approximations |url=https://dlmf.nist.gov/2.5 |access-date=2024-11-01 |website=dlmf.nist.gov}}
- In the regularization/renormalization of the harmonic series as a finite value.
- Expressions involving the exponential and logarithmic integral.*{{Cite web |title=DLMF: §6.6 Power Series ‣ Properties ‣ Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals |url=https://dlmf.nist.gov/6.6 |access-date=2024-11-01 |website=dlmf.nist.gov}}{{Cite web |last=Weisstein |first=Eric W. |title=Logarithmic Integral |url=https://mathworld.wolfram.com/LogarithmicIntegral.html |access-date=2024-11-01 |website=mathworld.wolfram.com |language=en}}
- A definition of the cosine integral.*
- In relation to Bessel functions.{{Cite web |title=DLMF: §10.32 Integral Representations ‣ Modified Bessel Functions ‣ Chapter 10 Bessel Functions |url=https://dlmf.nist.gov/10.32 |access-date=2024-11-01 |website=dlmf.nist.gov}}{{Cite web |title=DLMF: §10.22 Integrals ‣ Bessel and Hankel Functions ‣ Chapter 10 Bessel Functions |url=https://dlmf.nist.gov/10.22 |access-date=2024-11-01 |website=dlmf.nist.gov}}{{Cite web |title=DLMF: §10.8 Power Series ‣ Bessel Functions and Hankel Functions ‣ Chapter 10 Bessel Functions |url=https://dlmf.nist.gov/10.8 |access-date=2024-11-01 |website=dlmf.nist.gov}}{{Cite web |title=DLMF: §10.24 Functions of Imaginary Order ‣ Bessel and Hankel Functions ‣ Chapter 10 Bessel Functions |url=https://dlmf.nist.gov/10.24 |access-date=2024-11-01 |website=dlmf.nist.gov}}
- Asymptotic expansions of modified Struve functions.{{Cite web |title=DLMF: §11.6 Asymptotic Expansions ‣ Struve and Modified Struve Functions ‣ Chapter 11 Struve and Related Functions |url=https://dlmf.nist.gov/11.6 |access-date=2024-11-01 |website=dlmf.nist.gov}}
- In relation to other special functions.{{Cite web |title=DLMF: §13.2 Definitions and Basic Properties ‣ Kummer Functions ‣ Chapter 11 Confluent Hypergeometric Functions |url=https://dlmf.nist.gov/13.2 |access-date=2024-11-01 |website=dlmf.nist.gov}}{{Cite web |title=DLMF: §9.12 Scorer Functions ‣ Related Functions ‣ Chapter 9 Airy and Related Functions |url=https://dlmf.nist.gov/9.12 |access-date=2024-11-01 |website=dlmf.nist.gov}}
=Number theory=
- An inequality for Euler's totient function.{{Cite journal |last1=Rosser |first1=J. Barkley |last2=Schoenfeld |first2=Lowell |date=1962 |title=Approximate formulas for some functions of prime numbers |url=https://projecteuclid.org/journals/illinois-journal-of-mathematics/volume-6/issue-1/Approximate-formulas-for-some-functions-of-prime-numbers/10.1215/ijm/1255631807.full |journal=Illinois Journal of Mathematics |volume=6 |issue=1 |pages=64–94 |doi=10.1215/ijm/1255631807 |issn=0019-2082}}
- The growth rate of the divisor function.{{Cite book |last1=Hardy |first1=Godfrey H. |title=An introduction to the theory of numbers |last2=Wright |first2=Edward M. |last3=Silverman |first3=Joseph H. |date=2008 |publisher=Oxford University Press |isbn=978-0-19-921986-5 |editor-last=Heath-Brown |editor-first=D. R. |edition=6th |series=Oxford mathematics |location=Oxford New York Auckland |page=469-471}}
- A formulation of the Riemann hypothesis.{{Cite journal |last=Robin |first=Guy |date=1984 |title=Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann |url=http://zakuski.utsa.edu/~jagy/Robin_1984.pdf |journal=Journal de mathématiques pures et appliquées |volume=63 |pages=187–213}}
- The third of Mertens' theorems.*
- The calculation of the Meissel–Mertens constant.{{Cite web |last=Weisstein |first=Eric W. |title=Mertens Constant |url=https://mathworld.wolfram.com/MertensConstant.html |access-date=2024-11-01 |website=mathworld.wolfram.com |language=en}}
- Lower bounds to specific prime gaps.{{Cite journal |last=Pintz |first=János |date=1997-04-01 |title=Very Large Gaps between Consecutive Primes |url=https://www.sciencedirect.com/science/article/pii/S0022314X97920813 |journal=Journal of Number Theory |volume=63 |issue=2 |pages=286–301 |doi=10.1006/jnth.1997.2081 |issn=0022-314X}}
- An approximation of the average number of divisors of all numbers from 1 to a given n.
- The Lenstra–Pomerance–Wagstaff conjecture on the frequency of Mersenne primes.{{Cite web |title=Heuristics: Deriving the Wagstaff Mersenne Conjecture |url=https://t5k.org/mersenne/heuristic.html |access-date=2024-11-01 |website=t5k.org}}
- An estimation of the efficiency of the euclidean algorithm.{{Cite web |last=Weisstein |first=Eric W. |title=Porter's Constant |url=https://mathworld.wolfram.com/PortersConstant.html |access-date=2024-11-01 |website=mathworld.wolfram.com |language=en}}
- Sums involving the Möbius and von Mangolt function.
- Estimate of the divisor summatory function of the Dirichlet hyperbola method.{{Cite book |last=Tenenbaum |first=Gérald |url=https://books.google.com/books?id=UEk-CgAAQBAJ&dq=dirichlet+hyperbola+method&pg=PA360 |title=Introduction to Analytic and Probabilistic Number Theory |date=2015-07-16 |publisher=American Mathematical Soc. |isbn=978-0-8218-9854-3 |language=en}}
= In other fields =
- In some formulations of Zipf's law.
- The answer to the coupon collector's problem.*
- The mean of the Gumbel distribution.
- An approximation of the Landau distribution.
- The information entropy of the Weibull and Lévy distributions, and, implicitly, of the chi-squared distribution for one or two degrees of freedom.
- An upper bound on Shannon entropy in quantum information theory.{{r|CavesFuchs1996}}
- In dimensional regularization of Feynman diagrams in quantum field theory.
- In the BCS equation on the critical temperature in BCS theory of superconductivity.*
- Fisher–Orr model for genetics of adaptation in evolutionary biology.{{r|ConnallonHodgins2021}}
Properties
=Irrationality and transcendence=
The number {{math|γ}} has not been proved algebraic or transcendental. In fact, it is not even known whether {{math|γ}} is irrational. The ubiquity of {{math|γ}} revealed by the large number of equations below and the fact that {{math|{{var|γ}}}} has been called the third most important mathematical constant after Pi and E (mathematical constant){{Cite web |title=Eulers Constant |url=https://num.math.uni-goettingen.de/~skraemer/gamma.html |access-date=2024-10-19 |website=num.math.uni-goettingen.de}}{{Cite book |last=Finch |first=Steven R. |url=https://books.google.com/books?id=Pl5I2ZSI6uAC |title=Mathematical Constants |date=2003-08-18 |publisher=Cambridge University Press |isbn=978-0-521-81805-6 |language=en}} makes the irrationality of {{math|γ}} a major open question in mathematics.{{Cite web |last=Waldschmidt |first=Michel |date=2023 |title=Some of the most famous open problems in number theory |url=https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/OpenPbsNT.pdf}}{{r|Sondow2003a}}{{Cite book |last1=Conway |first1=John H. |url=https://books.google.com/books?id=0--3rcO7dMYC |title=The Book of Numbers |last2=Guy |first2=Richard |date=1998-03-16 |publisher=Springer Science & Business Media |isbn=978-0-387-97993-9 |language=en}}
{{unsolved|mathematics|Is Euler's constant irrational? If so, is it transcendental?}}
However, some progress has been made. In 1959 Andrei Shidlovsky proved that at least one of Euler's constant {{math|γ}} and the Gompertz constant {{math|δ}} is irrational;{{r|Aptekarev2009}}{{Cite web |last=Waldschmidt |first=Michel |date=2023 |title=On Euler's Constant |url=https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/EulerConstant.pdf |place=Sorbonne Université, Institut de Mathématiques de Jussieu, Paris}} Tanguy Rivoal proved in 2012 that at least one of them is transcendental.{{r|Rivoal2012}} Kurt Mahler showed in 1968 that the number is transcendental, where and are the usual Bessel functions.{{r|Mahler1968}}{{sfn|Lagarias|2013}} It is known that the transcendence degree of the field is at least two.{{sfn|Lagarias|2013}}
In 2010, M. Ram Murty and N. Saradha showed that at most one of the Euler-Lehmer constants, i. e. the numbers of the form
is algebraic, if {{math|q ≥ 2}} and {{math|1 ≤ a < q}}; this family includes the special case {{math|1=γ(2,4) = γ/4}}.{{sfn|Lagarias|2013}}{{r|RamMurtySaradha2010}}
Using the same approach, in 2013, M. Ram Murty and A. Zaytseva showed that the generalized Euler constants have the same property,
{{sfn|Lagarias|2013}}{{r|MurtyZaytseva2013}}
{{Cite journal |last1=Diamond |first1=H. G. |last2=Ford |first2=K. |title=Generalized Euler constants |journal=Mathematical Proceedings of the Cambridge Philosophical Society |date=2008 |volume=145 |issue=1 |pages=27–41 |publisher=Cambridge University Press |doi=10.1017/S0305004108001187 |arxiv=math/0703508|bibcode=2008MPCPS.145...27D }} where the generalized Euler constant are defined as
where {{tmath|\Omega}} is a fixed list of prime numbers, if at least one of the primes in {{tmath|\Omega}} is a prime factor of {{tmath|n}}, and otherwise. In particular, {{tmath|1=\gamma(\empty)=\gamma}}.
Using a continued fraction analysis, Papanikolaou showed in 1997 that if {{math|γ}} is rational, its denominator must be greater than 10244663.{{r|HaiblePapanikolaou1998|Papanikolaou1997}} If {{math|{{var|e}}{{i sup|1px|{{var|γ}}}}}} is a rational number, then its denominator must be greater than 1015000.{{sfn|Lagarias|2013}}
Euler's constant is conjectured not to be an algebraic period,{{sfn|Lagarias|2013}} but the values of its first 109 decimal digits seem to indicate that it could be a normal number.{{Cite web |last=Weisstein |first=Eric W. |title=Euler-Mascheroni Constant Digits |url=https://mathworld.wolfram.com/Euler-MascheroniConstantDigits.html |access-date=2024-10-19 |website=mathworld.wolfram.com |language=en}}
= Continued fraction =
The simple continued fraction expansion of Euler's constant is given by:{{r|OEIS_A002852}}
:
which has no apparent pattern. It is known to have at least 16,695,000,000 terms,{{r|OEIS_A002852}} and it has infinitely many terms if and only if {{mvar|γ}} is irrational.
Numerical evidence suggests that both Euler's constant {{math|{{var|γ}}}} as well as the constant {{math|{{var|e}}{{i sup|1px|{{var|γ}}}}}} are among the numbers for which the geometric mean of their simple continued fraction terms converges to Khinchin's constant. Similarly, when are the convergents of their respective continued fractions, the limit appears to converge to Lévy's constant in both cases.{{Cite journal |last=Brent |first=Richard P. |date=1977 |title=Computation of the Regular Continued Fraction for Euler's Constant |url=https://www.jstor.org/stable/2006010 |journal=Mathematics of Computation |volume=31 |issue=139 |pages=771–777 |doi=10.2307/2006010 |jstor=2006010 |issn=0025-5718}} However neither of these limits has been proven.{{Cite web |last=Weisstein |first=Eric W. |title=Euler-Mascheroni Constant Continued Fraction |url=https://mathworld.wolfram.com/Euler-MascheroniConstantContinuedFraction.html |access-date=2024-09-23 |website=mathworld.wolfram.com |language=en}}
There also exists a generalized continued fraction for Euler's constant.{{Citation |last1=Pilehrood |first1=Khodabakhsh Hessami |title=On a continued fraction expansion for Euler's constant |date=2013-12-29 |last2=Pilehrood |first2=Tatiana Hessami|arxiv=1010.1420 }}
A good simple approximation of {{math|{{var|γ}}}} is given by the reciprocal of the square root of 3 or about 0.57735:{{Cite web |last=Weisstein |first=Eric W. |title=Euler-Mascheroni Constant Approximations |url=https://mathworld.wolfram.com/Euler-MascheroniConstantApproximations.html |access-date=2024-10-19 |website=mathworld.wolfram.com |language=en}}
:
with the difference being about 1 in 7,429.
Formulas and identities
= Relation to gamma function =
{{mvar|γ}} is related to the digamma function {{math|Ψ}}, and hence the derivative of the gamma function {{math|Γ}}, when both functions are evaluated at 1. Thus:
This is equal to the limits:
Further limit results are:{{r|Krämer2005}}
\lim_{z\to 0}\frac1{z}\left(\frac1{\Psi(1-z)} - \frac1{\Psi(1+z)}\right) &= \frac{\pi^2}{3\gamma^2}. \end{align}
A limit related to the beta function (expressed in terms of gamma functions) is
&= \lim\limits_{m\to\infty}\sum_{k=1}^m{m \choose k}\frac{(-1)^k}{k}\log\big(\Gamma(k+1)\big). \end{align}
= Relation to the zeta function =
{{mvar|γ}} can also be expressed as an infinite sum whose terms involve the Riemann zeta function evaluated at positive integers:
&= \log\frac4{\pi} + \sum_{m=2}^{\infty} (-1)^m\frac{\zeta(m)}{2^{m-1}m}.\end{align}
The constant can also be expressed in terms of the sum of the reciprocals of non-trivial zeros of the zeta function:{{Cite arXiv
| last = Wolf
| first = Marek
| title = 6+infinity new expressions for the Euler-Mascheroni constant
| year = 2019
| eprint = 1904.09855
| class = math.NT
| quote = "The above sum is real and convergent when zeros and complex conjugate are paired together and summed according to increasing absolute values of the imaginary parts of {{nowrap|.}}"}} See formula 11 on page 3. Note the typographical error in the numerator of Wolf's sum over zeros, which should be 2 rather than 1.
:
Other series related to the zeta function include:
&= \lim_{n\to\infty}\left(\frac{2n-1}{2n} - \log n + \sum_{k=2}^n \left(\frac1{k} - \frac{\zeta(1-k)}{n^k}\right)\right) \\
&= \lim_{n\to\infty}\left(\frac{2^n}{e^{2^n}} \sum_{m=0}^\infty \frac{2^{mn}}{(m+1)!} \sum_{t=0}^m \frac1{t+1} - n \log 2+ O \left (\frac1{2^{n}\, e^{2^n}}\right)\right).\end{align}
The error term in the last equation is a rapidly decreasing function of {{mvar|n}}. As a result, the formula is well-suited for efficient computation of the constant to high precision.
Other interesting limits equaling Euler's constant are the antisymmetric limit:{{r|Sondow1998}}
and the following formula, established in 1898 by de la Vallée-Poussin:
where {{math|{{ceil| }}}} are ceiling brackets.
This formula indicates that when taking any positive integer {{mvar|n}} and dividing it by each positive integer {{mvar|k}} less than {{mvar|n}}, the average fraction by which the quotient {{math|{{var|n}}/{{var|k}}}} falls short of the next integer tends to {{mvar|γ}} (rather than 0.5) as {{mvar|n}} tends to infinity.
Closely related to this is the rational zeta series expression. By taking separately the first few terms of the series above, one obtains an estimate for the classical series limit:
where {{math|{{var|ζ}}({{var|s}}, {{var|k}})}} is the Hurwitz zeta function. The sum in this equation involves the harmonic numbers, {{math|{{var|H}}{{sub|{{var|n}}}}}}. Expanding some of the terms in the Hurwitz zeta function gives:
where {{math|0 < {{var|ε}} < {{sfrac|1|252{{var|n}}{{sup|6}}}}.}}
{{mvar|γ}} can also be expressed as follows where {{mvar|A}} is the Glaisher–Kinkelin constant:
{{mvar|γ}} can also be expressed as follows, which can be proven by expressing the zeta function as a Laurent series:
= Relation to triangular numbers =
Numerous formulations have been derived that express in terms of sums and logarithms of triangular numbers.{{Cite journal
| last = Boya
| first = L.J.
| title = Another relation between π, e, γ and ζ(n)
| journal = Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
| volume = 102
| pages = 199–202
| year = 2008
| issue = 2
| url = https://doi.org/10.1007/BF03191819
| doi = 10.1007/BF03191819
| bibcode = 2008RvMad.102..199B
| quote = "γ/2 in (10) reflects the residual (finite part) of ζ(1)/2, of course."
}} See formulas 1 and 10.{{Cite journal
| last = Sondow
| first = Jonathan
| title = Double Integrals for Euler's Constant and and an Analog of Hadjicostas's Formula
| journal = The American Mathematical Monthly
| volume = 112
| issue = 1
| year = 2005
| pages = 61–65
| url = https://doi.org/10.2307/30037385
| doi = 10.2307/30037385
| jstor = 30037385
| access-date = 2024-04-27
| last = Chen
| first = Chao-Ping
| title = Ramanujan's formula for the harmonic number
| journal = Applied Mathematics and Computation
| volume = 317
| year = 2018
| pages = 121–128
| issn = 0096-3003
| doi = 10.1016/j.amc.2017.08.053
| url = https://www.sciencedirect.com/science/article/pii/S0096300317306112
| access-date = 2024-04-27
| last = Lodge
| first = A.
| title = An approximate expression for the value of 1 + 1/2 + 1/3 + ... + 1/r
| journal = Messenger of Mathematics
| volume = 30
| year = 1904
| pages = 103–107
| url = https://books.google.com/books?id=K4daAAAAYAAJ&dq=%22An%20approximate%20expression%20for%20the%20value%20of%201%2B%22&pg=PA103
}} One of the earliest of these is a formula{{Cite arXiv
| last = Villarino
| first = Mark B.
| title = Ramanujan's Harmonic Number Expansion into Negative Powers of a Triangular Number
| year = 2007
| eprint = 0707.3950
| class = math.CA
| quote = It would also be interesting to develop an expansion for n! into powers of m, a new Stirling expansion, as it were.
}} See formula 1.8 on page 3.{{Cite journal
| last = Mortici
| first = Cristinel
| year = 2010
| title = On the Stirling expansion into negative powers of a triangular number
| journal = Math. Commun.
| volume = 15
| pages = 359–364
| url = https://www.researchgate.net/publication/228562533
| doi =
}} for the {{nowrap|th}} harmonic number attributed to Srinivasa Ramanujan where is related to in a series that considers the powers of (an earlier, less-generalizable proof{{Cite journal |last=Cesàro |first=E. |title=Sur la série harmonique |journal=Nouvelles annales de mathématiques: Journal des candidats aux écoles polytechnique et normale |volume=4 |pages=295–296 |year=1885 |url=http://eudml.org/doc/100057 |language=fr |publisher=Carilian-Goeury et Vor Dalmont}}{{cite book
| last = Bromwich
| first = Thomas John I'Anson
| title = An Introduction to the Theory of Infinite Series
| publisher = American Mathematical Society
| year = 2005
| orig-date = 1908
| edition = 3rd
| location = United Kingdom
| url = https://www.dbraulibrary.org.in/RareBooks/An%20introduction%20to%20the%20theory%20of%20infinite%20series.pdf
| page = 460
}} See exercise 18. by Ernesto Cesàro gives the first two terms of the series, with an error term):
:
\gamma
&= H_u - \frac{1}{2} \ln 2T_u - \sum_{k=1}^{v}\frac{R(k)}{T_{u}^{k}}-\Theta_{v}\,\frac{R(v+1)}{T_{u}^{v+1}}
\end{align}
From Stirling's approximation{{cite book
| last1 = Whittaker
| first1 = E.
| last2 = Watson
| first2 = G.
| title = A Course of Modern Analysis
| edition = 5th
| orig-date = 1902
| year = 2021
| page = 271, 275
| isbn = 9781316518939
| doi = 10.1017/9781009004091
}} See Examples 12.21 and 12.50 for exercises on the derivation of the integral form of the series . follows a similar series:
:
The series of inverse triangular numbers also features in the study of the Basel problem{{sfn|Lagarias|2013|p=13}}{{cite journal |last=Nelsen |first=R. B. |title=Proof without Words: Sum of Reciprocals of Triangular Numbers |journal=Mathematics Magazine |volume=64 |issue=3 |year=1991 |pages=167|doi=10.1080/0025570X.1991.11977600 }} posed by Pietro Mengoli. Mengoli proved that , a result Jacob Bernoulli later used to estimate the value of , placing it between and . This identity appears in a formula used by Bernhard Riemann to compute roots of the zeta function,{{Cite book | last = Edwards | first = H. M. | title = Riemann's Zeta Function | publisher = Academic Press | year = 1974 | series = Pure and Applied Mathematics, Vol. 58 | pages = 67, 159}} where is expressed in terms of the sum of roots plus the difference between Boya's expansion and the series of exact unit fractions :
:
= Integrals =
{{mvar|γ}} equals the value of a number of definite integrals:
\gamma &= - \int_0^\infty e^{-x} \log x \,dx \\
&= -\int_0^1\log\left(\log\frac 1 x \right) dx \\
&= \int_0^\infty \left(\frac1{e^x-1}-\frac1{x\cdot e^x} \right)dx \\
&= \int_0^1\frac{1-e^{-x}}{x} \, dx -\int_1^\infty \frac{e^{-x}}{x}\, dx\\
&= \int_0^1\left(\frac1{\log x} + \frac1{1-x}\right)dx\\
&= \int_0^\infty \left(\frac1{1+x^k}-e^{-x}\right)\frac{dx}{x},\quad k>0\\
&= 2\int_0^\infty \frac{e^{-x^2}-e^{-x}}{x} \, dx ,\\
&= \log\frac{\pi}{4}-\int_0^\infty \frac{\log x}{\cosh^2x} \, dx ,\\
&= \int_0^1 H_x \, dx, \\
&= \frac{1}{2}+\int_{0}^{\infty}\log\left(1+\frac{\log\left(1+\frac{1}{t}\right)^{2}}{4\pi^{2}}\right)dt \\
&= 1-\int_0^1 \{1/x\} dx \\
&= \frac{1}{2}+\int_{0}^{\infty}\frac{2x\,dx}{(x^2+1)(e^{2\pi x}-1)}
\end{align}
where {{math|{{var|H}}{{sub|{{var|x}}}}}} is the fractional harmonic number, and is the fractional part of .
The third formula in the integral list can be proved in the following way:
&\int_0^{\infty} \left(\frac{1}{e^x - 1} - \frac{1}{x e^x} \right) dx
= \int_0^{\infty} \frac{e^{-x} + x - 1}{x[e^x -1]} dx
= \int_0^{\infty} \frac{1}{x[e^x - 1]} \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}x^{m+1}}{(m+1)!} dx \\[2pt]
&= \int_0^{\infty} \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}x^m}{(m+1)![e^x -1]} dx
= \sum_{m = 1}^{\infty} \int_0^{\infty} \frac{(-1)^{m+1}x^m}{(m+1)![e^x -1]} dx
= \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{(m+1)!} \int_0^{\infty} \frac{x^m}{e^x - 1} dx \\[2pt]
&= \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{(m+1)!} m!\zeta(m+1)
= \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{m+1}\zeta(m+1)
= \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{m+1} \sum_{n = 1}^{\infty}\frac{1}{n^{m+1}}
= \sum_{m = 1}^{\infty} \sum_{n = 1}^{\infty} \frac{(-1)^{m+1}}{m+1}\frac{1}{n^{m+1}} \\[2pt]
&= \sum_{n = 1}^{\infty} \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{m+1}\frac{1}{n^{m+1}}
= \sum_{n = 1}^{\infty} \left[\frac{1}{n} - \log\left(1+\frac{1}{n}\right)\right]
= \gamma
\end{align}
The integral on the second line of the equation is the definition of the Riemann zeta function, which is {{math|{{var|m}}!{{var|ζ}}({{var|m}} + 1)}}.
Definite integrals in which {{mvar|γ}} appears include:{{Cite web |last=Weisstein |first=Eric W. |title=Euler-Mascheroni Constant |url=https://mathworld.wolfram.com/Euler-MascheroniConstant.html |access-date=2024-10-19 |website=mathworld.wolfram.com |language=en}}{{Cite journal |last=Blagouchine |first=Iaroslav V. |date=2014-10-01 |title=Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results |url=https://link.springer.com/article/10.1007/s11139-013-9528-5 |journal=The Ramanujan Journal |language=en |volume=35 |issue=1 |pages=21–110 |doi=10.1007/s11139-013-9528-5 |issn=1572-9303}}
\int_0^\infty e^{-x^2} \log x \,dx &= -\frac{(\gamma+2\log 2)\sqrt{\pi}}{4} \\
\int_0^\infty e^{-x} \log^2 x \,dx &= \gamma^2 + \frac{\pi^2}{6}
\\ \int_0^\infty \frac{e^{-x}\log x}{e^x +1} \,dx &= \frac12 \log^2 2 - \gamma \end{align}
We also have Catalan's 1875 integral{{r|SondowZudilin2006}}
One can express {{mvar|γ}} using a special case of Hadjicostas's formula as a double integral{{r|Sondow2003a|Sondow2005}} with equivalent series:
\gamma &= \int_0^1 \int_0^1 \frac{x-1}{(1-xy)\log xy}\,dx\,dy \\
&= \sum_{n=1}^\infty \left(\frac 1 n -\log\frac{n+1} n \right).
\end{align}
An interesting comparison by Sondow{{r|Sondow2005}} is the double integral and alternating series
\log\frac 4 \pi &= \int_0^1 \int_0^1 \frac{x-1}{(1+xy)\log xy} \,dx\,dy \\
&= \sum_{n=1}^\infty \left((-1)^{n-1}\left(\frac 1 n -\log\frac{n+1} n \right)\right).
\end{align}
It shows that {{math|log {{sfrac|4|π}}}} may be thought of as an "alternating Euler constant".
The two constants are also related by the pair of series{{r|Sondow2005a}}
\gamma &= \sum_{n=1}^\infty \frac{N_1(n) + N_0(n)}{2n(2n+1)} \\
\log\frac4{\pi} &= \sum_{n=1}^\infty \frac{N_1(n) - N_0(n)}{2n(2n+1)} ,
\end{align}
where {{math|{{var|N}}{{sub|1}}({{var|n}})}} and {{math|{{var|N}}{{sub|0}}({{var|n}})}} are the number of 1s and 0s, respectively, in the base 2 expansion of {{mvar|n}}.
= Series expansions =
In general,
\gamma = \lim_{n \to \infty}\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3} + \ldots + \frac{1}{n} - \log(n+\alpha) \right) \equiv \lim_{n \to \infty} \gamma_n(\alpha)
for any {{math|{{var|α}} > −{{var|n}}}}. However, the rate of convergence of this expansion depends significantly on {{mvar|α}}. In particular, {{math|{{var|γ}}{{sub|{{var|n}}}}(1/2)}} exhibits much more rapid convergence than the conventional expansion {{math|{{var|γ}}{{sub|{{var|n}}}}(0)}}.{{r|DeTemple1993}}{{sfn|Havil|2003|pp=75–8}} This is because
\frac{1}{2(n+1)} < \gamma_n(0) - \gamma < \frac{1}{2n},
while
\frac{1}{24(n+1)^2} < \gamma_n(1/2) - \gamma < \frac{1}{24n^2}.
Even so, there exist other series expansions which converge more rapidly than this; some of these are discussed below.
Euler showed that the following infinite series approaches {{mvar|γ}}:
The series for {{mvar|γ}} is equivalent to a series Nielsen found in 1897:{{r|Krämer2005}}{{sfn|Blagouchine|2016}}
In 1910, Vacca found the closely related series{{r|Vacca1910|Glaisher1910|Hardy1912|Vacca1926|Kluyver1927|Krämer2005|Blagouchine2016}}
\gamma & = \sum_{k=1}^\infty (-1)^k\frac{\left\lfloor\log_2 k\right\rfloor} k \\[5pt]
& = \tfrac12-\tfrac13 + 2\left(\tfrac14 - \tfrac15 + \tfrac16 - \tfrac17\right) + 3\left(\tfrac18 - \tfrac19 + \tfrac1{10} - \tfrac1{11} + \cdots - \tfrac1{15}\right) + \cdots,
\end{align}
where {{math|log{{sub|2}}}} is the logarithm to base 2 and {{math|{{floor| }}}} is the floor function.
This can be generalized to:{{Citation |last1=Pilehrood |first1=Khodabakhsh Hessami |title=Vacca-type series for values of the generalized-Euler-constant function and its derivative |date=2008-08-04 |last2=Pilehrood |first2=Tatiana Hessami|arxiv=0808.0410 }}
where:
In 1926 Vacca found a second series:
\gamma + \zeta(2) & = \sum_{k=2}^\infty \left( \frac1{\left\lfloor\sqrt{k}\right\rfloor^2} - \frac1{k}\right) \\[5pt]
& = \sum_{k=2}^\infty \frac{k - \left\lfloor\sqrt{k}\right\rfloor^2}{k \left\lfloor \sqrt{k} \right\rfloor^2} \\[5pt]
&= \frac12 + \frac23 + \frac1{2^2}\sum_{k=1}^{2\cdot 2} \frac{k}{k+2^2} + \frac1{3^2}\sum_{k=1}^{3\cdot 2} \frac{k}{k+3^2} + \cdots
\end{align}
From the Malmsten–Kummer expansion for the logarithm of the gamma function we get:
Ramanujan, in his lost notebook gave a series that approaches {{mvar|γ}}{{r|Berndt2008}}:
An important expansion for Euler's constant is due to Fontana and Mascheroni
where {{math|{{var|G}}{{sub|{{var|n}}}}}} are Gregory coefficients.{{r|Krämer2005|Blagouchine2016|Blagouchine2018}} This series is the special case {{math|1={{var|k}} = 1}} of the expansions
\gamma &= H_{k-1} - \log k + \sum_{n=1}^{\infty}\frac{(n-1)!|G_n|}{k(k+1) \cdots (k+n-1)} && \\
&= H_{k-1} - \log k + \frac1{2k} + \frac1{12k(k+1)} + \frac1{12k(k+1)(k+2)} + \frac{19}{120k(k+1)(k+2)(k+3)} + \cdots &&
\end{align}
convergent for {{math|1={{var|k}} = 1, 2, ...}}
A similar series with the Cauchy numbers of the second kind {{math|{{var|C}}{{sub|{{var|n}}}}}} is{{r|Blagouchine2016|Alabdulmohsin2018_1478}}
Blagouchine (2018) found a generalisation of the Fontana–Mascheroni series
\quad a>-1
where {{math|{{var|ψ}}{{sub|{{var|n}}}}({{var|a}})}} are the Bernoulli polynomials of the second kind, which are defined by the generating function
\frac{z(1+z)^s}{\log(1+z)}= \sum_{n=0}^\infty z^n \psi_n(s) ,\qquad |z|<1.
For any rational {{mvar|a}} this series contains rational terms only. For example, at {{math|1={{var|a}} = 1}}, it becomes{{r|OEIS_A302120|OEISA302121}}
Other series with the same polynomials include these examples:
and
where {{math|Γ({{var|a}})}} is the gamma function.{{r|Blagouchine2018}}
A series related to the Akiyama–Tanigawa algorithm is
\log(2\pi) - 2 + \frac{2}{3} + \frac{1}{24}+ \frac{7}{540} + \frac{17}{2880}+ \frac{41}{12600} + \ldots
where {{math|{{var|G}}{{sub|{{var|n}}}}(2)}} are the Gregory coefficients of the second order.{{r|Blagouchine2018}}
As a series of prime numbers:
= Asymptotic expansions =
{{mvar|γ}} equals the following asymptotic formulas (where {{math|{{var|H}}{{sub|{{var|n}}}}}} is the {{mvar|n}}th harmonic number):
- (Euler)
- (Negoi)
- (Cesàro)
The third formula is also called the Ramanujan expansion.
Alabdulmohsin derived closed-form expressions for the sums of errors of these approximations.{{r|Alabdulmohsin2018_1478}} He showed that (Theorem A.1):
\sum_{n=1}^\infty \Big(\log n +\gamma - H_n + \frac{1}{2n}\Big) &= \frac{\log (2\pi)-1-\gamma}{2} \\
\sum_{n=1}^\infty \Big(\log \sqrt{n(n+1)} +\gamma - H_n \Big) &= \frac{\log (2\pi)-1}{2}-\gamma \\
\sum_{n=1}^\infty (-1)^n\Big(\log n +\gamma - H_n\Big) &= \frac{\log \pi-\gamma}{2}
\end{align}
= Exponential =
The constant {{math|{{var|e}}{{i sup|1px|{{var|γ}}}}}} is important in number theory. Its numerical value is:{{r|OEIS_A073004}}
{{block indent|{{gaps|1.78107|24179|90197|98523|65041|03107|17954|91696|45214|30343|...}}.}}
{{math|{{var|e}}{{i sup|1px|{{var|γ}}}}}} equals the following limit, where {{math|{{var|p}}{{sub|{{var|n}}}}}} is the {{mvar|n}}th prime number:
This restates the third of Mertens' theorems.{{r|excursions}}
We further have the following product involving the three constants {{math|{{var|e}}}}, {{math|{{var|π}}}} and {{math|{{var|γ}}}}:{{Cite web |last=Weisstein |first=Eric W. |title=Mertens Theorem |url=https://mathworld.wolfram.com/MertensTheorem.html |access-date=2024-10-08 |website=mathworld.wolfram.com |language=en}}
Other infinite products relating to {{math|{{var|e}}{{i sup|1px|{{var|γ}}}}}} include:
\frac{e^{1+\frac{\gamma}{2}}}{\sqrt{2\pi}} &= \prod_{n=1}^\infty e^{-1+\frac1{2n}}\left(1+\frac1{n}\right)^n \\
\frac{e^{3+2\gamma}}{2\pi} &= \prod_{n=1}^\infty e^{-2+\frac2{n}}\left(1+\frac2{n}\right)^n. \end{align}
These products result from the Barnes G-function.
In addition,
where the {{mvar|n}}th factor is the {{math|({{var|n}} + 1)}}th root of
This infinite product, first discovered by Ser in 1926, was rediscovered by Sondow using hypergeometric functions.{{r|Sondow2003}}
It also holds that{{r|ChoiSrivastava2010}}
Published digits
Generalizations
= Stieltjes constants =
{{Main|Stieltjes constants}}
File:Generalisation of Euler–Mascheroni constant.jpg
Euler's generalized constants are given by
for {{math|0 < {{var|α}} < 1}}, with {{mvar|γ}} as the special case {{math|1={{var|α}} = 1}}.{{sfn|Havil|2003|pp=117–18}} Extending for {{math| {{var|α}} > 1}} gives:
with again the limit:
This can be further generalized to
for some arbitrary decreasing function {{mvar|f}}. Setting
gives rise to the Stieltjes constants , that occur in the Laurent series expansion of the Riemann zeta function:
:
with
class="wikitable"
|n |approximate value of γn |OEIS |
0
| +0.5772156649015 |{{OEIS link|A001620}} |
1
|−0.0728158454836 |{{OEIS link|A082633}} |
2
|−0.0096903631928 |{{OEIS link|A086279}} |
3
| +0.0020538344203 |{{OEIS link|A086280}} |
4
| +0.0023253700654 |{{OEIS link|A086281}} |
100
|−4.2534015717080 × 1017 | |
1000
|−1.5709538442047 × 10486 | |
= Euler-Lehmer constants =
Euler–Lehmer constants are given by summation of inverses of numbers in a common
modulo class:{{r|RamMurtySaradha2010}}
The basic properties are
&\gamma(0,q) = \frac{\gamma -\log q}{q}, \\
&\sum_{a=0}^{q-1} \gamma(a,q)=\gamma, \\
&q\gamma(a,q) = \gamma-\sum_{j=1}^{q-1}e^{-\frac{2\pi aij}{q}}\log\left(1-e^{\frac{2\pi ij}{q}}\right),
\end{align}
and if the greatest common divisor {{math|1=gcd({{var|a}},{{var|q}}) = {{var|d}}}} then
=Masser-Gramain constant=
A two-dimensional generalization of Euler's constant is the Masser-Gramain constant. It is defined as the following limiting difference:{{Cite web |last=Weisstein |first=Eric W. |title=Masser-Gramain Constant |url=https://mathworld.wolfram.com/Masser-GramainConstant.html |access-date=2024-10-19 |website=mathworld.wolfram.com |language=en}}
:
where is the smallest radius of a disk in the complex plane containing at least Gaussian integers.
The following bounds have been established: .{{Cite web |last1=Melquiond |first1=Guillaume |last2=Nowak |first2=W. Georg |last3=Zimmermann |first3=Paul |title=Numerical approximation of the Masser-Gramain constant to four decimal digits |url=https://www.lri.fr/~melquion/doc/12-mc.pdf |access-date=2024-10-03}}
See also
References
- {{cite journal |last=Bretschneider |first=Carl Anton |date=1837 |orig-date=1835 |title=Theoriae logarithmi integralis lineamenta nova |journal=Crelle's Journal |volume=17 |pages=257–285 |language=la |url=https://zenodo.org/record/1448830
}}
- {{cite book |last=Havil |first=Julian |date=2003 |title=Gamma: Exploring Euler's Constant |publisher=Princeton University Press |isbn=978-0-691-09983-5
}}
- {{cite journal |last=Lagarias |first=Jeffrey C. |date=2013 |title=Euler's constant: Euler's work and modern developments |journal=Bulletin of the American Mathematical Society |volume=50 |issue=4 |page=556 |doi=10.1090/s0273-0979-2013-01423-x |arxiv=1303.1856 |s2cid=119612431
}}
=Footnotes=
{{Reflist|refs=
{{Cite OEIS |A002852 |Continued fraction for Euler's constant}}
{{cite journal |last=Sondow |first=Jonathan |date=2005 |title=Double integrals for Euler's constant and and an analog of Hadjicostas's formula |journal=American Mathematical Monthly |volume=112 |issue=1 |pages=61–65 |doi=10.2307/30037385 |jstor=30037385 |arxiv=math.CA/0211148}}
{{cite journal |last=Blagouchine |first=Iaroslav V. |date=2016 |title=Expansions of generalized Euler's constants into the series of polynomials in {{math|π−2}} and into the formal enveloping series with rational coefficients only |journal=J. Number Theory |volume=158 |pages=365–396 |doi=10.1016/j.jnt.2015.06.012 |arxiv=1501.00740}}
{{cite book |last=Alabdulmohsin |first=Ibrahim M. |date=2018 |title=Summability Calculus. A Comprehensive Theory of Fractional Finite Sums |publisher=Springer |pages=147–8 |isbn=9783319746487}}
{{cite OEIS|A302120|Absolute value of the numerators of a series converging to Euler's constant}}
{{cite OEIS|A302121|Denominators of a series converging to Euler's constant}}
| last = Ramaré | first = Olivier
| doi = 10.1007/978-3-030-73169-4
| isbn = 978-3-030-73168-7
| location = Basel
| mr = 4400952
| page = 131
| publisher = Birkhäuser/Springer
| series = Birkhäuser Advanced Texts: Basel Textbooks
| title = Excursions in Multiplicative Number Theory
| url = https://books.google.com/books?id=n1piEAAAQBAJ&pg=PA131
| year = 2022| s2cid = 247271545
}}
{{cite OEIS|A073004|Decimal expansion of exp(gamma)}}
{{cite journal |last1=Knuth |first1=Donald E. |author-link=Donald Knuth |date=July 1962 |title=Euler's Constant to 1271 Places |journal=Mathematics of Computation |volume=16 |issue=79 |pages=275–281 |publisher=American Mathematical Society |doi=10.2307/2004048 |jstor=2004048 |url=https://www.jstor.org/stable/2004048}}
{{cite web |last=Yee |first=Alexander J. |title=y-cruncher - A Multi-Threaded Pi-Program |website=www.numberworld.org |url=http://www.numberworld.org/y-cruncher/}}
| last1 = Connallon | first1 = Tim
| last2 = Hodgins | first2 = Kathryn A.
| date = October 2021
| doi = 10.1111/evo.14372
| issue = 11
| journal = Evolution
| pages = 2624–2640
| title = Allen Orr and the genetics of adaptation
| volume = 75| pmid = 34606622
| s2cid = 238357410
}}
}}
Further reading
- {{cite journal |author1=Borwein, Jonathan M. |author2=David M. Bradley |author3=Richard E. Crandall |title=Computational Strategies for the Riemann Zeta Function |journal=Journal of Computational and Applied Mathematics |date=2000 |volume=121 |issue=1–2 |pages=11 |doi=10.1016/s0377-0427(00)00336-8 |bibcode=2000JCoAM.121..247B |ref=none |doi-access=free }} Derives {{math|γ}} as sums over Riemann zeta functions.
- {{cite book |last=Finch |first=Steven R. |date=2003 |title=Mathematical Constants|series= Encyclopedia of Mathematics and its Applications|volume=94|publisher=Cambridge University Press|location=Cambridge|isbn=0-521-81805-2|ref=none}}
- {{cite journal |first1=I. |last1=Gerst |title=Some series for Euler's constant |date=1969 |journal=Amer. Math. Monthly |doi=10.2307/2316370 |volume=76 |issue=3 |pages=237–275 |jstor=2316370 |ref=none}}
- {{cite journal |last=Glaisher |first=James Whitbread Lee |author-link=James Whitbread Lee Glaisher |date=1872 |title=On the history of Euler's constant |journal=Messenger of Mathematics |volume=1 |pages=25–30 |jfm=03.0130.01 |ref=none}}
- {{cite web |last1=Gourdon|first1=Xavier|last2=Sebah|first2=P. |date=2002 |title=Collection of formulae for Euler's constant, {{math|γ}} |url=http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.html |ref=none}}
- {{cite web |last1=Gourdon|first1=Xavier|last2=Sebah|first2=P. |date=2004 |title=The Euler constant: {{math|γ}} |url=http://numbers.computation.free.fr/Constants/Gamma/gamma.html |ref=none}}
- Julian Havil (2003): GAMMA: Exploring Euler's Constant, Princeton University Press, ISBN 978-0-69114133-6.
- {{cite journal |first1=E. A. |last1= Karatsuba |title=Fast evaluation of transcendental functions |journal=Probl. Inf. Transm. |volume =27 |number=44 |pages=339–360 |date=1991 |ref=none}}
- {{cite journal |last1=Karatsuba |first1=E.A. |date=2000 |title=On the computation of the Euler constant {{math|γ}} |journal=Journal of Numerical Algorithms |volume=24 |issue=1–2 |pages=83–97 |doi=10.1023/A:1019137125281 |s2cid=21545868 |ref=none}}
- {{cite book |last=Knuth |first=Donald |author-link=Donald Knuth |date=1997 |title=The Art of Computer Programming, Vol. 1 |edition=3rd |publisher=Addison-Wesley |isbn=0-201-89683-4 |pages=75, 107, 114, 619–620 |ref=none}}
- {{cite journal |first1=D. H. |last1=Lehmer |date=1975 |title=Euler constants for arithmetical progressions |journal=Acta Arith. |volume=27 |number=1 |pages=125–142 |url=http://matwbn.icm.edu.pl/ksiazki/aa/aa27/aa27121.pdf |doi=10.4064/aa-27-1-125-142 |ref=none|doi-access=free }}
- {{cite journal |last1=Lerch |first1=M. |date=1897 |title=Expressions nouvelles de la constante d'Euler |journal=Sitzungsberichte der Königlich Böhmischen Gesellschaft der Wissenschaften |volume=42 |page=5 |ref=none}}
- {{cite book |last=Mascheroni |first=Lorenzo |author-link=Lorenzo Mascheroni |date=1790 |title=Adnotationes ad calculum integralem Euleri, in quibus nonnulla problemata ab Eulero proposita resolvuntur |publisher=Galeati, Ticini |ref=none}}
- {{cite journal |last1=Sondow |first1=Jonathan |date=2002 |title=A hypergeometric approach, via linear forms involving logarithms, to irrationality criteria for Euler's constant |arxiv=math.NT/0211075 |journal=Mathematica Slovaca |volume=59 |pages=307–314 |doi=10.2478/s12175-009-0127-2 |bibcode=2002math.....11075S |s2cid=16340929 |ref=none}} with an Appendix by [https://web.archive.org/web/20130523085959/http://wain.mi.ras.ru/zlobin/ Sergey Zlobin]
External links
- {{springer|title=Euler constant|id=p/e036420|mode=cs1}}
- {{MathWorld|urlname=Euler-MascheroniConstant|title=Euler–Mascheroni constant|ref=none}}
- [https://jonathansondow.github.io/ Jonathan Sondow.]
- [http://www.ccas.ru/personal/karatsuba/algen.htm Fast Algorithms and the FEE Method], E.A. Karatsuba (2005)
- Further formulae which make use of the constant: [http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.html Gourdon and Sebah (2004).]
{{Leonhard Euler}}
{{Authority control}}
{{DEFAULTSORT:Euler's constant}}
Category:Mathematical constants