Sustainability measurement#Life cycle analysis
{{Short description|Quantitbasis for the informed management of sustainability}}
File:Deforestation in Borneo.jpg, the Indonesian part of Borneo, in 2013, to make way for a new coal mining project]]
Sustainability measurement is a set of frameworks or indicators used to measure how sustainable something is. This includes processes, products, services and businesses.{{Cite book |last=Hardyment |first=Richard |url=http://dx.doi.org/10.4324/9781003457732 |title=Measuring Good Business |date=2024-02-02 |publisher=Routledge |isbn=978-1-003-45773-2 |location=London|doi=10.4324/9781003457732 }} Sustainability is difficult to quantify and it may even be impossible to measure as there is no fixed definition. To measure sustainability, frameworks and indicators consider environmental, social and economic domains. The metrics vary by use case and are still evolving. They include indicators, benchmarks and audits. They include sustainability standards and certification systems like Fairtrade and Organic. They also involve indices and accounting. They can include assessment, appraisalDalal-Clayton, Barry and Sadler, Barry 2009. Sustainability Appraisal: A Sourcebook and Reference Guide to International Experience. London: Earthscan. {{ISBN|978-1-84407-357-3}}.{{page needed|date=October 2019}} and other reporting systems. The metrics are used over a wide range of spatial and temporal scales.Hak, T. et al. 2007. Sustainability Indicators, SCOPE 67. Island Press, London. [https://books.google.com/books?id=W4o-qunretMC&dq=Hak,+T.+et+al.+2007.+Sustainability+Indicators,+SCOPE+67.+Island+Press,+London.&pg=PR5] {{Webarchive|url=https://web.archive.org/web/20111218143417/http://books.google.com/books?hl=en|date=2011-12-18}}Bell, Simon and Morse, Stephen 2008. [https://books.google.com/books?id=6DOC13cd9c0C Sustainability Indicators]. Measuring the Immeasurable? 2nd edn. London: Earthscan. {{ISBN|978-1-84407-299-6}}. For organizations, sustainability measures include corporate sustainability reporting and Triple Bottom Line accounting. For countries, they include estimates of the quality of sustainability governance or quality of life measures, or environmental assessments like the Environmental Sustainability Index and Environmental Performance Index. Some methods let us track sustainable development.{{Cite journal |last1=Wackernagel |first1=Mathis |last2=Lin |first2=David |last3=Evans |first3=Mikel |last4=Hanscom |first4=Laurel |last5=Raven |first5=Peter |date=2019 |title=Defying the Footprint Oracle: Implications of Country Resource Trends |journal=Sustainability |language=en |volume=11 |issue=7 |pages=2164 |doi=10.3390/su11072164 |doi-access=free}}{{cite web |title=Sustainable Development visualized |url=https://data.footprintnetwork.org/#/sustainableDevelopment?cn=all&type=earth&yr=2018 |access-date=24 March 2022 |website=Sustainability concepts}} These include the UN Human Development Index and ecological footprints.
Two related concepts for sustainability measurement are planetary boundaries{{cite journal|last1=Steffen|first1=Will|date=13 Feb 2015|title=Planetary boundaries: Guiding human development on a changing planet|journal=Science|volume=347|issue=6223|page=1259855|doi=10.1126/science.1259855|pmid=25592418|doi-access=free|s2cid=206561765|hdl=1885/13126|hdl-access=free}} and ecological footprint.{{cite web|title=Ecological Footprints|url=https://www.gdrc.org/sustdev/concepts/06-footprints.html|access-date=19 April 2020|website=Sustainability concepts|archive-date=8 August 2020|archive-url=https://web.archive.org/web/20200808050255/https://www.gdrc.org/sustdev/concepts/06-footprints.html|url-status=live}} If the boundaries are not crossed and the ecological footprint does not exceed the carrying capacity of the biosphere, the mode of life can be regarded as sustainable.
A set of well defined and harmonized indicators can help to make sustainability tangible. Those indicators are expected to be identified and adjusted through empirical observations (trial and error).{{cite journal | year = 2006 | title = An adaptive learning process for developing and applying sustainability indicators with local communities | url = http://km.fao.org/uploads/media/An%20adaptative%20learning%20process%20for%20developing%20and%20applying%20sustainability%20indicators%20with%20local%20communities.pdf | journal = Ecological Economics | volume = 59 | issue = 4| pages = 406–418 | doi = 10.1016/j.ecolecon.2005.11.008 | last1 = Reed | first1 = Mark S. | bibcode = 2006EcoEc..59..406R | access-date = 18 February 2011 | archive-url = https://web.archive.org/web/20110726045818/http://km.fao.org/uploads/media/An%20adaptative%20learning%20process%20for%20developing%20and%20applying%20sustainability%20indicators%20with%20local%20communities.pdf | archive-date = 26 July 2011 | df = dmy-all }} The most common critiques are related to issues like data quality, comparability, objective function and the necessary resources.{{cite web|title=Annette Lang, Ist Nachhaltigkeit messbar?, Uni Hannover, 2003|url=http://www.nse-netz.de/downloads/nachh.pdf|archive-url=https://web.archive.org/web/20110802135133/http://www.nse-netz.de/downloads/nachh.pdf|archive-date=2 August 2011|access-date=28 September 2011|language=de}} However a more general criticism is coming from the project management community: "How can a sustainable development be achieved at global level if we cannot monitor it in any single project?".{{cite web |url=http://www.grida.no/publications/et/ep4/page/2653.aspx |title=Do global targets matter?, The Environment Times, Poverty Times #4, UNEP/GRID-Arendal, 2010 |publisher=Grida.no |access-date=28 September 2011 |archive-url=https://web.archive.org/web/20110629043039/http://www.grida.no/publications/et/ep4/page/2653.aspx |archive-date=29 June 2011 }}
Sustainability need and framework
Sustainable development has become the primary yardstick of improvement for industries and is being integrated into effective government and business strategies. The needs for sustainability measurement include improvement in the operations, benchmarking performances, tracking progress, and evaluating process, among others.{{Cite journal|last1=Martins|first1=António A.|last2=Mata|first2=Teresa M.|last3=Costa|first3=Carlos A. V.|last4=Sikdar|first4=Subhas K.|date=2007-05-01|title=Framework for Sustainability Metrics|journal=Industrial & Engineering Chemistry Research|volume=46|issue=10|pages=2962–2973|doi=10.1021/ie060692l|issn=0888-5885}} For the purposes of building sustainability indicators, frameworks can be developed and the steps are as follows:{{Cite web |url=https://www.epa.gov/sites/production/files/2014-10/documents/framework-for-sustainability-indicators-at-epa.pdf |title=Archived copy |access-date=2019-03-18 |archive-date=2017-06-19 |archive-url=https://web.archive.org/web/20170619214353/https://www.epa.gov/sites/production/files/2014-10/documents/framework-for-sustainability-indicators-at-epa.pdf |url-status=live }}
- Defining the system- A proper and definite system is defined. A proper system boundary is drawn for further analysis.
- Elements of the system- The whole input, output of materials, emissions, energy and other auxiliary elements are properly analysed. The working conditions, process parameters and characteristics are defined in this step.
- Indicators selection- The indicators is selected of which measurement has to be done. This forms the metric for this system whose analysis is done in the further steps.
- Assessment and Measurement- Proper assessing tools are used and tests or experiments are performed for the pre-defined indicators to give a value for the indicators measurement.
- Analysis and reviewing the results- Once the results have been obtained, proper analysis and interpretation is done and tools are used to improve and revise the processes present in the system.
Sustainability indicators and their function
{{See also|Sustainability metrics and indices}}
The principal objective of sustainability indicators is to inform public policy-making as part of the process of sustainability governance.{{cite journal |url=http://sapiens.revues.org/index166.html |last=Boulanger |first=P. M. |title=Sustainable development indicators: a scientific challenge, a democratic issue |journal=S.A.P.I.EN.S |volume=1 |issue=1 |date=2008-11-26 |access-date=2013-07-23 |archive-date=2011-01-09 |archive-url=https://web.archive.org/web/20110109125624/http://sapiens.revues.org/index166.html |url-status=live }} Sustainability indicators can provide information on any aspect of the interplay between the environment and socio-economic activities.Hak, T., Moldan, B. & Dahl, A.L. 2007. SCOPE 67. Sustainability indicators. Island Press, London. Building strategic indicator sets generally deals with just a few simple questions: what is happening? (descriptive indicators), does it matter and are we reaching targets? (performance indicators), are we improving? (efficiency indicators), are measures working? (policy effectiveness indicators), and are we generally better off? (total welfare indicators).
The International Institute for Sustainable Development and the United Nations Conference on Trade and Development established the Committee on Sustainability Assessment (COSA) in 2006 to evaluate sustainability initiatives operating in agriculture and develop indicators for their measurable social, economic and environmental objectives.{{cite report | vauthors=Giovannucci D, Potts J | year=2007 | publisher=International Institute for Sustainable Development | url=https://www.iisd.org/pdf/2007/cosa.pdf | title=The COSA Project | access-date=2020-02-28 | archive-date=2017-01-02 | archive-url=https://web.archive.org/web/20170102174641/https://www.iisd.org/pdf/2007/cosa.pdf | url-status=live }}
One popular general framework used by The European Environment Agency uses a slight modification of the Organisation for Economic Co-operation and Development DPSIR system.Stanners, D. et al. 2007. Frameworks for environmental assessment and indicators at the EEA. In: Hak, T., Moldan, B. & Dahl, A.L. 2007. SCOPE 67. Sustainability indicators. Island Press, London. This breaks up environmental impact into five stages. Social and economic developments (consumption and production) (D)rive or initiate environmental (P)ressures which, in turn, produces a change in the (S)tate of the environment which leads to (I)mpacts of various kinds. Societal (R)esponses (policy guided by sustainability indicators) can be introduced at any stage of this sequence of events.
=Politics=
{{See also|Environmental politics|Environmental governance}}
A study concluded that social indicators and, therefore, sustainable development indicators, are scientific constructs whose principal objective is to inform public policy-making.{{cite journal|author=Paul-Marie Boulanger |url=http://sapiens.revues.org/index166.html |title=Sustainable development indicators: a scientific challenge, a democratic issue |journal=S.A.P.I.EN.S |volume=1 |issue=1 |year=2008 |access-date=28 September 2011}} The International Institute for Sustainable Development has similarly developed a political policy framework, linked to a sustainability index for establishing measurable entities and metrics. The framework consists of six core areas:
- International trade and investment
- Economic policy
- Climate change and energy
- Measurement and assessment
- Natural resource management
- Communication technologies.
The United Nations Global Compact Cities Programme has defined sustainable political development in a way that broadens the usual definition beyond states and governance. The political is defined as the domain of practices and meanings associated with basic issues of social power as they pertain to the organisation, authorisation, legitimation and regulation of a social life held in common. This definition is in accord with the view that political change is important for responding to economic, ecological and cultural challenges. It also means that the politics of economic change can be addressed. They have listed seven subdomains of the domain of politics:{{usurped|1=[https://web.archive.org/web/20131112175841/http://citiesprogramme.com/archives/resource/circles-of-sustainability-urban-profile-process Article title]}} {{Cite journal|author1=Liam Magee|author2=Andy Scerri|author3=Paul James|author4=James A. Thom|author5=Lin Padgham|author6=Sarah Hickmott|author7=Hepu Deng|author8=Felicity Cahill|year=2013|title=Reframing social sustainability reporting: Towards an engaged approach|url=https://www.academia.edu/4362669|journal=Environment, Development and Sustainability|volume=15|issue=1 |pages=225–243|doi=10.1007/s10668-012-9384-2|bibcode=2013EDSus..15..225M |s2cid=153452740}}
- Organization and governance
- Law and justice
- Communication and critique
- Representation and negotiation
- Security and accord
- Dialogue and reconciliation
- Ethics and accountability
Metrics at the global scale
{{See also|Sustainability metrics and indices}}
There are numerous indicators which could be used as basis for sustainability measurement. Few commonly used indicators are:
Environmental sustainability indicators:{{cite journal |last1=Dong |first1=Yan |last2=Hauschild |first2=Michael Z. |title=Indicators for Environmental Sustainability |journal=Procedia CIRP |date=2017 |volume=61 |pages=697–702 |doi=10.1016/j.procir.2016.11.173 |doi-access=free }}
- Global warming potential
- Acidification potential
- Ozone depletion potential
- Aerosol optical depth
- Eutrophication potential
- Ionization radiation potential
- Photochemical ozone potential
- Waste treatment
- Freshwater use
- Energy resources use
- Level of Biodiversity{{Cite book |last1=Bell |first1=Simon |url=https://books.google.com/books?id=nWKsBwAAQBAJ&dq=sustainability+indicators&pg=PA23 |title=Sustainability Indicators: Measuring the Immeasurable? |last2=Morse |first2=Stephen |date=2012-05-04 |publisher=Routledge |isbn=978-1-136-55602-9 |language=en}}
Economic indicators:{{cite journal |last1=Tisdell |first1=Clem |title=Economic indicators to assess the sustainability of conservation farming projects: An evaluation |journal=Agriculture, Ecosystems & Environment |date=May 1996 |volume=57 |issue=2–3 |pages=117–131 |doi=10.1016/0167-8809(96)01017-1 |bibcode=1996AgEE...57..117T }}{{cite journal |last1=Labuschagne |first1=Carin |last2=Brent |first2=Alan C. |last3=van Erck |first3=Ron P.G. |title=Assessing the sustainability performances of industries |journal=Journal of Cleaner Production |date=March 2005 |volume=13 |issue=4 |pages=373–385 |doi=10.1016/j.jclepro.2003.10.007 |bibcode=2005JCPro..13..373L |hdl=2263/4325 |hdl-access=free }}
- Gross domestic product
- Trade balance
- Local government income
- Profit, value and tax
- Investments
- Employment generated
- Equity
- Health and safety
- Education
- Housing/living conditions
- Community cohesion
- Social security
Due to the large numbers of various indicators that could be used for sustainability measurement, proper assessment and monitoring is required. In order to organize the chaos and disorder in selecting the metrics, specific organizations have been set up which groups the metrics under different categories and defines proper methodology to implement it for measurement. They provide modelling techniques and indexes to compare the measurement and have methods to convert the scientific measurement results into easy to understand terms.{{Cite web|url=https://sustainabledevelopment.un.org/index.php?page=view&type=400&nr=2013&menu=35|title=Indicators and a Monitoring Framework for the Sustainable Development Goals .:. Sustainable Development Knowledge Platform|website=sustainabledevelopment.un.org|access-date=2019-02-27|archive-date=2019-08-16|archive-url=https://web.archive.org/web/20190816061311/https://sustainabledevelopment.un.org/index.php?page=view&type=400&nr=2013&menu=35|url-status=live}}
= United Nations indicators =
The United Nations has developed extensive sustainability measurement tools in relation to sustainable development [https://www.un.org/esa/sustdev/natlinfo/indicators/isd.htm] {{Webarchive|url=https://web.archive.org/web/20090205004433/http://www.un.org/esa/sustdev/natlinfo/indicators/isd.htm|date=2009-02-05}} United Nations sustainable development indicators as well as a System of Integrated Environmental and Economic Accounting.[http://unstats.un.org/unsd/envaccounting/seea.asp] {{Webarchive|url=https://web.archive.org/web/20140331084549/http://unstats.un.org/unsd/envAccounting/seea.asp|date=2014-03-31}}, International Standard Industrial Classification UN System of Integrated Environmental and Economic Accounting
File:United Nations Commission on Sustainable Development.jpg
The UN Commission on Sustainable Development (CSD) has published a list of 140 indicators which covers environmental, social, economical and institutional aspects of sustainable development.{{Cite web |url=http://www.pvsustain.org/dmdocuments/Class%203%20Singh%20Sustainable%20Assessment.pdf |title=Archived copy |access-date=2019-03-18 |archive-date=2020-09-22 |archive-url=https://web.archive.org/web/20200922054303/http://www.pvsustain.org/dmdocuments/Class%203%20Singh%20Sustainable%20Assessment.pdf |url-status=live }}
=Benchmarks, indicators, indexes, auditing etc.=
In the last couple of decades, there has arisen a crowded toolbox of quantitative methods used to assess sustainability — including measures of resource use like life cycle assessment, measures of consumption like the ecological footprint and measurements of quality of environmental governance like the Environmental Performance Index. The following is a list of quantitative "tools" used by sustainability scientists - the different categories are for convenience only as defining criteria will intergrade. It would be too difficult to list all those methods available at different levels of the organization so those listed here are at the global level only.
: A benchmark is a point of reference for a measurement. Once a benchmark is established it is possible to assess trends and measure progress. Baseline global data on a range of sustainability parameters is available in the list of global sustainability statistics.
: A sustainability index is an aggregate sustainability indicator that combines multiple sources of data. There is a Consultative Group on Sustainable Development Indices{{cite web |url=http://www.iisd.org |title=Consultative Group on Sustainable Development Indices |publisher=International Institute for Sustainable Development |access-date=2008-06-18 |archive-date=2019-10-12 |archive-url=https://web.archive.org/web/20191012193436/http://www.iisd.org/ |url-status=live }}
{{Col-begin}}
{{Col-3}}
:Environmental Performance Index
:Energy Sustainability Index
:Environmental Sustainability Index
:Environmental Vulnerability Index
{{Col-3}}
: Gender-related Development Index
::(formerly Index of Sustainable Economic Welfare)
{{Col-3}}
:Human Development Index (see List of countries by HDI)
:Index of Sustainable Economic Welfare
:Sustainable Governance Indicators. The Status Index {{cite web |url=http://www.sgi-network.org/ |title=SGI – Sustainable Governance Indicators 2011 |publisher=Sgi-network.org |access-date=2013-07-23 |archive-date=2011-07-19 |archive-url=https://web.archive.org/web/20110719090733/http://www.sgi-network.org/ |url-status=live }} ranks 30 OECD countries in terms of sustainable reform performance
{{Col-end}}
:Many environmental problems ultimately relate to the human effect on those global biogeochemical cycles that are critical to life. Over the last decade monitoring these cycles have become a more urgent target for research:
{{Col-begin}}
{{Col-2}}
::* water cycle
::* carbon cycle
::* phosphorus cycle
{{Col-2}}
::* nitrogen cycle
::* sulphur cycle
::* oxygen cycle
{{Col-end}}
- Auditing
:Sustainability auditing and reporting are used to evaluate the sustainability performance of a company, organization, or other entity using various performance indicators.Hill, J. 1992. Towards Good Environmental Practice. The Institute of Business Ethics, London. Popular auditing procedures available at the global level include:
:* ISO 14000
:* ISO 14031
:* Triple Bottom Line Accounting
:* input-output analysis can be used for any level of organization with a financial budget. It relates environmental impact to expenditure by calculating the resource intensity of goods and services.
- Reporting
- Global Reporting Initiative modelling and monitoring procedures.{{cite web |url=http://www.globalreporting.org/Home |title=Global Reporting Initiative |publisher=Global Reporting Initiative |access-date=2008-06-18 |archive-url=https://web.archive.org/web/20080616060215/http://www.globalreporting.org/Home |archive-date=2008-06-16 }}{{cite web |url=http://www.epeat.net/Docs/GRI_guidelines.pdf |title=Global Reporting Initiative Guidelines 2002 |access-date=2008-06-18 |archive-url=https://web.archive.org/web/20081217063729/http://www.epeat.net/Docs/GRI_guidelines.pdf |archive-date=2008-12-17 }}{{cite web |url=http://www.enviroreporting.com/detail_page.phtml?page=resource2 |title=International Corporate Sustainability Reporting |access-date=2008-06-18 |archive-url=https://web.archive.org/web/20071121060925/http://www.enviroreporting.com/detail_page.phtml?page=resource2 |archive-date=2007-11-21 }} Many of these are currently in their developing phase.
- State of the Environment reporting provides general background information on the environment and is progressively including more indicators.
- European sustainability Eurostat. (2007). "Measuring progress towards a more sustainable Europe. 2007 monitoring report of the EU sustainable development strategy."[http://passthrough.fw-notify.net/download/360813/http://ec.europa.eu/sustainable/docs/estat_2007_sds_en.pdf]{{Dead link|date=November 2018|bot=InternetArchiveBot|fix-attempted=yes}} Retrieved on 2009-04-14.
- Accounting
:Some accounting methods attempt to include environmental costs rather than treating them as externalities
:* Sustainable value
== Life cycle analysis ==
A life cycle analysis is often conducted when assessing the sustainability of a product or prototype.{{Cite journal|last1=Mestre|first1=Ana|last2=Cooper|first2=Tim|date=2017|title=Circular Product Design. A Multiple Loops Life Cycle Design Approach for the Circular Economy|journal=Design Journal|volume=20|pages=S1620–S1635|doi=10.1080/14606925.2017.1352686|doi-access=free}} The decision to choose materials is heavily weighted on its longevity, renewability, and efficiency. These factors ensure that researchers are conscious of community values that align with positive environmental, social, and economic impacts.
=Resource metrics=
Part of this process can relate to resource use such as energy accounting or to economic metrics or price system values as compared to non-market economics potential, for understanding resource use.{{cite web |url=http://www.eoearth.org/article/Net_energy_analysis |title=Net energy analysis |publisher=Eoearth.org |date=2010-07-23 |access-date=2013-07-23 |archive-date=2013-04-29 |archive-url=https://web.archive.org/web/20130429194936/http://www.eoearth.org/article/Net_energy_analysis |url-status=live }}
An important task for resource theory (energy economics) is to develop methods to optimize resource conversion processes.{{cite web |url=http://telstar.ote.cmu.edu/environ/m3/s3/05account.shtml |title=Environmental Decision Making, Science, and Technology |publisher=Telstar.ote.cmu.edu |access-date=2013-07-23 |archive-url=https://web.archive.org/web/20100105164509/http://telstar.ote.cmu.edu/environ/m3/s3/05account.shtml |archive-date=2010-01-05 }} These systems are described and analyzed by means of the methods of mathematics and the natural sciences.{{cite web |url=http://exergy.se/goran/thesis/ |title=Exergy - A Useful Concept.Intro |publisher=Exergy.se |access-date=2013-07-23 |archive-date=2012-07-16 |archive-url=https://web.archive.org/web/20120716183551/http://exergy.se/goran/thesis/ |url-status=live }} Human factors, however, have dominated the development of our perspective of the relationship between nature and society since at least the Industrial Revolution, and in particular, have influenced how we describe and measure the economic impacts of changes in resource quality. A balanced view of these issues requires an understanding of the physical framework in which all human ideas, institutions, and aspirations must operate.{{cite web |url=http://www.eoearth.org/article/Energy_and_economic_myths_(historical) |title=Energy and economic myths (historical) |publisher=Eoearth.org |access-date=2013-07-23 |archive-date=2013-06-06 |archive-url=https://web.archive.org/web/20130606180734/http://www.eoearth.org/article/Energy_and_economic_myths_(historical) |url-status=live }}Image:Oil imports.PNG
= Energy returned on energy invested =
{{Main|Energy returned on energy invested}}
When oil production first began in the mid-nineteenth century, the largest oil fields recovered fifty barrels of oil for every barrel used in the extraction, transportation, and refining. This ratio is often referred to as the Energy Return on Energy Investment (EROI or EROEI). Currently, between one and five barrels of oil are recovered for each barrel-equivalent of energy used in the recovery process.{{Cite journal|last1=Tripathi|first1=Vinay S.|last2=Brandt|first2=Adam R.|date=2017-02-08|title=Estimating decades-long trends in petroleum field energy return on investment (EROI) with an engineering-based model|journal=PLOS ONE|volume=12|issue=2|pages=e0171083|doi=10.1371/journal.pone.0171083|issn=1932-6203|pmc=5298284|pmid=28178318|bibcode=2017PLoSO..1271083T|doi-access=free}} As the EROEI drops to one, or equivalently the net energy gain falls to zero, the oil production is no longer a net energy source.{{Cite web |last=Michaux|first=Simon|title=Appendix D -ERoEI Comparison of Energy Resources |website=Academia |url=https://www.academia.edu/36305455|language=en |access-date=2019-02-25|archive-date=2019-12-12|archive-url=https://web.archive.org/web/20191212132224/https://www.academia.edu/36305455|url-status=live}} This happens long before the resource is physically exhausted.
Note that it is important to understand the distinction between a barrel of oil, which is a measure of oil, and a barrel of oil equivalent (BOE), which is a measure of energy. Many sources of energy, such as fission, solar, wind, and coal, are not subject to the same near-term supply restrictions that oil is. Accordingly, even an oil source with an EROEI of 0.5 can be usefully exploited if the energy required to produce that oil comes from a cheap and plentiful energy source. Availability of cheap, but hard to transport, natural gas in some oil fields has led to using natural gas to fuel enhanced oil recovery. Similarly, natural gas in huge amounts is used to power most Athabasca Tar Sands plants. Cheap natural gas has also led to ethanol fuel produced with a net EROEI of less than 1, although figures in this area are controversial because methods to measure EROEI are in debate.{{citation needed|date=March 2019}}
=Growth-based economic models=
Insofar as economic growth is driven by oil consumption growth, post-peak societies must adapt. M. King Hubbert believed:{{cite web |url=http://www.hubbertpeak.com/hubbert/wwf1976/ |title=Exponential Growth as a Transient Phenomenon in Human History |publisher=Hubbertpeak.com |access-date=2013-07-23 |archive-date=2019-06-29 |archive-url=https://web.archive.org/web/20190629214750/http://www.hubbertpeak.com/hubbert/wwf1976/ |url-status=live }}
{{cquote|Our principal constraints are cultural. During the last two centuries we have known nothing but exponential growth and in parallel we have evolved what amounts to an exponential-growth culture, a culture so heavily dependent upon the continuance of exponential growth for its stability that it is incapable of reckoning with problems of nongrowth.}}
Some economists describe the problem as uneconomic growth or a false economy. At the political right, Fred Ikle has warned about "conservatives addicted to the Utopia of Perpetual Growth".{{cite web |url=http://dieoff.org/page68.htm |title=Our Perpetual Growth Utopia |publisher=Dieoff.org |access-date=2013-07-23 |archive-date=2019-04-28 |archive-url=https://web.archive.org/web/20190428120557/http://dieoff.org/page68.htm }} Brief oil interruptions in 1973 and 1979 markedly slowed – but did not stop – the growth of world GDP.{{Cite web |url=http://www.imf.org/external/np/speeches/2006/pdf/050206.pdf |title=Archived copy |access-date=2009-02-05 |archive-date=2016-03-03 |archive-url=https://web.archive.org/web/20160303171058/http://www.imf.org/external/np/speeches/2006/pdf/050206.pdf |url-status=live }}
Between 1950 and 1984, as the Green Revolution transformed agriculture around the globe, world grain production increased by 250%. The energy for the Green Revolution was provided by fossil fuels in the form of fertilizers (natural gas), pesticides (oil), and hydrocarbon fueled irrigation.[http://wolf.readinglitho.co.uk/mainpages/agriculture.html How peak oil could lead to starvation] {{Webarchive|url=https://web.archive.org/web/20070818060558/http://wolf.readinglitho.co.uk/mainpages/agriculture.html |date=2007-08-18 }}
David Pimentel, professor of ecology and agriculture at Cornell University, and Mario Giampietro, senior researcher at the National Research Institute on Food and Nutrition (INRAN), place in their study Food, Land, Population and the U.S. Economy the maximum U.S. population for a sustainable economy at 200 million. To achieve a sustainable economy world population will have to be reduced by two-thirds, says the study.{{cite web |last=Taggart |first=Adam |url=http://www.energybulletin.net/281.html |title=Eating Fossil Fuels |publisher=EnergyBulletin.net |date=2003-10-02 |access-date=2013-07-23 |archive-url=https://web.archive.org/web/20070611071544/http://www.energybulletin.net/281.html |archive-date=2007-06-11 }} Without population reduction, this study predicts an agricultural crisis beginning in 2020, becoming critical c. 2050. The peaking of global oil along with the decline in regional natural gas production may precipitate this agricultural crisis sooner than generally expected. Dale Allen Pfeiffer claims that coming decades could see spiraling food prices without relief and massive starvation on a global level such as never experienced before.[http://www.soilassociation.org/peakoil Peak Oil: the threat to our food security] {{webarchive |url=https://web.archive.org/web/20090714220834/http://www.soilassociation.org/peakoil |date=July 14, 2009 }}{{cite web |author=The Oil Drum: Europe |url=http://europe.theoildrum.com/node/2225 |title=Agriculture Meets Peak Oil |publisher=Europe.theoildrum.com |access-date=2013-07-23 |archive-date=2015-12-29 |archive-url=https://web.archive.org/web/20151229201243/http://europe.theoildrum.com/node/2225 |url-status=live }}
= Hubbert peaks =
File:Hubbert peak oil plot.svg
There is an active debate about most suitable sustainability indicator's use and by adopting a thermodynamic approach through the concept of "exergy" and Hubbert peaks, it is possible to incorporate all into a single measure of resource depletion.The exergy analysis of minerals could constitute a universal and transparent tool for the management of the earth's physical stock.{{cite conference |first1=Alicia |last1=Valero |first2=Antonio |last2=Valero |first3=Gavin M |last3=Mudd |year=2009 |title=Exergy – A Useful Indicator for the Sustainability of Mineral Resources and Mining |conference=Proceedings of SDIMI Conference |location=Gold Coast, QLD |pages=329–38 |isbn=978-1-921522-01-7 |url=https://www.researchgate.net/publication/268002763 }}
Hubbert peak can be used as a metric for sustainability and depletion of non-renewable resources. It can be used as reference for many metrics for non-renewable resources such as:{{cite journal |last1=Brecha |first1=Robert |title=Ten Reasons to Take Peak Oil Seriously |journal=Sustainability |date=12 February 2013 |volume=5 |issue=2 |pages=664–694 |doi=10.3390/su5020664 |doi-access=free }}
- Stagnating supplies
- Rising prices
- Individual country peaks
- Decreasing discoveries
- Finding and development costs
- Spare capacity
- Export capabilities of producing countries
- System inertia and timing
- Reserves-to-production ratio
- Past history of depletion and optimism
Although Hubbert peak theory receives most attention in relation to peak oil production, it has also been applied to other natural resources.
=Natural gas=
{{Main|Peak gas}}
Doug Reynolds predicted in 2005 that the North American peak would occur in 2007.{{cite news |first=Bill |last=White |url=http://dwb.adn.com/money/industries/oil/v-printer/story/7296501p-7208184c.html |title=State's consultant says nation is primed for using Alaska gas |date=December 17, 2005 |newspaper=Anchorage Daily News |archive-url=https://web.archive.org/web/20090221153321/http://dwb.adn.com/money/industries/oil/v-printer/story/7296501p-7208184c.html |archive-date=February 21, 2009 }} Bentley (p. 189) predicted a world "decline in conventional gas production from about 2020".{{cite journal |title=Viewpoint - Global oil & gas depletion: an overview |first=R.W. |last=Bentley |journal=Energy Policy |volume=30 |issue=3 |pages=189–205 |year=2002 |url=http://www.oilcrisis.com/bentley/depletionOverview.pdf |doi=10.1016/S0301-4215(01)00144-6 |access-date=2009-02-05 |archive-date=2008-05-27 |archive-url=https://web.archive.org/web/20080527233844/http://www.oilcrisis.com/bentley/depletionOverview.pdf }}
=Coal=
{{Main|Peak coal}}
Peak coal is significantly further out than peak oil, but we can observe the example of anthracite in the US, a high grade coal whose production peaked in the 1920s. Anthracite was studied by Hubbert, and matches a curve closely.[http://www.geo.umn.edu/courses/3005/resource.html GEO 3005: Earth Resources] {{webarchive |url=https://web.archive.org/web/20080725085800/http://www.geo.umn.edu/courses/3005/resource.html |date=July 25, 2008 }} Pennsylvania's coal production also matches Hubbert's curve closely, but this does not mean that coal in Pennsylvania is exhausted—far from it. If production in Pennsylvania returned at its all-time high, there are reserves for 190 years. Hubbert had recoverable coal reserves worldwide at 2500 × 109 metric tons and peaking around 2150(depending on usage).
More recent estimates suggest an earlier peak. Coal: Resources and Future Production (PDF 630KB {{cite web |url=http://www.energywatchgroup.org/files/Coalreport.pdf |title=Startseite |publisher=Energy Watch Group |access-date=2013-07-23 |archive-url=https://web.archive.org/web/20130911224731/http://www.energywatchgroup.org/files/Coalreport.pdf |archive-date=2013-09-11 }}), published on April 5, 2007 by the Energy Watch Group (EWG), which reports to the German Parliament, found that global coal production could peak in as few as 15 years.{{cite web |last=Hamilton |first=Rosie |url=http://www.energybulletin.net/29919.html |title=Peak coal: sooner than you think |publisher=Energybulletin.net |date=2007-05-21 |access-date=2013-07-23 |archive-url=https://web.archive.org/web/20080522155229/http://www.energybulletin.net/29919.html |archive-date=2008-05-22 }} Reporting on this Richard Heinberg also notes that the date of peak annual energetic extraction from coal will likely come earlier than the date of peak in quantity of coal (tons per year) extracted as the most energy-dense types of coal have been mined most extensively.{{cite web |url=http://www.richardheinberg.com/museletter/179 |title=Museletter |publisher=Richard Heinberg |date=December 2009 |access-date=2013-07-23 |archive-date=2012-08-06 |archive-url=https://web.archive.org/web/20120806223305/http://richardheinberg.com/museletter/179 |url-status=live }} A second study,
The Future of Coal by B. Kavalov and S. D. Peteves of the Institute for Energy (IFE), prepared for European Commission Joint Research Centre, reaches similar conclusions and states that
""coal might not be so abundant, widely available and reliable as an energy source in the future".
Work by David Rutledge of Caltech predicts that the total of world coal production will amount to only about 450 gigatonnes."Coal: Bleak outlook for the black stuff", by David Strahan, New Scientist, [https://www.newscientist.com/channel/earth/mg19726391.800-coal-bleak-outlook-for-the-black-stuff.html Jan. 19, 2008, pp. 38-41].
This
implies that coal is running out faster than usually assumed.
Finally, insofar as global peak oil and peak in natural gas are expected anywhere from imminently to within decades at most, any increase in coal production (mining) per annum to compensate for declines in oil or NG production, would necessarily translate to an earlier date of peak as compared with peak coal under a scenario in which annual production remains constant.
=Fissionable materials=
{{Main|Peak uranium}}
In a paper in 1956,{{cite web |url=http://www.hubbertpeak.com/hubbert/1956/1956.pdf |title=Archived copy |access-date=2014-11-10 |archive-url=https://web.archive.org/web/20080527233843/http://www.hubbertpeak.com/hubbert/1956/1956.pdf |archive-date=2008-05-27 }} after a review of US fissionable reserves, Hubbert notes of nuclear power:
{{cquote|There is promise, however, provided mankind can solve its international problems and not destroy itself with nuclear weapons, and provided world population (which is now expanding at such a rate as to double in less than a century) can somehow be brought under control, that we may at last have found an energy supply adequate for our needs for at least the next few centuries of the "foreseeable future."}}
Technologies such as the thorium fuel cycle, reprocessing and fast breeders can, in theory, considerably extend the life of uranium reserves. Roscoe Bartlett claims {{cite web |url=http://www.bartlett.house.gov/uploadedfiles/5-2-06%20Oil%20Speech.pdf |title=Archived copy |access-date=2006-11-13 |archive-url=https://web.archive.org/web/20061025195932/http://www.bartlett.house.gov/uploadedfiles/5-2-06%20Oil%20Speech.pdf |archive-date=2006-10-25 }}
{{cquote|Our current throwaway nuclear cycle uses up the world reserve of low-cost uranium in about 20 years.}}
Caltech physics professor David Goodstein has stated{{cite web|last=Jones|first=Tony|title=Professor Goodstein discusses lowering oil reserves|url=http://www.abc.net.au/lateline/content/2004/s1249211.htm|publisher=Australian Broadcasting Corporation|access-date=14 April 2013|date=23 November 2004|archive-url=https://web.archive.org/web/20130509063107/http://www.abc.net.au/lateline/content/2004/s1249211.htm|archive-date=2013-05-09}} that
{{cquote|... you would have to build 10,000 of the largest power plants that are feasible by engineering standards in order to replace the 10 terawatts of fossil fuel we're burning today ... that's a staggering amount and if you did that, the known reserves of uranium would last for 10 to 20 years at that burn rate. So, it's at best a bridging technology ... You can use the rest of the uranium to breed plutonium 239 then we'd have at least 100 times as much fuel to use. But that means you're making plutonium, which is an extremely dangerous thing to do in the dangerous world that we live in.}}
=Metals=
{{Main|Peak copper}}
Hubbert applied his theory to "rock containing an abnormally high concentration of a given metal"{{cite web |url=http://www.hubbertpeak.com/hubbert/wwf1976 |title=Exponential Growth as a Transient Phenomenon in Human History |publisher=Hubbertpeak.com |access-date=2013-07-23 |archive-date=2013-07-12 |archive-url=https://web.archive.org/web/20130712115025/http://www.hubbertpeak.com/hubbert/wwf1976/ |url-status=live }} and reasoned that the peak production for metals such as copper, tin, lead, zinc and others would occur in the time frame of decades and iron in the time frame of two centuries like coal. The price of copper rose 500% between 2003 and 2007[http://minerals.usgs.gov/minerals/pubs/commodity/copper/mcs-2008-coppe.pdf http://minerals.usgs.gov/minerals/pubs/commodity/copper/mcs-2008-coppe.pdf Copper Statistics and Information, 2007] {{Webarchive|url=https://web.archive.org/web/20171123150944/https://minerals.usgs.gov/minerals/pubs/commodity/copper/mcs-2008-coppe.pdf |date=2017-11-23 }}. USGS was by some attributed to peak copper.{{cite web
|url=http://www.salon.com/tech/htww/2006/03/02/peak_copper/index.html
|title=Peak copper?
|publisher=Salon - How the World Works
|author=Andrew Leonard
|date=2006-03-02
|access-date=2008-03-23
|archive-date=2008-03-07
|archive-url=https://web.archive.org/web/20080307042349/http://www.salon.com/tech/htww/2006/03/02/peak_copper/index.html
|url-status=live
}}{{cite web |author=Silver Seek LLC |url=http://news.silverseek.com/CharlestonVoice/1135873932.php |title=Peak Copper Means Peak Silver - SilverSeek.com |publisher=News.silverseek.com |access-date=2013-07-23 |archive-url=https://web.archive.org/web/20131104020042/http://news.silverseek.com/CharlestonVoice/1135873932.php |archive-date=2013-11-04 }} Copper prices later fell, along with many other commodities and stock prices, as demand shrank from fear of a global recession.[http://uk.reuters.com/article/oilRpt/idUKN2747917920090129 COMMODITIES-Demand fears hit oil, metals prices] {{Webarchive|url=https://web.archive.org/web/20200920185939/https://uk.reuters.com/article/oilRpt/idUKN2747917920090129 |date=2020-09-20 }}, Jan 29, 2009. Lithium availability is a concern for a fleet of Li-ion battery using cars but a paper published in 1996 estimated that world reserves are adequate for at least 50 years.{{cite journal |last1=Will |first1=Fritz G. |title=Impact of lithium abundance and cost on electric vehicle battery applications |journal=Journal of Power Sources |date=November 1996 |volume=63 |issue=1 |pages=23–26 |doi=10.1016/S0378-7753(96)02437-8 |id={{INIST|2530187}} |bibcode=1996JPS....63...23W }} A similar prediction {{cite web |url=http://www.dft.gov.uk/stellent/groups/dft_roads/documents/page/dft_roads_024056-01.hcsp |title=Department for Transport - Inside Government - GOV.UK |publisher=Dft.gov.uk |access-date=2013-07-23 |archive-date=2006-04-27 |archive-url=https://web.archive.org/web/20060427154306/http://www.dft.gov.uk/stellent/groups/dft_roads/documents/page/dft_roads_024056-01.hcsp |url-status=live }} for platinum use in fuel cells notes that the metal could be easily recycled.
=Phosphorus=
Phosphorus supplies are essential to farming and depletion of reserves is estimated at somewhere from 60 to 130 years.{{cite web |url=http://www.apda.pt/apda_resources/APDA.Biblioteca/eureau%5Cposition%20papers%5Cthe%20reuse%20of%20phosphorus.pdf |title=APDA |publisher=Apda.pt |access-date=2013-07-23 |archive-date=2006-10-06 |archive-url=https://web.archive.org/web/20061006120520/http://www.apda.pt/apda_resources/APDA.Biblioteca/eureau%5Cposition%20papers%5Cthe%20reuse%20of%20phosphorus.pdf |url-status=live }} Individual countries supplies vary widely; without a recycling initiative America's supply {{Cite web|url=http://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/phospmcs06.pdf|title=Phosphate Rock Statistics and Information|access-date=2009-02-05|archive-date=2009-03-20|archive-url=https://web.archive.org/web/20090320104612/http://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/phospmcs06.pdf|url-status=live}} is estimated around 30 years.{{cite web |url=http://www.ecosanres.org/PDF%20files/Fact_sheets/ESR4lowres.pdf |title=Archived copy |access-date=2013-12-27 |archive-url=https://web.archive.org/web/20060805112847/http://ecosanres.org/PDF%20files/Fact_sheets/ESR4lowres.pdf |archive-date=2006-08-05 }} Phosphorus supplies affect total agricultural output which in turn limits alternative fuels such as biodiesel and ethanol.
=Peak water=
{{Main|Peak water}}
Hubbert's original analysis did not apply to renewable resources. However over-exploitation often results in a Hubbert peak nonetheless. A modified Hubbert curve applies to any resource that can be harvested faster than it can be replaced.{{cite web
|url = http://www.worldwater.org/data20082009/ch01.pdf
|title = The World's Water 2008-2009, Ch 1.
|publisher = Pacific Institute
|author = Meena Palaniappan and Peter H. Gleick
|year = 2008
|access-date = 2009-01-31
|archive-url = https://web.archive.org/web/20090320104604/http://www.worldwater.org/data20082009/ch01.pdf
|archive-date = 2009-03-20
}}
For example, a reserve such as the Ogallala Aquifer can be mined at a rate that far exceeds replenishment. This turns much of the world's underground water {{cite web |url=http://www.uswaternews.com/archives/arcsupply/6worllarg2.html |title=WorldŐs largest acquifer going dry |publisher=Uswaternews.com |access-date=2013-07-23 |archive-url=https://archive.today/20121209034549/http://www.uswaternews.com/archives/arcsupply/6worllarg2.html |archive-date=2012-12-09 }} and lakes [http://www.earth-policy.org/Updates/2005/Update47_data.htm] {{webarchive|url=https://web.archive.org/web/20080720005108/http://www.earth-policy.org/Updates/2005/Update47_data.htm|date=July 20, 2008}} into finite resources with peak usage debates similar to oil. These debates usually center around agriculture and suburban water usage but generation of electricity [http://www.epa.gov/cleanrgy/water_resource.htm]{{dead link|date=July 2013}} from nuclear energy or coal and tar sands mining mentioned above is also water resource intensive. The term fossil water is sometimes used to describe aquifers whose water is not being recharged.
=Renewable resources=
- Fisheries: At least one researcher has attempted to perform Hubbert linearization (Hubbert curve) on the whaling industry, as well as charting the transparently dependent price of caviar on sturgeon depletion.{{cite web |url=http://www.aspoitalia.net/index.php?option=com_content&task=view&id=34&Itemid=39 |title=How General is the Hubbert Curve? |publisher=Aspoitalia.net |access-date=2013-07-23 |archive-date=2007-09-29 |archive-url=https://web.archive.org/web/20070929002232/http://www.aspoitalia.net/index.php?option=com_content&task=view&id=34&Itemid=39 |url-status=live }} Another example is the cod of the North Sea.{{cite web |url=http://www.hubbertpeak.com/laherrere/multihub.htm |title=Laherrere: Multi-Hubbert Modeling |publisher=Hubbertpeak.com |access-date=2013-07-23 |archive-date=2013-10-28 |archive-url=https://web.archive.org/web/20131028052636/http://www.hubbertpeak.com/laherrere/multihub.htm |url-status=live }} The comparison of the cases of fisheries and of mineral extraction tells us that the human pressure on the environment is causing a wide range of resources to go through a depletion cycle which follows a Hubbert curve.
Sustainability gaps
Sustainability measurements and indicators are part of an ever-evolving and changing process and has various gaps to be filled to achieve an integrated framework and model. The following are some of the breaks in continuity:
- Global indicators- Due to differences in social, economical, and environmental conditions of countries, each country has its own indicators and indexes to measure sustainability, which can lead to improper and varying interpretation at the global level. Hence, there common indexes and measuring parameters would allow comparisons among countries. In agriculture, comparable indicators are already in use. Coffee and cocoa studies in twelve countries{{cite report | vauthors=Allen S, Bennett M, Garcia C, Giovannucci D, Ingersoll C, Kraft K, Potts J, Rue C | veditors=Everage L, Ingersoll C, Mullan J, Salinas L, Childs A | date=2014-01-31 | df=ymd | publisher=Committee on Sustainability Assessment | url=https://thecosa.org/the-cosa-measuring-sustainability-report-2/ | title=The COSA Measuring Sustainability Report | access-date=2020-02-28 | archive-date=2020-02-28 | archive-url=https://web.archive.org/web/20200228201904/https://thecosa.org/the-cosa-measuring-sustainability-report-2/ | url-status=live }} using common indicators are among the first to report insights from comparing across countries.
- Policymaking- After the indicators are defined and analysis is done for the measurements from the indicators, proper policymaking methodology can be set up to improve the results achieved. Policymaking would implement changes in the particular inventory list used for measuring, which could lead to better results.
- Development of individual indicators- Value-based indicators can be developed to measure the efforts by every human being part of the ecosystem. This can affect policymaking, as policy is most effective when there is public participation.
- Data collection- Due to a number of factors including inappropriate methodology applied to data collection, dynamics of change in data, lack of adequate time and improper framework in analysis of data, measurements can quickly become outdated, inaccurate, and unpresentable. Data collections built up from the grass-roots level allow context-appropriate frameworks and regulations associated with it. A hierarchy of data collection starts from local zones to state level, to national level and finally contributing to the global level measurements. Data collected can be made easy to understand so that it could be correctly interpreted and presented through graphs, charts, and analysis bars.
- Integration across academic disciplines- Sustainability involves the whole ecosystem and is intended to have a holistic approach. For this purpose measurements intend to involve data and knowledge from all academic backgrounds. Moreover, these disciplines and insights are intended to align with the societal actions.{{cite journal |doi=10.1016/j.ecolind.2011.04.032 |title=Achievements and gaps in indicators for sustainability |journal=Ecological Indicators |volume=17 |pages=14–19 |year=2012 |last1=Dahl |first1=Arthur Lyon |bibcode=2012EcInd..17...14D }}{{cite journal |doi=10.1002/sd.349 |title=Bridging the gaps between theory and practice: A service niche approach to urban sustainability indicators |journal=Sustainable Development |volume=16 |issue=5 |pages=329–340 |year=2008 |last1=Keirstead |first1=James |last2=Leach |first2=Matt }}{{cite journal |doi=10.1016/j.jenvman.2008.12.020 |pmid=19500899 |title=Bridging the gaps for global sustainable development: A quantitative analysis |journal=Journal of Environmental Management |volume=90 |issue=12 |pages=3700–3707 |year=2009 |last1=Udo |first1=Victor E. |last2=Jansson |first2=Peter Mark |doi-access=free |bibcode=2009JEnvM..90.3700U }}{{cite journal |doi=10.1016/j.tree.2007.08.016|pmid=17997188|title=Mind the sustainability gap|journal=Trends in Ecology & Evolution|volume=22|issue=12|pages=621–624|year=2007|last1=Fischer|first1=Joern|last2=Manning|first2=Adrian D.|last3=Steffen|first3=Will|last4=Rose|first4=Deborah B.|last5=Daniell|first5=Katherine|last6=Felton|first6=Adam|last7=Garnett|first7=Stephen|last8=Gilna|first8=Ben|last9=Heinsohn|first9=Rob|last10=Lindenmayer|first10=David B.|last11=MacDonald|first11=Ben|last12=Mills|first12=Frank|last13=Newell|first13=Barry|last14=Reid|first14=Julian|last15=Robin|first15=Libby|last16=Sherren|first16=Kate|last17=Wade|first17=Alan|bibcode=2007TEcoE..22..621F }}{{cite journal |doi=10.1016/S0921-8009(00)00279-2 |title=Estimating sustainability gaps: Methods and preliminary applications for the UK and the Netherlands |journal=Ecological Economics |volume=37 |pages=5–22 |year=2001 |last1=Ekins |first1=Paul |last2=Simon |first2=Sandrine |issue=1 |bibcode=2001EcoEc..37....5E |url=http://oro.open.ac.uk/39/1/Simon_Sustainability_Gap.pdf |access-date=2019-07-09 |archive-date=2020-09-25 |archive-url=https://web.archive.org/web/20200925135243/http://oro.open.ac.uk/39/1/Simon_Sustainability_Gap.pdf |url-status=live }}
See also
{{div col|colwidth=18em}}
- Balanced scorecard
- Carbon accounting
- Corporate social responsibility
- Embodied energy
- Environmental audits
- Glossary of environmental science
- Green accounting
- Helix of sustainability
- List of sustainability topics
- Outline of sustainability
- Social accounting
- Sustainability science
- Sustainable Value (2008 book)
{{div col end}}
References
{{Reflist|2}}
External links
- [http://biblio.repec.org/entry/tbc.html Curated bibliography] at IDEAS/RePEc
{{Sustainability}}
{{Social accountability}}
Category:Sustainable development
Category:Economics of sustainability