TNT equivalent#Relative effectiveness factor

{{short description|Class of units of measurement for explosive energy}}

{{Redirect|Kiloton|the similarly named weight measurements|Tonne}}

{{Use mdy dates|date=September 2022}}

{{Infobox unit

| bgcolor =

| name = TNT equivalent

| image = Atomic blast Nevada Yucca 1951.jpg

| caption = The explosion from a 14-kiloton nuclear test at the Nevada Test Site, in 1951

| standard = Non-standard

| quantity = Energy

| symbol = t

| symbol2 = {{em|ton of TNT}}

| extradata =

| units1 = SI base units

| inunits1 = ≈{{thin space}}{{val|4.184|u=gigajoules}}

| units2 = CGS

| inunits2 = {{val|e=9|u=calories}}

| units3 = US customary

}}

TNT equivalent is a convention for expressing energy, typically used to describe the energy released in an explosion. A ton of TNT equivalent is a unit of energy defined by convention to be {{val|4.184|ul=gigajoules}} ({{val|1|ul=gigacalorie}}).{{cite web |url=http://www.unitconversion.org/energy/tons-explosives-to-gigajoules-conversion.html |title=Tons (Explosives) to Gigajoules Conversion Calculator |work=unitconversion.org |access-date=2016-01-06 |archive-date=2017-03-17 |archive-url=https://web.archive.org/web/20170317051223/http://www.unitconversion.org/energy/tons-explosives-to-gigajoules-conversion.html |url-status=live }} It is the approximate energy released in the detonation of a metric ton (1,000 kilograms) of trinitrotoluene (TNT). In other words, for each gram of TNT exploded, {{val|4.184|u=kilojoules}} (or 4184 joules) of energy are released.

This convention intends to compare the destructiveness of an event with that of conventional explosive materials, of which TNT is a typical example, although other conventional explosives such as dynamite contain more energy.

A related concept is the physical quantity TNT-equivalent mass (or mass of TNT equivalent),{{cite book | title=Explosions in the Process Industries | publisher=Institution of Chemical Engineers | series=Major hazards monograph | year=1994 | isbn=978-0-85295-315-0 | url=https://books.google.com/books?id=rfzl66nzMbcC&pg=PA30 | access-date=2025-03-05 | page=30}}{{cite book | last1=Mays | first1=G. | last2=Smith | first2=P.D. | title=Blast Effects on Buildings: Design of Buildings to Optimize Resistance to Blast Loading | publisher=T. Telford | year=1995 | isbn=978-0-7277-2030-6 | url=https://books.google.com/books?id=t2Zlxs0pBC4C&pg=PA28 | access-date=2025-03-05 | page=28}}{{cite book | last1=Martorell | first1=S. | last2=Soares | first2=C.G. | last3=Barnett | first3=J. | title=Safety, Reliability and Risk Analysis: Theory, Methods and Applications (4 Volumes + CD-ROM) | publisher=CRC Press | year=2008 | isbn=978-1-4822-6648-1 | url=https://books.google.com/books?id=HX7OBQAAQBAJ&pg=PA1023 | access-date=2025-03-05 | page=1023}}{{cite book | last=Bersani | first=C. | title=Advanced Technologies and Methodologies for Risk Management in the Global Transport of Dangerous Goods | publisher=IOS Press | series=NATO science for peace and security series | year=2008 | isbn=978-1-58603-899-1 | url=https://books.google.com/books?id=jRsk4p15tQkC&pg=PA11 | access-date=2025-03-05 | page=11}} expressed in the ordinary units of mass and its multiples: kilogram (kg), megagram (Mg) or tonne (t), etc.

Kiloton and megaton

The "kiloton (of TNT equivalent)" is a unit of energy equal to 4.184 terajoules ({{val|4.184|e=12|u=J}}).{{Cite web |title=Convert Megaton to Joule |url=https://www.unitconverters.net/energy/megaton-to-joule.htm |access-date=2022-03-22 |website=www.unitconverters.net}} A kiloton of TNT can be visualized as a cube of TNT {{convert|8.46|m|ft}} on a side.

The "megaton (of TNT equivalent)" is a unit of energy equal to 4.184 petajoules ({{val|4.184|e=15|u=J}}).{{Cite web |title=Convert Gigaton to Joule |url=https://www.unitconverters.net/energy/gigaton-to-joule.htm |access-date=2022-03-22 |website=www.unitconverters.net}}

The kiloton and megaton of TNT equivalent have traditionally been used to describe the energy output, and hence the destructive power, of a nuclear weapon. The TNT equivalent appears in various nuclear weapon control treaties, and has been used to characterize the energy released in asteroid impacts.{{cite web|url=http://www.unitconversion.org/energy/joules-to-megatons-conversion.html|title=Joules to Megatons Conversion Calculator|work=unitconversion.org|access-date=2009-11-23|archive-date=2009-11-24|archive-url=https://web.archive.org/web/20091124011206/http://www.unitconversion.org/energy/joules-to-megatons-conversion.html|url-status=live}}

Historical derivation of the value

Alternative values for TNT equivalency can be calculated according to which property is being compared and when in the two detonation processes the values are measured.Sorin Bastea, Laurence E. Fried, Kurt R. Glaesemann, W. Michael Howard, P. Clark Souers, Peter A. Vitello, Cheetah 5.0 User's Manual, Lawrence Livermore National Laboratory, 2007.{{cite tech report |first=Jon L. |last=Maienschein |title=Estimating equivalency of explosives through a thermochemical approach |number=UCRL-JC-147683 |institution=Lawrence Livermore National Laboratory |year=2002 |url=https://e-reports-ext.llnl.gov/pdf/241114.pdf |format=PDF |archive-url=https://web.archive.org/web/20161221173225/http://e-reports-ext.llnl.gov/pdf/241114.pdf |archive-date=December 21, 2016 |url-status=dead |access-date=December 12, 2012 }}{{cite tech report |first=Jon L. |last=Maienschein |title=Tnt equivalency of different explosives – estimation for calculating load limits in heaf firing tanks |number=EMPE-02-22 |institution=Lawrence Livermore National Laboratory |year=2002 }}{{cite tech report |first=Bruce J. |last=Cunningham |title=C-4/tnt equivalency |number=EMPE-01-81 |institution=Lawrence Livermore National Laboratory |year=2001 }}

Where for example the comparison is by energy yield, an explosive's energy is normally expressed for chemical purposes as the thermodynamic work produced by its detonation. For TNT this has been accurately measured as 4,686 J/g from a large sample of air blast experiments, and theoretically calculated to be 4,853 J/g.{{cite book|last=Cooper|first= Paul W. |title=Explosives Engineering|location= New York|publisher= Wiley-VCH|year= 1996|page= 406 |isbn=978-0-471-18636-6}}

However, even on this basis, comparing the actual energy yields of a large nuclear device and an explosion of TNT can be slightly inaccurate. Small TNT explosions, especially in the open, do not tend to burn the carbon-particle and hydrocarbon products of the explosion. Gas-expansion and pressure-change effects tend to "freeze" the burn rapidly. A large, open explosion of TNT may maintain fireball temperatures high enough that some of those products do burn up with atmospheric oxygen.

name="Needham">

{{cite book

| author = Charles E. Needham

| url = https://books.google.com/books?id=JXo4DwAAQBAJ&pg=PA91

| title = Blast Waves

| language = en

| date = Oct 3, 2017

| isbn = 978-3319653822

| oclc = 1005353847

| page = 91

| publisher=Springer | archive-url = https://archive.today/20181226201600/https://books.google.cz/books?id=JXo4DwAAQBAJ&pg=PA91&lpg=PA91&dq=tnt+soot+burn+up&source=bl&ots=wZbK8Emrf6&sig=M1N5i8i8ENytJDvWgqyzaB7j5CI&hl=en&sa=X&ved=2ahUKEwjul7Chu47fAhWEmLQKHToJDtIQ6AEwAHoECAkQAQ%23v=onepage&q=tnt%20soot%20burn%20up&f=false

| archive-date = December 26, 2018

| url-status = live

| access-date = January 25, 2019

| df = mdy-all

}}

Such differences can be substantial. For safety purposes, a range as wide as {{val|2673|–|6702|u=J|fmt=commas}} has been stated for a gram of TNT upon explosion.{{Cite web|url=https://hal.archives-ouvertes.fr/hal-00629253/document|archiveurl=https://web.archive.org/web/20160810225249/http://hal.archives-ouvertes.fr/hal-00629253/document|url-status=dead|title=Blast effects of external explosions (Section 4.8. Limitations of the TNT equivalent method)|archivedate=August 10, 2016}} Thus one can state that a nuclear bomb has a yield of 15 kt ({{val|6.3|e=13|u=J}}), but the explosion of an actual {{val|15000|s=-ton|fmt=commas}} pile of TNT may yield (for example) {{val|8|e=13|u=J}} due to additional carbon/hydrocarbon oxidation not present with small open-air charges.

These complications have been sidestepped by convention. The energy released by one gram of TNT was arbitrarily defined as a matter of convention to be 4,184 J,{{cite web|title=Appendix B8 – Factors for Units Listed Alphabetically|url=http://physics.nist.gov/Pubs/SP811/appenB8.html|date=2009-07-02|access-date=2007-03-29|archive-date=2016-01-29|archive-url=https://web.archive.org/web/20160129233551/http://physics.nist.gov/Pubs/SP811/appenB8.html|url-status=live}} In {{harvnb|NIST SI Guide|2008}} which is exactly one kilocalorie.

class="wikitable"
Grams TNT

! Symbol

! Tons TNT

! Symbol

! Energy [joules]

! Energy [Wh]

! Corresponding mass loss{{efn|Mass–energy equivalence.}}

milligram of TNT

| mg

| nanoton of TNT

| nt

| {{val|4.184|u=J}} or 4.184 joules

| 1.162 mWh

| 46.55 fg

gram of TNT

| g

| microton of TNT

| μt

| {{val|4.184|e=3|u=J}} or 4.184 kilojoules

| 1.162 Wh

| 46.55 pg

kilogram of TNT

| kg

| milliton of TNT

| mt

| {{val|4.184|e=6|u=J}} or 4.184 megajoules

| 1.162 kWh

| 46.55 ng

megagram of TNT

| Mg

| ton of TNT

| t

| {{val|4.184|e=9|u=J}} or 4.184 gigajoules

| 1.162 MWh

| 46.55 μg

gigagram of TNT

| Gg

| kiloton of TNT

| kt

| {{val|4.184|e=12|u=J}} or 4.184 terajoules

| 1.162 GWh

| 46.55 mg

teragram of TNT

| Tg

| megaton of TNT

| Mt

| {{val|4.184|e=15|u=J}} or 4.184 petajoules

| 1.162 TWh

| 46.55 g

petagram of TNT

| Pg

| gigaton of TNT

| Gt

| {{val|4.184|e=18|u=J}} or 4.184 exajoules

| 1.162 PWh

| 46.55 kg

Conversion to other units

1 ton of TNT equivalent is approximately:

  • {{val|1.0|e=9}} calories{{Cite web |title=Tons Of Tnt to Calories {{!}} Kyle's Converter |url=https://www.kylesconverter.com/energy,-work,-and-heat/tons-of-tnt-to-calories |access-date=2022-03-22 |website=www.kylesconverter.com}}
  • {{val|4.184|e=9}} joules{{Cite web |title=Convert tons of TNT to joules {{!}} energy conversion |url=https://convert-to.com/conversion/energy/convert-tn-to-j.html |access-date=2022-03-22 |website=convert-to.com}}
  • {{val|3.96831|e=6}} British thermal units{{Cite web |title=Convert tons of TNT to BTU - British Thermal Unit {{!}} energy conversion |url=https://convert-to.com/conversion/energy/convert-tn-to-btu.html |access-date=2022-03-22 |website=convert-to.com}}
  • {{val|3.086|e=9}} foot-pounds{{Cite web |title=Convert tons of TNT to foot pounds {{!}} energy conversion |url=https://convert-to.com/conversion/energy/convert-tn-to-ft-lb.html |access-date=2022-03-22 |website=convert-to.com}}
  • {{val|1.162|e=3}} kilowatt-hours{{Cite web |title=Tons Of Tnt to Kilowatt-hours {{!}} Kyle's Converter |url=https://www.kylesconverter.com/energy,-work,-and-heat/tons-of-tnt-to-kilowatt--hours |access-date=2022-03-22 |website=www.kylesconverter.com}}
  • {{val|2.611|e=28}} electronvolts
  • {{val|4.655|e=-8}} kilograms mass equivalent{{Cite web |title=4.184 gigajoules / c^2 in kilograms {{!}} Google |url=https://www.google.com/search?q=4.184+gigajoules+%2F+c^2+in+kilograms |access-date=2025-05-24 |website=www.google.com}}

Examples

{{Further|Orders of magnitude (energy)}}

class=wikitable

! colspan="2" |Energy

! rowspan="2" |Description

Megatons of TNT

! Watt-hours [Wh]

{{val|1e−12}}

| 1.162 Wh

| ≈ 1 food calorie (large calorie, kcal), which is the approximate amount of energy needed to raise the temperature of one kilogram of water by one degree Celsius at a pressure of one atmosphere.

{{val|1e−9}}

| 1.162 kWh

| Under controlled conditions one kilogram of TNT can destroy (or even obliterate) a small vehicle.

{{Val|4.8|e=−9}}

| 5.6 kWh

| The energy to burn 1 kilogram of wood.{{Cite web |last=Timcheck |first=Jonathan |date=Fall 2017 |title=The Energy in Wildfires: The Western United States |url=http://large.stanford.edu/courses/2017/ph240/timcheck1/ |archive-url=https://web.archive.org/web/20180117183718/http://large.stanford.edu/courses/2017/ph240/timcheck1/ |archive-date=17 January 2018 |access-date=2022-03-31 |website=large.stanford.edu}}

{{val|1e−8}}

| 11.62 kWh

| The approximate radiant heat energy released during 3-phase, 600 V, 100 kA arcing fault in a {{convert|20|x|20|x|20|in|m|sigfig=1|order=flip|abbr=on}} compartment within a 1-second period.{{Explain|date=May 2015}}{{citation needed|date=May 2022}}

{{val|1.2e−8}}

| 13.94 kWh

| Amount of TNT used (12 kg) in Coptic church explosion in Cairo, Egypt on December 11, 2016 that left 29 dead and 47 injured{{cite news |date=4 February 2017 |title=Botroseya church bombing death toll rises to 29 victims |url=https://www.egyptindependent.com/botroseya-church-bombing-death-toll-rises-29-victims/ |publisher=Egypt Independent |access-date=8 June 2024|archive-date=24 May 2024 |archive-url=https://web.archive.org/web/20240524230421/https://www.egyptindependent.com/botroseya-church-bombing-death-toll-rises-29-victims/ |url-status=live }}

{{val|1.9e−6}}

| 2.90 MWh

| The television show MythBusters used 2.5 tons of ANFO to make "homemade" diamonds. (Episode 116.)

{{val|2.4e−7}}–{{val|2.4e−6}}

| 280–2,800 kWh

| The energy output released by an average lightning discharge.{{Cite web |date=2007-03-06 |title=How do Thunderstorms and Lightning Work? |url=https://www.thenakedscientists.com/articles/science-features/how-do-thunderstorms-and-lightning-work |access-date=2022-03-22 |website=www.thenakedscientists.com |language=en-gb}}

{{val|1|–|44|e=−6}}

| 1.16–51.14 MWh

| Conventional bombs yield from less than one ton to FOAB's 44 tons. The yield of a Tomahawk cruise missile is equivalent to 500 kg of TNT.{{Cite book|url=https://books.google.com/books?id=syAvfwornA0C&q=10+meter+accuracy&pg=PA248|title=The Ingenuity Gap|isbn=978-0-375-71328-6|last1=Homer-Dixon|first1=Thomas F|year=2002|pages=249|publisher=Knopf Doubleday Publishing |access-date=2020-11-07|archive-date=2021-01-14|archive-url=https://web.archive.org/web/20210114192246/https://books.google.com/books?id=syAvfwornA0C&q=10+meter+accuracy&pg=PA248|url-status=live}}

{{val|4.54|e=−4}}

| 581 MWh

| A real {{convert|0.454|ktonTNT|adj=on}} charge at Operation Sailor Hat. If the charge were a full sphere, it would be {{convert|1|ktonTNT}}. File:Sailor Hat Shot.jpg ({{convert|17|by|34|ft|m|0|abbr=on|order=flip}}) awaiting detonation at Operation Sailor Hat.]]

{{val|1.8e−3}}

| 2.088 GWh

| Estimated yield of the Beirut explosion of 2,750 tons of ammonium nitrate{{cite web |last1=Fuwad |first1=Ahamad |title=Beirut Blast: How does yield of 2,750 tonnes of ammonium nitrate compare against Halifax explosion, Hiroshima bombing? |url=https://www.dnaindia.com/world/report-beirut-blast-how-does-yield-of-2750-tonnes-of-ammonium-nitrate-compare-against-halifax-explosion-hiroshima-bombing-2836137 |website=DNA India |access-date=7 August 2020 |language=en |date=5 August 2020 |archive-date=6 August 2020 |archive-url=https://web.archive.org/web/20200806231755/https://www.dnaindia.com/world/report-beirut-blast-how-does-yield-of-2750-tonnes-of-ammonium-nitrate-compare-against-halifax-explosion-hiroshima-bombing-2836137 |url-status=live }} that killed initially 137 at and near a Lebanese port at 6 p.m. local time Tuesday August 4, 2020.{{cite journal |last1=Staff |first1=W. S. J. |title=Beirut Explosion: What Happened in Lebanon and Everything Else You Need to Know |journal=Wall Street Journal |date=6 August 2020 |url=https://www.wsj.com/articles/beirut-explosion-what-happened-in-lebanon-and-everything-else-you-need-to-know-11596590426 |access-date=7 August 2020 |issn=0099-9660 |archive-date=6 August 2020 |archive-url=https://web.archive.org/web/20200806193617/https://www.wsj.com/articles/beirut-explosion-what-happened-in-lebanon-and-everything-else-you-need-to-know-11596590426 |url-status=live }} An independent study by experts from the Blast and Impact Research Group at the University of Sheffield predicts the best estimate of the yield of Beirut explosion to be 0.5 kilotons of TNT and the reasonable bound estimate as 1.12 kilotons of TNT.{{Cite journal|last1=Rigby|first1=S. E.|last2=Lodge|first2=T. J.|last3=Alotaibi|first3=S.|last4=Barr|first4=A. D.|last5=Clarke|first5=S. D.|last6=Langdon|first6=G. S.|author6-link=Genevieve Langdon|last7=Tyas|first7=A.|date=2020-09-22|title=Preliminary yield estimation of the 2020 Beirut explosion using video footage from social media|journal=Shock Waves|volume=30|issue=6|pages=671–675|language=en|doi=10.1007/s00193-020-00970-z|bibcode=2020ShWav..30..671R|issn=1432-2153|doi-access=free}}

{{val|1|–|2|e=−3}}

| 1.16–2.32 GWh

| Estimated yield of the Oppau explosion that killed more than 500 at a German fertilizer factory in 1921.

{{val|2.3e−3}}

| 2.67 GWh

| Amount of solar energy falling on {{convert|1|acre|m2|order=flip|abbr=on}} of land in a year is {{convert|2650|MWh|TJ|order=flip|abbr=on}} (an average over the Earth's surface).{{Cite web |last1=Kennewell |first1=John |last2=McDonald |first2=Andrew |title=The Sun and Solar Activity - The Solar Constant |url=https://www.sws.bom.gov.au/Educational/2/1/12 |access-date=2024-11-13 |website=www.sws.bom.gov.au |language=en}}

{{val|2.9e−3}}

| 3.4 GWh

| The Halifax Explosion in 1917 was the accidental detonation of 200 tons of TNT and 2,300 tons of Picric acid{{Cite book |last1=Ruffman |first1=Alan |title=Ground Zero: A Reassessment of the 1917 Explosion in Halifax Harbour |last2=Howell |first2=Colin |publisher=Nimbus Publishing |year=1994 |isbn=978-1-55109-095-5}}

{{val|3.2e−3}}

| 3.6 GWh

| The Operation Big Bang on April 18, 1947, blasted the bunkers on Heligoland. It accumulated 6700 metric tons of surplus World War II ammunition placed in various locations around the island and set off. The energy released was {{val|1.3e13|u=J}}, or about 3.2 kilotons of TNT equivalent.{{cite journal|title=Seismic Experiments on the North German Explosions, 1946 to 1947|last=Willmore |first=PL|journal=Philosophical Transactions of the Royal Society|volume=242|issue=843|pages=123–151|year=1949|jstor = 91443|issn=0080-4614|doi=10.1098/rsta.1949.0007 |bibcode=1949RSPTA.242..123W|doi-access=free}}

{{val|4e−3}}

| 9.3 GWh

| Minor Scale, a 1985 United States conventional explosion, using 4,744 tons of ANFO explosive to provide a scaled equivalent airblast of an eight kiloton (33.44 TJ) nuclear device,{{cite web |title=Minor Scale Event, Test Execution Report |author=Tech Reps |location=Albuerque, NM |year=1986 |hdl=100.2/ADA269600 | url=https://apps.dtic.mil/sti/tr/pdf/ADA269600.pdf}} is believed to be the largest planned detonation of conventional explosives in history.

{{val|1.5|–|2|e=−2}}

| 17.4–23.2 GWh

| The Little Boy atomic bomb dropped on Hiroshima on August 6, 1945, exploded with an energy of about {{convert|15|ktonTNT}} killing between 90,000 and 166,000 people,{{Cite web|date=2012-08-09|title=Hiroshima and Nagasaki: The Long Term Health Effects|url=http://www.k1project.org/explore-health/hiroshima-and-nagasaki-the-long-term-health-effects|url-status=live|archive-url=https://web.archive.org/web/20150723042220/http://k1project.org/explore-health/hiroshima-and-nagasaki-the-long-term-health-effects|archive-date=2015-07-23|access-date=2021-01-07|website=K1 project}} and the Fat Man atomic bomb dropped on Nagasaki on August 9, 1945, exploded with an energy of about {{convert|20|ktonTNT}} killing over 60,000. The modern nuclear weapons in the United States arsenal range in yield from {{convert|0.3|ktonTNT|abbr=on}} to {{convert|1.2|MtonTNT|abbr=on}} equivalent, for the B83 strategic bomb.

>{{val|2.4e-1}}

| 280 GWh

| The typical energy yield of severe thunderstorms.{{Cite web |last=Crook |first=Aaron |date=10 February 2010 |title=The gathering storms |url=http://www.cosmosmagazine.com/node/3302/full |website=Cosmos |archive-url=https://web.archive.org/web/20120404113209/http://www.cosmosmagazine.com/node/3302/full |archive-date=4 April 2012 |url-status=dead}}

{{Val|1.5|e=−5}} – {{Val|6|e=−1}}

| 20 MWh – 700 GWh

| The estimated kinetic energy of tornados.{{Cite journal |last1=Fricker |first1=Tyler |last2=Elsner |first2=James B. |date=2015-07-01 |title=Kinetic Energy of Tornadoes in the United States |journal=PLOS ONE |volume=10 |issue=7 |pages=e0131090 |doi=10.1371/journal.pone.0131090 |issn=1932-6203 |pmc=4489157 |pmid=26132830|bibcode=2015PLoSO..1031090F |doi-access=free }}

1

| 1.16 TWh

| The energy contained in one megaton of TNT (4.2 PJ) is enough to power the average American household for 103,000 years.{{cite web|url=http://tonto.eia.doe.gov/ask/electricity_faqs.asp#electricity_use_home|title=Frequently Asked Questions – Electricity|date=2009-10-06|publisher=United States Department of Energy|access-date=2009-10-21|archive-date=2010-11-23|archive-url=https://web.archive.org/web/20101123165406/http://tonto.eia.doe.gov/ask/electricity_faqs.asp#electricity_use_home|url-status=live}} (Calculated from 2007 value of 936 kWh monthly usage) The {{convert|30|MtonTNT|abbr=on}} estimated upper limit blast power of the Tunguska event could power the same average home for more than 3,100,000 years. The energy of that blast could power the entire United States for 3.27 days.{{cite web|url=https://www.cia.gov/library/publications/the-world-factbook/rankorder/2042rank.html |title=Country Comparison :: Electricity – consumption |work=The World Factbook |publisher=CIA |access-date=2009-10-22 |url-status=dead |archive-url=https://web.archive.org/web/20120128032332/https://www.cia.gov/library/publications/the-world-factbook/rankorder/2042rank.html |archive-date=2012-01-28 }} (Calculated from 2007 value of 3,892,000,000,000 kWh annual usage)

8.6

| 10 TWh

| The energy output that would be released by a typical tropical cyclone in one minute, primarily from water condensation. Winds constitute 0.25% of that energy.{{cite web|url=http://www.aoml.noaa.gov/hrd/tcfaq/D7.html|title=NOAA FAQ: How much energy does a hurricane release?|date=August 2001|access-date=2009-06-30|publisher=National Oceanic & Atmospheric Administration|archive-date=2017-11-02|archive-url=https://web.archive.org/web/20171102212903/http://www.aoml.noaa.gov/hrd/tcfaq/D7.html|url-status=live}} cites 6E14 watts continuous.

16

| 18.6 TWh

| The approximate radiated surface energy released in a magnitude 8 earthquake.{{cite web| url=https://www.volcanodiscovery.com/earthquakes/energy.html| title=How much energy does an earthquake release?|website = Volcano Discovery|date = 12 June 2023}}

21.5

| 25 TWh

| The complete conversion of 1 kg of matter into pure energy would yield the theoretical maximum (E = mc2) of 89.8 petajoules, which is equivalent to 21.5 megatons of TNT. No such method of total conversion as combining 500 grams of matter with 500 grams of antimatter has yet been achieved. In the event of proton–antiproton annihilation, approximately 50% of the released energy will escape in the form of neutrinos, which are almost undetectable.{{cite conference|hdl=2060/19960020441|doi=10.2514/6.1987-1814|first=Stanley K.|last=Borowski|title=Comparison of Fusion/Antiproton Propulsion systems|work=NASA Glenn Research Center|conference=23rd Joint Propulsion Conference|date=March 1996}} Electron–positron annihilation events emit their energy entirely as gamma rays.

24

| 28 TWh

| Approximate total yield of the 1980 eruption of Mount St. Helens.{{Cite web |title=Mount St. Helens – From the 1980 Eruption to 2000, Fact Sheet 036-00 |url=https://pubs.usgs.gov/fs/2000/fs036-00/ |archive-url=https://web.archive.org/web/20130512162409/http://pubs.usgs.gov/fs/2000/fs036-00/ |archive-date=12 May 2013 |access-date=2022-04-23 |website=pubs.usgs.gov}}

26.3

| 30.6 TWh

| Energy released by the 2004 Indian Ocean earthquake.{{Cite web |date=2010-04-04 |title=USGS Earthquake Hazards Program: Energy and Broadband Solution: Off W Coast of Northern Sumatra |url=http://neic.usgs.gov/neis/eq_depot/2004/eq_041226/neic_slav_e.html |access-date=2023-02-10 |archive-url=https://web.archive.org/web/20100404013939/http://neic.usgs.gov/neis/eq_depot/2004/eq_041226/neic_slav_e.html |archive-date=April 4, 2010 }}File:2004 Indonesia Tsunami Complete.gif

{{val|45}}

| 53 TWh

| The energy released in the 2011 Tōhoku earthquake and tsunami was over 200,000 times the surface energy and was calculated by the USGS at {{val|1.9|e=17}} joules,{{cite web|url=https://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/neic_c0001xgp_wmt.php |title=USGS.gov: USGS WPhase Moment Solution |publisher=Earthquake.usgs.gov |access-date=13 March 2011 |archive-url=https://web.archive.org/web/20110314185317/http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/neic_c0001xgp_wmt.php |archive-date=14 March 2011 |url-status=dead }}{{Cite web |date=2011-03-16 |title=USGS Energy and Broadband Solution |url=http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/neic_c0001xgp_e.php |access-date=2023-02-10 |archive-url=https://web.archive.org/web/20110316002625/http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/neic_c0001xgp_e.php |archive-date=March 16, 2011 }} slightly less than the 2004 Indian Ocean quake. It was estimated at a moment magnitude of 9.0–9.1.File:2011 Tōhoku earthquake and tsunami damage Matsushima, Miyagi.JPG

50–56

| 58 TWh

| The Soviet Union developed a prototype thermonuclear device, nicknamed the Tsar Bomba, which was tested at {{convert|50–56|MtonTNT|abbr=on}}, but had a maximum theoretical design yield of {{convert|100|MtonTNT|abbr=on}}.See [http://nuclearweaponarchive.org/Usa/Weapons/Wpngall.html Currently deployed U.S. nuclear weapon yields] {{webarchive |url=https://web.archive.org/web/20160907072820/http://nuclearweaponarchive.org/Usa/Weapons/Wpngall.html |date=September 7, 2016 }}, [http://nuclearweaponarchive.org/Usa/Weapons/Allbombs.html Complete List of All U.S. Nuclear Weapons] {{webarchive |url=https://web.archive.org/web/20081216000000/http://nuclearweaponarchive.org/Usa/Weapons/Allbombs.html |date=December 16, 2008 }}, [http://nuclearweaponarchive.org/Russia/TsarBomba.html Tsar Bomba] {{webarchive |url=https://web.archive.org/web/20160617080324/http://nuclearweaponarchive.org/Russia/TsarBomba.html |date=June 17, 2016 }}, all from Carey Sublette's Nuclear Weapon Archive. The effective destructive potential of such a weapon varies greatly, depending on such conditions as the altitude at which it is detonated, the characteristics of the target, the terrain, and the physical landscape upon which it is detonated.

61

|70.9 TWh

|The energy released by the 2022 Hunga Tonga–Hunga Haʻapai volcanic eruption, in the southern Pacific Ocean, is estimated to have been equivalent to 61 Megatons of TNT.{{Cite journal |last1=Díaz |first1=J. S. |last2=Rigby |first2=S. E. |date=2022-08-09 |title=Energetic output of the 2022 Hunga Tonga–Hunga Ha'apai volcanic eruption from pressure measurements |journal=Shock Waves |volume=32 |issue=6 |pages=553–561 |language=en |doi=10.1007/s00193-022-01092-4 |bibcode=2022ShWav..32..553D |s2cid=251480018 |issn=1432-2153|doi-access=free }}

84

| 97.04 TWh

| The solar irradiance on Earth every second.{{efn|reference=The solar constant of the sun is 1370 watts per square meter and Earth has a cross-sectional surface area of {{Val|2.6|e=14}} square meters.}}

200

| 230 TWh

| The total energy released by the 1883 eruption of Krakatoa in the Dutch East Indies (present-day Indonesia).{{Cite web|date=5 April 2012|title=The eruption of Krakatoa, August 27, 1883|url=http://www.bom.gov.au/tsunami/history/1883.shtml|archive-url=https://web.archive.org/web/20160318213128/http://www.bom.gov.au/tsunami/history/1883.shtml|archive-date=2016-03-18|access-date=23 February 2022|website=Commonwealth of Australia 2012, Bureau of Meteorology.}}

540

| 630 TWh

| The total energy produced worldwide by all nuclear testing and combat usage combined, from the 1940s to the present, is about 540 megatons.

1,460

| 1.69 PWh

| The total global nuclear arsenal is about 15,000 nuclear warheads{{cite web |url=https://fas.org/issues/nuclear-weapons/status-world-nuclear-forces |title=Status of World Nuclear Forces |work=fas.org |access-date=2017-05-04 |archive-date=2017-05-08 |archive-url=https://web.archive.org/web/20170508145916/https://fas.org/issues/nuclear-weapons/status-world-nuclear-forces/ |url-status=live }}{{cite web |url=https://www.armscontrol.org/factsheets/Nuclearweaponswhohaswhat |title=Nuclear Weapons: Who Has What at a Glance |work=armscontrol.org |access-date=2017-05-04 |archive-date=2018-01-24 |archive-url=https://web.archive.org/web/20180124043430/https://www.armscontrol.org/factsheets/Nuclearweaponswhohaswhat |url-status=live }}{{cite web |url=https://www.sipri.org/media/press-release/2016/global-nuclear-weapons-downsizing-modernizing |title=Global nuclear weapons: downsizing but modernizing |publisher=Stockholm International Peace Research Institute |date=13 June 2016 |access-date=4 May 2017 |archive-date=7 October 2016 |archive-url=https://web.archive.org/web/20161007002121/https://www.sipri.org/media/press-release/2016/global-nuclear-weapons-downsizing-modernizing |url-status=live }} with a destructive capacity of around 1460 megatons{{cite journal|title=Russian nuclear forces, 2016|journal=Bulletin of the Atomic Scientists|first1=Hans M.|last1=Kristensen|first2=Robert S.|last2=Norris|date=May 3, 2016|volume=72|issue=3|pages=125–134|doi=10.1080/00963402.2016.1170359|bibcode=2016BuAtS..72c.125K|doi-access=free}}{{Cite journal|doi=10.1177/0096340215571913|title=US nuclear forces, 2015|journal=Bulletin of the Atomic Scientists|volume=71|issue=2|pages=107|year=2015|last1=Kristensen|first1=Hans M|last2=Norris|first2=Robert S|bibcode=2015BuAtS..71b.107K|s2cid=145260117|doi-access=free}}{{Cite web |url=http://www.nrdc.org/nuclear/nudb/datab14.asp |title=Minimize Harm and Security Risks of Nuclear Energy |access-date=2017-05-04 |archive-url=https://web.archive.org/web/20140924062304/http://www.nrdc.org/nuclear/nudb/datab14.asp |archive-date=2014-09-24 |url-status=dead }}{{Cite journal|doi=10.1177/0096340215591247|title=Chinese nuclear forces, 2015|journal=Bulletin of the Atomic Scientists|volume=71|issue=4|pages=77|year=2015|last1=Kristensen|first1=Hans M|last2=Norris|first2=Robert S|bibcode=2015BuAtS..71d..77K|s2cid=145759562}} or 1.46 gigatons (1,460 million tons) of TNT. This is the equivalent of {{val|6.11|e=18}} joules of energy

2,680{{Dubious|date=February 2023|reason=Value is out of line with similar events.}}

| 3 PWh

| The energy yield of the 1960 Valdivia earthquake, was estimated at a moment magnitude of 9.4–9.6. This is the most powerful earthquake recorded in history.{{Cite web |date=1 September 2009 |title=Measuring the Size of an Earthquake |url=http://earthquake.usgs.gov/learning/topics/measure.php |access-date=17 January 2010 |website=U.S. Geological Survey |archive-url=https://web.archive.org/web/20090901233601/http://earthquake.usgs.gov/learning/topics/measure.php |archive-date=1 September 2009 |url-status=dead}}{{Cite web |date=2022-12-07 |title=Table-Top Earthquakes |url=https://pubs.usgs.gov/of/1998/ofr-98-0767/ |access-date=2023-02-10 |archive-url=https://web.archive.org/web/20221207190454/https://pubs.usgs.gov/of/1998/ofr-98-0767/ |archive-date=December 7, 2022 }}File:Valdivia after earthquake, 1960.jpg

2,870

| 3.34 PWh

| The energy released by a hurricane per day during condensation.{{Cite web |title=Hurricane FAQ – NOAA's Atlantic Oceanographic and Meteorological Laboratory |url=https://www.aoml.noaa.gov/hrd-faq/ |access-date=2022-03-21 |language=en-US}}

33,000

| 38.53 PWh

| The total energy released by the 1815 eruption of Mount Tambora in the island of Sumbawa in Indonesia. Yielded the equivalent of 2.2 million Little Boys (the first atomic bomb to drop on Japan) or one-quarter of the entire world's annual energy consumption.{{Cite magazine |last=Klemetti |first=Erik |date=April 2022 |title=Tambora 1815: Just How Big Was The Eruption? |url=https://www.wired.com/2015/04/tambora-1815-just-big-eruption/amp |magazine=Wired |language=en |access-date=2022-06-07}} This eruption was 4-10 times more destructive than the 1883 Krakatoa eruption.{{Cite web |last=Evans |first=Robert |date=July 2002 |title=Blast from the Past |url=https://www.smithsonianmag.com/history/blast-from-the-past-65102374/ |website=Smithsonian Magazine}}

240,000

| 280 PWh

| The approximate total yield of the super-eruption of the La Garita Caldera is 10,000 times more powerful than the 1980 Mount St. Helens eruption.{{Cite web |date=2021-08-25 |title=La Garita Mountains grew from volcanic explosions 35 million years ago |url=https://www.fs.usda.gov/features/la-garita-mountains-grew-volcanic-explosions-35-million-years-ago |access-date=2022-04-23 |website=US Forest Service |language=en}} It was the second most energetic event to have occurred on Earth since the Cretaceous–Paleogene extinction event 66 million years ago.File:WheelerGACO.jpg

301,000

| 350 PWh

| The total solar irradiance energy received by Earth in the upper atmosphere per hour.{{efn|name="NoteA"|reference=The solar constant of the sun is 1370 watts per square meter and Earth has a cross-sectional surface area of {{Val|2.6|e=14}} square meters.}}{{efn|1 hour is equivalent to 3600 seconds.}}

875,000

| 1.02 EWh

| Approximate yield of the last eruption of the Yellowstone supervolcano.{{Cite web |title=The thought experiment: What would happen if the supervolcano under Yellowstone erupted? |url=https://www.sciencefocus.com/planet-earth/the-thought-experiment-what-would-happen-if-the-supervolcano-under-yellowstone-erupted/ |access-date=2022-04-23 |website=BBC Science Focus Magazine |language=en}}File:Yellowstone Caldera.svg

{{Val|3.61|e=6}}

| 4.2 EWh

| The solar irradiance of the Sun every 12 hours.{{efn|name="NoteA"}}{{efn|1 day is equivalent to 86400 seconds.}}

{{val|6|e=6}}

| 7 EWh

| The estimated energy at impact when the largest fragment of Comet Shoemaker–Levy 9 struck Jupiter is equivalent to 6 million megatons (6 trillion tons) of TNT.{{Cite web|title=Comet/Jupiter Collision FAQ – Post-Impact|url=http://www.physics.sfasu.edu/astro/sl9/cometfaq2.html#Q3.1|access-date=2022-02-24|website=www.physics.sfasu.edu|archive-date=August 28, 2021|archive-url=https://web.archive.org/web/20210828080844/http://www.physics.sfasu.edu/astro/sl9/cometfaq2.html#Q3.1|url-status=dead}}File:Comet Shoemaker-Levy 9 Impact Site on Jupiter.jpg

{{val|7.2|e=7}}

| 116 EWh

| Estimates in 2010 show that the kinetic energy of the Chicxulub impact event yielded 72 teratons of TNT equivalent (1 teraton of TNT equals 106 megatons of TNT) which caused the K-Pg extinction event, wiping out 75% of all species on Earth.{{Cite journal |last1=Jablonski |first1=David |last2=Chaloner |first2=William Gilbert |last3=Lawton |first3=John Hartley |last4=May |first4=Robert McCredie |date=1994-04-29 |title=Extinctions in the fossil record |url=https://royalsocietypublishing.org/doi/abs/10.1098/rstb.1994.0045 |journal=Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences |volume=344 |issue=1307 |pages=11–17 |doi=10.1098/rstb.1994.0045}} This is far more destructive than any natural disaster recorded in history. Such an event would have caused global volcanism, earthquakes, megatsunamis, and global climate change.{{Cite journal |last1=Richards |first1=Mark A. |last2=Alvarez |first2=Walter |last3=Self |first3=Stephen |last4=Karlstrom |first4=Leif |last5=Renne |first5=Paul R. |last6=Manga |first6=Michael |last7=Sprain |first7=Courtney J. |last8=Smit |first8=Jan |last9=Vanderkluysen |first9=Loÿc |last10=Gibson |first10=Sally A. |date=2015-11-01 |title=Triggering of the largest Deccan eruptions by the Chicxulub impact |url=https://doi.org/10.1130/B31167.1 |journal=Geological Society of America Bulletin |volume=127 |issue=11–12 |pages=1507–1520 |doi=10.1130/B31167.1 |bibcode=2015GSAB..127.1507R |s2cid=3463018 |issn=0016-7606|hdl=1871.1/cc9361fe-f586-44a0-90ac-f5c513e9920b |hdl-access=free }}{{Cite web |last=Kornei |first=Katherine |date=2018-12-20 |title=Huge Global Tsunami Followed Dinosaur-Killing Asteroid Impact |url=http://eos.org/articles/huge-global-tsunami-followed-dinosaur-killing-asteroid-impact |access-date=2022-03-21 |website=Eos |language=en-US}}{{Cite web |title=Chicxulub Impact Event |url=https://www.lpi.usra.edu/science/kring/Chicxulub/regional-effects/ |access-date=2022-04-23 |website=www.lpi.usra.edu}}{{Cite journal |last1=Henehan |first1=Michael J. |last2=Ridgwell |first2=Andy |last3=Thomas |first3=Ellen |author3-link=Ellen Thomas (scientist) |last4=Zhang |first4=Shuang |last5=Alegret |first5=Laia |last6=Schmidt |first6=Daniela N. |last7=Rae |first7=James W. B. |last8=Witts |first8=James D. |last9=Landman |first9=Neil H. |last10=Greene |first10=Sarah E. |last11=Huber |first11=Brian T. |date=2019-10-21 |title=Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact |journal=Proceedings of the National Academy of Sciences |volume=116 |issue=45 |pages=22500–22504 |doi=10.1073/pnas.1905989116 |issn=0027-8424 |pmc=6842625 |pmid=31636204|bibcode=2019PNAS..11622500H |doi-access=free }}{{Cite web |last=Nield |first=David |title=That Dinosaur-Killing Asteroid Instantly Acidified Our World's Oceans, Too |url=https://www.sciencealert.com/the-dino-killing-asteroid-caused-mass-extinction-by-instantly-acidifying-the-oceans |access-date=2022-04-23 |website=ScienceAlert |date=October 22, 2019 |language=en-gb}} File:Chicxulub-animation.gif

>{{Val|2.4|e=10}}

| >28 ZWh

| The impact energy of Archean asteroids.{{Cite journal |last=Zahnle |first=K. J. |date=2018-08-26 |title=Climatic Effect of Impacts on the Ocean |journal=Comparative Climatology of Terrestrial Planets III: From Stars to Surfaces |volume=2065 |page=2056 |bibcode=2018LPICo2065.2056Z |url=https://ntrs.nasa.gov/citations/20180006692 |language=en}}

{{val|9.1|e=10}}

| 106 ZWh

| The total energy output of the Sun per second.{{Cite web |last=Carroll |first=Carroll |date=2017 |title=Sun: Amount of Energy the Earth Gets from the Sun |url=http://helios.gsfc.nasa.gov/qa_sun.html#sunenergymass |website=Ask a Physicist |archive-url=https://web.archive.org/web/20000816180724/http://helios.gsfc.nasa.gov/qa_sun.html#sunenergymass |archive-date=16 August 2000 |url-status=dead}}

{{val|2.4|e=11}}

| 280 ZWh

| The kinetic energy of the Caloris Planitia impactor.{{Cite journal |last1=Lü |first1=Jiangning |last2=Sun |first2=Youshun |last3=Nafi Toksöz |first3=M. |last4=Zheng |first4=Yingcai |last5=Zuber |first5=Maria T. |date=2011-12-01 |title=Seismic effects of the Caloris basin impact, Mercury |url=https://www.sciencedirect.com/science/article/pii/S0032063311002340 |journal=Planetary and Space Science |language=en |volume=59 |issue=15 |pages=1981–1991 |doi=10.1016/j.pss.2011.07.013 |bibcode=2011P&SS...59.1981L |hdl=1721.1/69472 |issn=0032-0633|hdl-access=free }}File:The Mighty Caloris (PIA19213) cropped.png orbiter.]]

{{val|5.972|e=15}}

| {{val|6.94}} RWh

| The explosive energy of a quantity of TNT of the mass of Earth.{{Cite journal |last1=Luzum |first1=Brian |last2=Capitaine |first2=Nicole |last3=Fienga |first3=Agnès |last4=Folkner |first4=William |last5=Fukushima |first5=Toshio |last6=Hilton |first6=James |last7=Hohenkerk |first7=Catherine |last8=Krasinsky |first8=George |last9=Petit |first9=Gérard |last10=Pitjeva |first10=Elena |last11=Soffel |first11=Michael |date=2011-07-10 |title=The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy |journal=Celestial Mechanics and Dynamical Astronomy |language=en |volume=110 |issue=4 |pages=293 |doi=10.1007/s10569-011-9352-4 |bibcode=2011CeMDA.110..293L |s2cid=122755461 |issn=1572-9478|doi-access=free }}

{{val|7.89|e=15}}

| {{val|9.17}} RWh

| Total solar output in all directions per day.{{Cite web |date=16 August 2000 |title=Ask A Physicist: Sun |url=http://helios.gsfc.nasa.gov/qa_sun.html#sunenergymass |access-date=23 February 2022 |website=Cosmic Helospheric Learning Center |archive-url=https://web.archive.org/web/20000816180724/http://helios.gsfc.nasa.gov/qa_sun.html#sunenergymass |archive-date=16 August 2000 |url-status=dead}}

{{val|1.98|e=21}}

| {{Val|2.3|e=33}} Wh

| The explosive energy of a quantity of TNT of the mass of the Sun.{{Cite web |title=Sun Fact Sheet |url=https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html |access-date=2022-03-22 |website=nssdc.gsfc.nasa.gov}}

{{val|2.4|–|4.8|e=28}}

| {{val|2.8|–|5.6|e=40}} Wh

| A type Ia supernova explosion gives off 1–{{val|2|e=44}} joules of energy, which is about 2.4–4.8 hundred billion yottatons (24–48 octillion (2.4–{{val|4.8|e=28}}) megatons) of TNT, equivalent to the explosive force of a quantity of TNT over a trillion (1012) times the mass of the planet Earth. This is the astrophysical standard candle used to determine galactic distances.{{Cite journal |last1=Khokhlov |first1=A. |last2=Mueller |first2=E. |last3=Hoeflich |first3=P. |date=1993-03-01 |title=Light curves of type IA supernova models with different explosion mechanisms. |url=https://ui.adsabs.harvard.edu/abs/1993A&A...270..223K |journal=Astronomy and Astrophysics |volume=270 |pages=223–248 |bibcode=1993A&A...270..223K |issn=0004-6361}}

{{val|2.4|–|4.8|e=30}}

| {{val|2.8|–|5.6|e=42}} Wh

| The largest type of supernova observed, gamma-ray bursts (GRBs) release more than 1046 joules of energy.{{cite journal| doi=10.1126/science.1242279| title=GRB 130427A: A Nearby Ordinary Monster| year=2014| last1=Maselli| first1=A.| last2=Melandri| first2=A.| last3=Nava| first3=L.| last4=Mundell| first4=C. G.| last5=Kawai| first5=N.| last6=Campana| first6=S.| last7=Covino| first7=S.| last8=Cummings| first8=J. R.| last9=Cusumano| first9=G.| last10=Evans|first10=P. A.| last11=Ghirlanda| first11=G.| last12=Ghisellini| first12=G.| last13=Guidorzi| first13=C.| last14=Kobayashi| first14=S.| last15=Kuin| first15=P.| last16=LaParola| first16=V.| last17=Mangano| first17=V.| last18=Oates| first18=S.| last19=Sakamoto| first19=T.| last20=Serino| first20=M.| last21=Virgili| first21=F.| last22=Zhang| first22=B.- B.| last23=Barthelmy| first23=S.| last24=Beardmore| first24=A.| last25=Bernardini| first25=M. G.| last26=Bersier| first26=D.| last27=Burrows| first27=D.| last28=Calderone| first28=G.| last29=Capalbi| first29=M.| last30=Chiang| first30=J.| journal=Science| volume=343| issue=6166| pages=48–51| pmid=24263134| arxiv=1311.5254| bibcode=2014Sci...343...48M| s2cid=9782862}}

{{val|1.3|e=32}}

| {{val|1.5|e=44}} Wh

| A merger of two black holes, resulting in the first observation of gravitational waves, released {{val|5.3|e=47}} joules{{Cite journal|last1=The LIGO Scientific Collaboration|last2=the Virgo Collaboration|last3=Abbott|first3=B. P.|last4=Abbott|first4=R.|last5=Abbott|first5=T. D.|last6=Abernathy|first6=M. R.|last7= Acernese|first7=F.|last8=Ackley|first8=K.|last9=Adams|first9=C.|date=2016-06-14|title=Properties of the Binary Black Hole Merger GW150914|arxiv=1602.03840|journal= Physical Review Letters|volume=116|issue=24|pages=241102|doi=10.1103/PhysRevLett.116.241102|pmid=27367378|bibcode=2016PhRvL.116x1102A|s2cid=217406416|issn=0031-9007}}

{{Val|9.6|e=53}}

| {{Val|1.12|e=66}} Wh

| Estimated mass-energy of the observable universe.{{Cite web |date=11 February 1998 |title=Big Bang Energy (Ask an Astrophysicist) |url=http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/980211b.html |access-date=23 March 2022 |website=Imagine the Universe!|archive-url=https://web.archive.org/web/20140819120709/http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/980211b.html |archive-date=2014-08-19 }}

== Relative effectiveness factor ==

The relative effectiveness factor (RE factor) relates an explosive's demolition power to that of TNT, in units of the TNT equivalent/kg (TNTe/kg). The RE factor is the relative mass of TNT to which an explosive is equivalent: The greater the RE, the more powerful the explosive.

This enables engineers to determine the proper masses of different explosives when applying blasting formulas developed specifically for TNT. For example, if a timber-cutting formula calls for a charge of 1 kg of TNT, then based on octanitrocubane's RE factor of 2.38, it would take only 1.0/2.38 (or 0.42) kg of it to do the same job. Using PETN, engineers would need 1.0/1.66 (or 0.60) kg to obtain the same effects as 1 kg of TNT. With ANFO or ammonium nitrate, they would require 1.0/0.74 (or 1.35) kg or 1.0/0.32 (or 3.125) kg, respectively.

Calculating a single RE factor for an explosive is, however, impossible. It depends on the specific case or use. Given a pair of explosives, one can produce 2× the shockwave output (this depends on the distance of measuring instruments) but the difference in direct metal cutting ability may be 4× higher for one type of metal and 7× higher for another type of metal. The relative differences between two explosives with shaped charges will be even greater. The table below should be taken as an example and not as a precise source of data.

style="font-size: 100%; text-align: right;" class="wikitable sortable" border="1"

|+ Some relative effectiveness factor examples{{citation needed|reason=sources needed for these figures|date=April 2019}}

style="text-align: center"

! Explosive, grade

! data-sort-type="number" | Density
(g/ml)

! data-sort-type="number" | Detonation
vel. (m/s)

! data-sort-type="number" | Relative
effectiveness

align=left|Ammonium nitrate (AN + <0.5% H2O)

| 0.88

| 2,700US Army FM 3–34.214: Explosives and Demolition, 2007, page 1–2.

| 0.32{{Cite journal| volume = 14| issue = 11| pages = 2671–2678| last1 = Török| first1 = Zoltán| last2 = Ozunu| first2 = Alexandru| title = Hazardous properties of ammonium nitrate and modeling of explosions using TNT equivalency.| journal = Environmental Engineering & Management Journal | date = 2015| doi = 10.30638/eemj.2015.284| bibcode = 2015EEMJ...14.2671T}}{{cite web |last1=Queensland Government |title=Storage requirements for security sensitive ammonium nitrate (SSAN) |url=https://www.dnrme.qld.gov.au/business/mining/safety-and-health/alerts-and-bulletins/explosives/storage-req-security-sensitive-ammonium-nitrate-ssan |access-date=24 August 2020 |archive-date=22 October 2020 |archive-url=https://web.archive.org/web/20201022034302/https://www.dnrme.qld.gov.au/business/mining/safety-and-health/alerts-and-bulletins/explosives/storage-req-security-sensitive-ammonium-nitrate-ssan |url-status=live }}

align=left|Mercury(II) fulminate

| 4.42

| 4,250

| 0.51{{Cite web |url=http://whitehall-paraindustries.com/Hero/Conversions/explosives.htm |title=Whitehall Paraindistries |access-date=2017-03-31 |archive-date=2017-02-10 |archive-url=https://web.archive.org/web/20170210152757/http://whitehall-paraindustries.com/Hero/Conversions/explosives.htm |url-status=live }}

align=left|Black powder (75% KNO3 + 19% C + 6% S, ancient low explosive)

| 1.65

| 400

| 0.55{{cite web |title=FM 5–250 |url=https://www.bits.de/NRANEU/others/amd-us-archive/fm5-250%2892%29.pdf |website=bits.de |publisher=United States Department of the Army |access-date=23 October 2019 |archive-date=5 August 2020 |archive-url=https://web.archive.org/web/20200805043954/https://www.bits.de/NRANEU/others/amd-us-archive/fm5-250%2892%29.pdf |url-status=live }}

align=left| Hexamine dinitrate (HDN)

| 1.30

| 5,070

| 0.60

align=left|Dinitrobenzene (DNB)

| 1.50

| 6,025

| 0.60

align=left|HMTD (hexamine peroxide)

| 0.88

| 4,520

| 0.74

align=left|ANFO (94% AN + 6% fuel oil)

| 0.92

| 4,200

| 0.74

align=left|Urea nitrate

| 1.67

| 4,700

| 0.77

align=left|TATP (acetone peroxide)

| 1.18

| 5,300

| 0.80

align=left|Tovex Extra (AN water gel) commercial product

| 1.33

| 5,690

| 0.80

align=left|Hydromite 600 (AN water emulsion) commercial product

| 1.24

| 5,550

| 0.80

align=left| ANNMAL (66% AN + 25% NM + 5% Al + 3% C + 1% TETA)

| 1.16

| 5,360

| 0.87

align=left|Amatol (50% TNT + 50% AN)

| 1.50

| 6,290

| 0.91

align=left|Nitroguanidine

| 1.32

| 6,750

| 0.95

align=left|Trinitrotoluene (TNT)

| 1.60

| 6,900

| 1.00

align=left|Hexanitrostilbene (HNS)

| 1.70

| 7,080

| 1.05

align=left|Nitrourea

| 1.45

| 6,860

| 1.05

align=left|Tritonal (80% TNT + 20% aluminium){{efn|name=TBX-EBX|TBX (thermobaric explosives) or EBX (enhanced blast explosives), in a small, confined space, may have over twice the power of destruction. The total power of aluminized mixtures strictly depends on the condition of explosions.}}

| 1.70

| 6,650

| 1.05

align=left|Nickel hydrazine nitrate (NHN)

| 1.70

| 7,000

| 1.05

align=left|Amatol (80% TNT + 20% AN)

| 1.55

| 6,570

| 1.10

align=left|Nitrocellulose (13.5% N, NC; AKA guncotton)

| 1.40

| 6,400

| 1.10

align=left|Nitromethane (NM)

| 1.13

| 6,360

| 1.10

align=left| PBXW-126 (22% NTO, 20% RDX, 20% AP, 26% Al, 12% PU's system){{efn|name=TBX-EBX}}

| 1.80

| 6,450

| 1.10

align=left|Diethylene glycol dinitrate (DEGDN)

| 1.38

| 6,610

| 1.17

align=left| PBXIH-135 EB (42% HMX, 33% Al, 25% PCP-TMETN's system){{efn|name=TBX-EBX}}

| 1.81

| 7,060

| 1.17

align=left| PBXN-109 (64% RDX, 20% Al, 16% HTPB's system){{efn|name=TBX-EBX}}

| 1.68

| 7,450

| 1.17

align=left| Triaminotrinitrobenzene (TATB)

| 1.80

| 7,550

| 1.17

align=left|Picric acid (TNP)

| 1.71

| 7,350

| 1.17

align=left|Trinitrobenzene (TNB)

| 1.60

| 7,300

| 1.20

align=left|Tetrytol (70% tetryl + 30% TNT)

| 1.60

| 7,370

| 1.20

align=left|Dynamite, Nobel's (75% NG + 23% diatomite)

| 1.48

| 7,200

| 1.25

align=left|Tetryl

| 1.71

| 7,770

| 1.25

align=left|Torpex (aka HBX, 41% RDX + 40% TNT + 18% Al + 1% wax){{efn|name=TBX-EBX}}

| 1.80

| 7,440

| 1.30

align=left|Composition B (63% RDX + 36% TNT + 1% wax)

| 1.72

| 7,840

| 1.33

align=left|Composition C-3 (78% RDX)

| 1.60

| 7,630

| 1.33

align=left|Composition C-4 (91% RDX)

| 1.59

| 8,040

| 1.34

align=left|Pentolite (56% PETN + 44% TNT)

| 1.66

| 7,520

| 1.33

align=left|Semtex 1A (76% PETN + 6% RDX)

| 1.55

| 7,670

| 1.35

align=left| Hexal (76% RDX + 20% Al + 4% wax){{efn|name=TBX-EBX}}

|1.79

|7,640

|1.35

align=left| RISAL P (50% IPN + 28% RDX + 15% Al + 4% Mg + 1% Zr + 2% NC){{efn|name=TBX-EBX}}

| 1.39

| 5,980

| 1.40

align=left| Hydrazine nitrate

| 1.59

| 8,500

| 1.42

align=left| Mixture: 24% nitrobenzene + 76% TNM

| 1.48

| 8,060

| 1.50

align=left| Mixture: 30% nitrobenzene + 70% nitrogen tetroxide

| 1.39

| 8,290

| 1.50

align=left|Nitroglycerin (NG)

| 1.59

| 7,700

| 1.54

align=left|Methyl nitrate (MN)

| 1.21

| 7,900

| 1.54

align=left|Octol (80% HMX + 19% TNT + 1% DNT)

| 1.83

| 8,690

| 1.54

align=left|Nitrotriazolone (NTO)

| 1.87

| 8,120

| 1.60

align=left|DADNE (1,1-diamino-2,2-dinitroethene, FOX-7)

| 1.77

| 8,330

| 1.60

align=left|Gelignite (92% NG + 7% nitrocellulose)

| 1.60

| 7,970

| 1.60

align=left|Plastics Gel® (in toothpaste tube: 45% PETN + 45% NG + 5% DEGDN + 4% NC)

| 1.51

| 7,940

| 1.60

align=left|Composition A-5 (98% RDX + 2% stearic acid)

| 1.65

| 8,470

| 1.60

align=left|Erythritol tetranitrate (ETN)

| 1.72

| 8,206

| 1.60

align=left|Hexogen (RDX)

| 1.78

| 8,600

| 1.60

align=left| PBXW-11 (96% HMX, 1% HyTemp, 3% DOA)

| 1.81

| 8,720

| 1.60

align=left|Penthrite (PETN)

| 1.77

| 8,400

| 1.66

align=left|Ethylene glycol dinitrate (EGDN)

| 1.49

| 8,300

| 1.66

align=left|MEDINA (Methylene dinitroamine){{Cite web |last=PubChem |title=Medina |url=https://pubchem.ncbi.nlm.nih.gov/compound/26524 |access-date=2024-05-20 |website=pubchem.ncbi.nlm.nih.gov |language=en}}{{Cite web |title=methylenedinitramine {{!}} CH4N4O4 {{!}} ChemSpider |url=https://www.chemspider.com/Chemical-Structure.24707.html |access-date=2024-05-20 |website=www.chemspider.com}}

| 1.65

| 8,700

| 1.70

align=left|Trinitroazetidine (TNAZ)

| 1.85

| 9,597

| 1.70

align=left|Octogen (HMX grade B)

| 1.86

| 9,100

| 1.70

align=left|Hexanitrobenzene (HNB)

| 1.97

| 9,340

| 1.80

align=left|Hexanitrohexaazaisowurtzitane (HNIW; AKA CL-20)

| 1.97

| 9,500

| 1.90

align=left|DDF (4,4’-Dinitro-3,3’-diazenofuroxan)

| 1.98

| 10,000

| 1.95

align=left|Heptanitrocubane (HNC){{efn|name=predicted|Predicted values}}

| 1.92

| 9,200

| N/A

align=left|Octanitrocubane (ONC)

| 1.95

| 10,600

| 2.38

align=left|Octaazacubane (OAC){{efn|name=predicted}}

| 2.69

| 15,000

| |{{nts|5.00|prefix=>}}

=Nuclear examples=

style="font-size: 100%; text-align: right;" class="wikitable sortable" border="1"

|+ Nuclear weapons and the most powerful non-nuclear weapon examples

style="text-align: center"

! Weapon

! data-sort-type="number" | Total yield
(kilotons of TNT)

! data-sort-type="number" | Mass
(kg)

! Relative
effectiveness

align="left" |GBU-57 bomb (Massive Ordnance Penetrator, MOP)

| 0.0035

| 13,600

| 0.26

align="left" |Grand Slam (Earthquake bomb, M110)

| 0.0065

| 9,900

| 0.66

align=left|Bomb used in Oklahoma City (ANFO based on racing fuel)

| 0.0018

| 2,300

| 0.78

align=left|BLU-82 (Daisy Cutter)

| 0.0075

| 6,800

| 1.10

align=left|MOAB (non-nuclear bomb, GBU-43)

| 0.011

| 9,800

| 1.13

align=left|FOAB (advanced thermobaric bomb, ATBIP)

| 0.044

| 9,100

| 4.83

align=left|W54, Mk-54 (Davy Crockett)

| 0.022

| 23

| 1,000

align="left" |Little Boy (dropped on Hiroshima) A-bomb

|15

|4,400

|4,000

align="left" |Fat Man (dropped on Nagasaki) A-bomb

| 20

| 4,600

| 4,500

align=left|W54, B54 (SADM)

| 1.0

| 23

| 43,500

align="left" |Classic (one-stage) fission A-bomb

| 22

| 420

| 50,000

align=left|Hypothetical suitcase nuke

| 2.5

| 31

| 80,000

align=left|Typical (two-stage) nuclear bomb

| 500–1000

| 650–1,120

| 900,000

align="left" |W88 modern thermonuclear warhead (MIRV)

| 470

| 355

| 1,300,000

align="left" |Tsar nuclear bomb (three-stage)

| 50,000–56,000

| 26,500

| 2,100,000

align="left" |B53 nuclear bomb (two-stage)

| 9,000

| 4,050

| 2,200,000

align="left" |Operation Dominic Housatonic{{Cite web | url=https://i.imgur.com/yHlPKb4.png | title=Ripple | format=PNG}}{{Cite web | url=https://i.imgur.com/nTirCcn.png | title=Postulated Ripple design (Dominic Housatonic) | format=PNG}}{{Citation |title=Nuclear weapon design |date=2024-05-28 |work=Wikipedia |url=https://en.wikipedia.org/w/index.php?title=Nuclear_weapon_design&oldid=1226041993 |access-date=2024-07-07 |language=en}} (two-stage)

|9,960

|3,239

|3,042,400

align=left|W56 thermonuclear warhead

|1,200

|272–308

|4,960,000

align=left|B41 nuclear bomb (three-stage)

| 25,000

| 4,850

| 5,100,000

See also

Footnotes

{{notelist}}

References

{{Reflist|30em}}