Stericated 5-simplexes#Stericated 5-simplex

class=wikitable style="float:right; margin-left:8px; width:520px"
align=center valign=top

|120px 120px
5-simplex
{{CDD|node_1|3|node|3|node|3|node|3|node}}

|120px 120px
Stericated 5-simplex
{{CDD|node_1|3|node|3|node|3|node|3|node_1}}

align=center valign=top

|120px 120px
Steritruncated 5-simplex
{{CDD|node_1|3|node_1|3|node|3|node|3|node_1}}

|120px 120px
Stericantellated 5-simplex
{{CDD|node_1|3|node|3|node_1|3|node|3|node_1}}

align=center valign=top

|120px 120px
Stericantitruncated 5-simplex
{{CDD|node_1|3|node_1|3|node_1|3|node|3|node_1}}

|120px 120px
Steriruncitruncated 5-simplex
{{CDD|node_1|3|node_1|3|node|3|node_1|3|node_1}}

align=center valign=top

|colspan=2|180px 180px
Steriruncicantitruncated 5-simplex
(Omnitruncated 5-simplex)
{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}

colspan=4|Orthogonal projections in A5 and A4 Coxeter planes

In five-dimensional geometry, a stericated 5-simplex is a convex uniform 5-polytope with fourth-order truncations (sterication) of the regular 5-simplex.

There are six unique sterications of the 5-simplex, including permutations of truncations, cantellations, and runcinations. The simplest stericated 5-simplex is also called an expanded 5-simplex, with the first and last nodes ringed, for being constructible by an expansion operation applied to the regular 5-simplex. The highest form, the steriruncicantitruncated 5-simplex is more simply called an omnitruncated 5-simplex with all of the nodes ringed.

{{clear}}

Stericated 5-simplex

class="wikitable" style="float:right; margin-left:8px; width:280px"
bgcolor=#e7dcc3 align=center colspan=3|Stericated 5-simplex
bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2|2r2r{3,3,3,3}
2r{32,2} = 2r\left\{\begin{array}{l}3, 3\\3 ,3\end{array}\right\}

bgcolor=#e7dcc3|Coxeter-Dynkin diagram

|colspan=2|{{CDD

node_1|3|node3|node3|node3|node_1}}
or {{CDD|node|split1|nodes|3ab|nodes_11}}
bgcolor=#e7dcc3|4-faces

|62

|6+6 {3,3,3}25px
15+15 {}×{3,3}25px
20 {3}×{3}25px

bgcolor=#e7dcc3|Cells

|180

|60 {3,3}25px
120 {}×{3}25px

bgcolor=#e7dcc3|Faces

|210

|120 {3}
90 {4}

bgcolor=#e7dcc3|Edges

|colspan=2|120

bgcolor=#e7dcc3|Vertices

|colspan=2|30

bgcolor=#e7dcc3|Vertex figure

|colspan=2|80px
Tetrahedral antiprism

bgcolor=#e7dcc3|Coxeter group

|colspan=2|A5×2, {{brackets|3,3,3,3}}, order 1440

bgcolor=#e7dcc3|Properties

|colspan=2|convex, isogonal, isotoxal

A stericated 5-simplex can be constructed by an expansion operation applied to the regular 5-simplex, and thus is also sometimes called an expanded 5-simplex. It has 30 vertices, 120 edges, 210 faces (120 triangles and 90 squares), 180 cells (60 tetrahedra and 120 triangular prisms) and 62 4-faces (12 5-cells, 30 tetrahedral prisms and 20 3-3 duoprisms).

= Alternate names =

  • Expanded 5-simplex
  • Stericated hexateron
  • Small cellated dodecateron (Acronym: scad) (Jonathan Bowers)Klitizing, (x3o3o3o3x - scad)

=Cross-sections=

The maximal cross-section of the stericated hexateron with a 4-dimensional hyperplane is a runcinated 5-cell. This cross-section divides the stericated hexateron into two pentachoral hypercupolas consisting of 6 5-cells, 15 tetrahedral prisms and 10 3-3 duoprisms each.

= Coordinates =

The vertices of the stericated 5-simplex can be constructed on a hyperplane in 6-space as permutations of (0,1,1,1,1,2). This represents the positive orthant facet of the stericated 6-orthoplex.

A second construction in 6-space, from the center of a rectified 6-orthoplex is given by coordinate permutations of:

: (1,-1,0,0,0,0)

The Cartesian coordinates in 5-space for the normalized vertices of an origin-centered stericated hexateron are:

:\left(\pm1,\ 0,\ 0,\ 0,\ 0\right)

:\left(0,\ \pm1,\ 0,\ 0,\ 0\right)

:\left(0,\ 0,\ \pm1,\ 0,\ 0\right)

:\left(\pm1/2,\ 0,\ \pm1/2,\ -\sqrt{1/8},\ -\sqrt{3/8}\right)

:\left(\pm1/2,\ 0,\ \pm1/2,\ \sqrt{1/8},\ \sqrt{3/8}\right)

:\left( 0,\ \pm1/2,\ \pm1/2,\ -\sqrt{1/8},\ \sqrt{3/8}\right)

:\left( 0,\ \pm1/2,\ \pm1/2,\ \sqrt{1/8},\ -\sqrt{3/8}\right)

:\left(\pm1/2,\ \pm1/2,\ 0,\ \pm\sqrt{1/2},\ 0\right)

= Root system =

Its 30 vertices represent the root vectors of the simple Lie group A5. It is also the vertex figure of the 5-simplex honeycomb.

= Images =

{{5-simplex2 Coxeter plane graphs|t04|100}}

class=wikitable
align=center

|160px
orthogonal projection with [6] symmetry

Steritruncated 5-simplex

class="wikitable" style="float:right; margin-left:8px; width:280px"
bgcolor=#e7dcc3 align=center colspan=3|Steritruncated 5-simplex
bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2|t0,1,4{3,3,3,3}

bgcolor=#e7dcc3|Coxeter-Dynkin diagram

|colspan=2|{{CDD|node_1|3|node_1

3|node|3|node|3|node_1}}
bgcolor=#e7dcc3|4-faces

|62

|6 t{3,3,3}
15 {}×t{3,3}
20 {3}×{6}
15 {}×{3,3}
6 t0,3{3,3,3}

bgcolor=#e7dcc3|Cells

|330

|

bgcolor=#e7dcc3|Faces

|570

|

bgcolor=#e7dcc3|Edges

|colspan=2|420

bgcolor=#e7dcc3|Vertices

|colspan=2|120

bgcolor=#e7dcc3|Vertex figure

|colspan=2|100px

bgcolor=#e7dcc3|Coxeter group

|colspan=2|A5 [3,3,3,3], order 720

bgcolor=#e7dcc3|Properties

|colspan=2|convex, isogonal

= Alternate names =

  • Steritruncated hexateron
  • Celliprismated hexateron (Acronym: cappix) (Jonathan Bowers)Klitizing, (x3x3o3o3x - cappix)

= Coordinates =

The coordinates can be made in 6-space, as 180 permutations of:

: (0,1,1,1,2,3)

This construction exists as one of 64 orthant facets of the steritruncated 6-orthoplex.

= Images =

{{5-simplex Coxeter plane graphs|t014|100}}

Stericantellated 5-simplex

class="wikitable" style="float:right; margin-left:8px; width:280px"
bgcolor=#e7dcc3 align=center colspan=3|Stericantellated 5-simplex
bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2|t0,2,4{3,3,3,3}

bgcolor=#e7dcc3|Coxeter-Dynkin diagram

|colspan=2|{{CDD

node_1|3|node3|node_1|3|node|3|node_1}}
or {{CDD|node_1|split1|nodes|3ab|nodes_11}}
bgcolor=#e7dcc3|4-faces

| 62

|12 rr{3,3,3}
30 rr{3,3}x{}
20 {3}×{3}

bgcolor=#e7dcc3|Cells

|420

|60 rr{3,3}
240 {}×{3}
90 {}×{}×{}
30 r{3,3}

bgcolor=#e7dcc3|Faces

|900

|360 {3}
540 {4}

bgcolor=#e7dcc3|Edges

|colspan=2|720

bgcolor=#e7dcc3|Vertices

|colspan=2|180

bgcolor=#e7dcc3|Vertex figure

|colspan=2|100px

bgcolor=#e7dcc3|Coxeter group

|colspan=2|A5×2, {{brackets|3,3,3,3}}, order 1440

bgcolor=#e7dcc3|Properties

|colspan=2|convex, isogonal

= Alternate names =

  • Stericantellated hexateron
  • Cellirhombated dodecateron (Acronym: card) (Jonathan Bowers)Klitizing, (x3o3x3o3x - card)

= Coordinates =

The coordinates can be made in 6-space, as permutations of:

: (0,1,1,2,2,3)

This construction exists as one of 64 orthant facets of the stericantellated 6-orthoplex.

= Images =

{{5-simplex2 Coxeter plane graphs|t024|100}}

Stericantitruncated 5-simplex

class="wikitable" style="float:right; margin-left:8px; width:280px"

|bgcolor=#e7dcc3 align=center colspan=3|Stericantitruncated 5-simplex

bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2|t0,1,2,4{3,3,3,3}

bgcolor=#e7dcc3|Coxeter-Dynkin diagram

|colspan=2|{{CDD|node_1|3|node_1

3|node_1|3|node|3|node_1}}
bgcolor=#e7dcc3|4-faces

|62

|

bgcolor=#e7dcc3|Cells

|480

|

bgcolor=#e7dcc3|Faces

|1140

|

bgcolor=#e7dcc3|Edges

|colspan=2|1080

bgcolor=#e7dcc3|Vertices

|colspan=2|360

bgcolor=#e7dcc3|Vertex figure

|colspan=2|100px

bgcolor=#e7dcc3|Coxeter group

|colspan=2|A5 [3,3,3,3], order 720

bgcolor=#e7dcc3|Properties

|colspan=2|convex, isogonal

= Alternate names =

  • Stericantitruncated hexateron
  • Celligreatorhombated hexateron (Acronym: cograx) (Jonathan Bowers)Klitizing, (x3x3x3o3x - cograx)

= Coordinates =

The coordinates can be made in 6-space, as 360 permutations of:

: (0,1,1,2,3,4)

This construction exists as one of 64 orthant facets of the stericantitruncated 6-orthoplex.

= Images =

{{5-simplex Coxeter plane graphs|t0124|100}}

Steriruncitruncated 5-simplex

class="wikitable" style="float:right; margin-left:8px; width:280px"
bgcolor=#e7dcc3 align=center colspan=3|Steriruncitruncated 5-simplex
bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2|t0,1,3,4{3,3,3,3}
2t{32,2}

bgcolor=#e7dcc3|Coxeter-Dynkin diagram

|colspan=2|{{CDD

node_1|3|node_13|node|3|node_1|3|node_1}}
or {{CDD|node|split1|nodes_11|3ab|nodes_11}}
bgcolor=#e7dcc3|4-faces

|62

|12 t0,1,3{3,3,3}
30 {}×t{3,3}
20 {6}×{6}

bgcolor=#e7dcc3|Cells

|450

|

bgcolor=#e7dcc3|Faces

|1110

|

bgcolor=#e7dcc3|Edges

|colspan=2|1080

bgcolor=#e7dcc3|Vertices

|colspan=2|360

bgcolor=#e7dcc3|Vertex figure

|colspan=2|100px

bgcolor=#e7dcc3|Coxeter group

|colspan=2|A5×2, {{brackets|3,3,3,3}}, order 1440

bgcolor=#e7dcc3|Properties

|colspan=2|convex, isogonal

= Alternate names =

  • Steriruncitruncated hexateron
  • Celliprismatotruncated dodecateron (Acronym: captid) (Jonathan Bowers)Klitizing, (x3x3o3x3x - captid)

= Coordinates =

The coordinates can be made in 6-space, as 360 permutations of:

: (0,1,2,2,3,4)

This construction exists as one of 64 orthant facets of the steriruncitruncated 6-orthoplex.

= Images =

{{5-simplex2 Coxeter plane graphs|t0134|100}}

Omnitruncated 5-simplex

class="wikitable" style="float:right; margin-left:8px; width:280px"
bgcolor=#e7dcc3 align=center colspan=3|Omnitruncated 5-simplex
bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2|t0,1,2,3,4{3,3,3,3}
2tr{32,2}

bgcolor=#e7dcc3|Coxeter-Dynkin
diagram

|colspan=2|{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}
or {{CDD|node_1|split1|nodes_11|3ab|nodes_11}}

bgcolor=#e7dcc3|4-faces

|62

|12 t0,1,2,3{3,3,3}25px
30 {}×tr{3,3}25px
20 {6}×{6}25px

bgcolor=#e7dcc3|Cells

|540

|360 t{3,4}25px
90 {4,3}25px
90 {}×{6}25px

bgcolor=#e7dcc3|Faces

|1560

|480 {6}
1080 {4}

bgcolor=#e7dcc3|Edges

|colspan=2|1800

bgcolor=#e7dcc3|Vertices

|colspan=2|720

bgcolor=#e7dcc3|Vertex figure

|colspan=2|80px
Irregular 5-cell

bgcolor=#e7dcc3|Coxeter group

|colspan=2| A5×2, {{brackets|3,3,3,3}}, order 1440

bgcolor=#e7dcc3|Properties

|colspan=2|convex, isogonal, zonotope

The omnitruncated 5-simplex has 720 vertices, 1800 edges, 1560 faces (480 hexagons and 1080 squares), 540 cells (360 truncated octahedra, 90 cubes, and 90 hexagonal prisms), and 62 4-faces (12 omnitruncated 5-cells, 30 truncated octahedral prisms, and 20 6-6 duoprisms).

= Alternate names =

  • Steriruncicantitruncated 5-simplex (Full description of omnitruncation for 5-polytopes by Johnson)
  • Omnitruncated hexateron
  • Great cellated dodecateron (Acronym: gocad) (Jonathan Bowers)Klitizing, (x3x3x3x3x - gocad)

= Coordinates =

The vertices of the omnitruncated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,1,2,3,4,5). These coordinates come from the positive orthant facet of the steriruncicantitruncated 6-orthoplex, t0,1,2,3,4{34,4}, {{CDD|node|4|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}.

= Images =

{{5-simplex2 Coxeter plane graphs|t01234|120}}

Image:Omnitruncated Hexateron.png]]

= Permutohedron =

The omnitruncated 5-simplex is the permutohedron of order 6. It is also a zonotope, the Minkowski sum of six line segments parallel to the six lines through the origin and the six vertices of the 5-simplex.

class=wikitable

|480px
Orthogonal projection, vertices labeled as a permutohedron.

= Related honeycomb =

The omnitruncated 5-simplex honeycomb is constructed by omnitruncated 5-simplex facets with 3 facets around each ridge. It has Coxeter-Dynkin diagram of {{CDD|branch_11|3ab|nodes_11|3ab|branch_11}}.

class=wikitable
align=center

!Coxeter group

!{\tilde{I}}_{1}

!{\tilde{A}}_{2}

!{\tilde{A}}_{3}

!{\tilde{A}}_{4}

!{\tilde{A}}_{5}

align=center

!Coxeter-Dynkin

|{{CDD|node_1|infin|node_1}}

|{{CDD

branch_11|split2|node_1}}

|{{CDD|branch_11|3ab|branch_11}}

|{{CDD|branch_11|3ab|nodes_11|split2|node_1}}

|{{CDD|branch_11|3ab|nodes_11|3ab|branch_11}}

Picture

|100px

|100px

|100px

|

|

Name

|Apeirogon

|Hextille

|Omnitruncated
3-simplex
honeycomb

|Omnitruncated
4-simplex
honeycomb

|Omnitruncated
5-simplex
honeycomb

Facets

|100px

|100px

|100px

|100px

|100px

= Full snub 5-simplex =

The full snub 5-simplex or omnisnub 5-simplex, defined as an alternation of the omnitruncated 5-simplex is not uniform, but it can be given Coxeter diagram {{CDD|node_h|3|node_h|3|node_h|3|node_h|3|node_h}} and symmetry {{brackets|3,3,3,3}}+, and constructed from 12 snub 5-cells, 30 snub tetrahedral antiprisms, 20 3-3 duoantiprisms, and 360 irregular 5-cells filling the gaps at the deleted vertices.

Related uniform polytopes

These polytopes are a part of 19 uniform 5-polytopes based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)

{{Hexateron family}}

Notes

{{reflist}}

References

  • H.S.M. Coxeter:
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • {{KlitzingPolytopes|polytera.htm|5D|uniform polytopes (polytera)}} x3o3o3o3x - scad, x3x3o3o3x - cappix, x3o3x3o3x - card, x3x3x3o3x - cograx, x3x3o3x3x - captid, x3x3x3x3x - gocad