TNT equivalent#Relative effectiveness factor
{{short description|Class of units of measurement for explosive energy}}
{{Redirect|Kiloton|the similarly named weight measurements|Tonne}}
{{Use mdy dates|date=September 2022}}
{{Infobox unit
| bgcolor =
| name = TNT equivalent
| image = Atomic blast Nevada Yucca 1951.jpg
| caption = The explosion from a 14-kiloton nuclear test at the Nevada Test Site, in 1951
| standard = Non-standard
| quantity = Energy
| symbol = t
| symbol2 = {{em|ton of TNT}}
| extradata =
| units1 = SI base units
| inunits1 = ≈{{thin space}}{{val|4.184|u=gigajoules}}
| units2 = CGS
| inunits2 = {{val|e=9|u=calories}}
| units3 = US customary
}}
TNT equivalent is a convention for expressing energy, typically used to describe the energy released in an explosion. A ton of TNT equivalent is a unit of energy defined by convention to be {{val|4.184|ul=gigajoules}} ({{val|1|ul=gigacalorie}}).{{cite web |url=http://www.unitconversion.org/energy/tons-explosives-to-gigajoules-conversion.html |title=Tons (Explosives) to Gigajoules Conversion Calculator |work=unitconversion.org |access-date=2016-01-06 |archive-date=2017-03-17 |archive-url=https://web.archive.org/web/20170317051223/http://www.unitconversion.org/energy/tons-explosives-to-gigajoules-conversion.html |url-status=live }} It is the approximate energy released in the detonation of a metric ton (1,000 kilograms) of trinitrotoluene (TNT). In other words, for each gram of TNT exploded, {{val|4.184|u=kilojoules}} (or 4184 joules) of energy are released.
This convention intends to compare the destructiveness of an event with that of conventional explosive materials, of which TNT is a typical example, although other conventional explosives such as dynamite contain more energy.
A related concept is the physical quantity TNT-equivalent mass (or mass of TNT equivalent),{{cite book | title=Explosions in the Process Industries | publisher=Institution of Chemical Engineers | series=Major hazards monograph | year=1994 | isbn=978-0-85295-315-0 | url=https://books.google.com/books?id=rfzl66nzMbcC&pg=PA30 | access-date=2025-03-05 | page=30}}{{cite book | last1=Mays | first1=G. | last2=Smith | first2=P.D. | title=Blast Effects on Buildings: Design of Buildings to Optimize Resistance to Blast Loading | publisher=T. Telford | year=1995 | isbn=978-0-7277-2030-6 | url=https://books.google.com/books?id=t2Zlxs0pBC4C&pg=PA28 | access-date=2025-03-05 | page=28}}{{cite book | last1=Martorell | first1=S. | last2=Soares | first2=C.G. | last3=Barnett | first3=J. | title=Safety, Reliability and Risk Analysis: Theory, Methods and Applications (4 Volumes + CD-ROM) | publisher=CRC Press | year=2008 | isbn=978-1-4822-6648-1 | url=https://books.google.com/books?id=HX7OBQAAQBAJ&pg=PA1023 | access-date=2025-03-05 | page=1023}}{{cite book | last=Bersani | first=C. | title=Advanced Technologies and Methodologies for Risk Management in the Global Transport of Dangerous Goods | publisher=IOS Press | series=NATO science for peace and security series | year=2008 | isbn=978-1-58603-899-1 | url=https://books.google.com/books?id=jRsk4p15tQkC&pg=PA11 | access-date=2025-03-05 | page=11}} expressed in the ordinary units of mass and its multiples: kilogram (kg), megagram (Mg) or tonne (t), etc.
Kiloton and megaton
The "kiloton (of TNT equivalent)" is a unit of energy equal to 4.184 terajoules ({{val|4.184|e=12|u=J}}).{{Cite web |title=Convert Megaton to Joule |url=https://www.unitconverters.net/energy/megaton-to-joule.htm |access-date=2022-03-22 |website=www.unitconverters.net}} A kiloton of TNT can be visualized as a cube of TNT {{convert|8.46|m|ft}} on a side.
The "megaton (of TNT equivalent)" is a unit of energy equal to 4.184 petajoules ({{val|4.184|e=15|u=J}}).{{Cite web |title=Convert Gigaton to Joule |url=https://www.unitconverters.net/energy/gigaton-to-joule.htm |access-date=2022-03-22 |website=www.unitconverters.net}}
The kiloton and megaton of TNT equivalent have traditionally been used to describe the energy output, and hence the destructive power, of a nuclear weapon. The TNT equivalent appears in various nuclear weapon control treaties, and has been used to characterize the energy released in asteroid impacts.{{cite web|url=http://www.unitconversion.org/energy/joules-to-megatons-conversion.html|title=Joules to Megatons Conversion Calculator|work=unitconversion.org|access-date=2009-11-23|archive-date=2009-11-24|archive-url=https://web.archive.org/web/20091124011206/http://www.unitconversion.org/energy/joules-to-megatons-conversion.html|url-status=live}}
Historical derivation of the value
Alternative values for TNT equivalency can be calculated according to which property is being compared and when in the two detonation processes the values are measured.Sorin Bastea, Laurence E. Fried, Kurt R. Glaesemann, W. Michael Howard, P. Clark Souers, Peter A. Vitello, Cheetah 5.0 User's Manual, Lawrence Livermore National Laboratory, 2007.{{cite tech report |first=Jon L. |last=Maienschein |title=Estimating equivalency of explosives through a thermochemical approach |number=UCRL-JC-147683 |institution=Lawrence Livermore National Laboratory |year=2002 |url=https://e-reports-ext.llnl.gov/pdf/241114.pdf |format=PDF |archive-url=https://web.archive.org/web/20161221173225/http://e-reports-ext.llnl.gov/pdf/241114.pdf |archive-date=December 21, 2016 |url-status=dead |access-date=December 12, 2012 }}{{cite tech report |first=Jon L. |last=Maienschein |title=Tnt equivalency of different explosives – estimation for calculating load limits in heaf firing tanks |number=EMPE-02-22 |institution=Lawrence Livermore National Laboratory |year=2002 }}{{cite tech report |first=Bruce J. |last=Cunningham |title=C-4/tnt equivalency |number=EMPE-01-81 |institution=Lawrence Livermore National Laboratory |year=2001 }}
Where for example the comparison is by energy yield, an explosive's energy is normally expressed for chemical purposes as the thermodynamic work produced by its detonation. For TNT this has been accurately measured as 4,686 J/g from a large sample of air blast experiments, and theoretically calculated to be 4,853 J/g.{{cite book|last=Cooper|first= Paul W. |title=Explosives Engineering|location= New York|publisher= Wiley-VCH|year= 1996|page= 406 |isbn=978-0-471-18636-6}}
However, even on this basis, comparing the actual energy yields of a large nuclear device and an explosion of TNT can be slightly inaccurate. Small TNT explosions, especially in the open, do not tend to burn the carbon-particle and hydrocarbon products of the explosion. Gas-expansion and pressure-change effects tend to "freeze" the burn rapidly. A large, open explosion of TNT may maintain fireball temperatures high enough that some of those products do burn up with atmospheric oxygen.
name="Needham"> {{cite book | author = Charles E. Needham | url = https://books.google.com/books?id=JXo4DwAAQBAJ&pg=PA91 | title = Blast Waves | language = en | date = Oct 3, 2017 | isbn = 978-3319653822 | oclc = 1005353847 | page = 91 | publisher=Springer | archive-url = https://archive.today/20181226201600/https://books.google.cz/books?id=JXo4DwAAQBAJ&pg=PA91&lpg=PA91&dq=tnt+soot+burn+up&source=bl&ots=wZbK8Emrf6&sig=M1N5i8i8ENytJDvWgqyzaB7j5CI&hl=en&sa=X&ved=2ahUKEwjul7Chu47fAhWEmLQKHToJDtIQ6AEwAHoECAkQAQ%23v=onepage&q=tnt%20soot%20burn%20up&f=false | archive-date = December 26, 2018 | url-status = live | access-date = January 25, 2019 | df = mdy-all }}
Such differences can be substantial. For safety purposes, a range as wide as {{val|2673|–|6702|u=J|fmt=commas}} has been stated for a gram of TNT upon explosion.{{Cite web|url=https://hal.archives-ouvertes.fr/hal-00629253/document|archiveurl=https://web.archive.org/web/20160810225249/http://hal.archives-ouvertes.fr/hal-00629253/document|url-status=dead|title=Blast effects of external explosions (Section 4.8. Limitations of the TNT equivalent method)|archivedate=August 10, 2016}} Thus one can state that a nuclear bomb has a yield of 15 kt ({{val|6.3|e=13|u=J}}), but the explosion of an actual {{val|15000|s=-ton|fmt=commas}} pile of TNT may yield (for example) {{val|8|e=13|u=J}} due to additional carbon/hydrocarbon oxidation not present with small open-air charges.
These complications have been sidestepped by convention. The energy released by one gram of TNT was arbitrarily defined as a matter of convention to be 4,184 J,{{cite web|title=Appendix B8 – Factors for Units Listed Alphabetically|url=http://physics.nist.gov/Pubs/SP811/appenB8.html|date=2009-07-02|access-date=2007-03-29|archive-date=2016-01-29|archive-url=https://web.archive.org/web/20160129233551/http://physics.nist.gov/Pubs/SP811/appenB8.html|url-status=live}} In {{harvnb|NIST SI Guide|2008}} which is exactly one kilocalorie.
class="wikitable" |
Grams TNT
! Symbol ! Tons TNT ! Symbol ! Energy [joules] ! Energy [Wh] ! Corresponding mass loss{{efn|Mass–energy equivalence.}} |
---|
milligram of TNT
| mg | nanoton of TNT | nt | {{val|4.184|u=J}} or 4.184 joules | 1.162 mWh | 46.55 fg |
gram of TNT
| g | microton of TNT | μt | {{val|4.184|e=3|u=J}} or 4.184 kilojoules | 1.162 Wh | 46.55 pg |
kilogram of TNT
| kg | milliton of TNT | mt | {{val|4.184|e=6|u=J}} or 4.184 megajoules | 1.162 kWh | 46.55 ng |
megagram of TNT
| Mg | ton of TNT | t | {{val|4.184|e=9|u=J}} or 4.184 gigajoules | 1.162 MWh | 46.55 μg |
gigagram of TNT
| Gg | kiloton of TNT | kt | {{val|4.184|e=12|u=J}} or 4.184 terajoules | 1.162 GWh | 46.55 mg |
teragram of TNT
| Tg | megaton of TNT | Mt | {{val|4.184|e=15|u=J}} or 4.184 petajoules | 1.162 TWh | 46.55 g |
petagram of TNT
| Pg | gigaton of TNT | Gt | {{val|4.184|e=18|u=J}} or 4.184 exajoules | 1.162 PWh | 46.55 kg |
Conversion to other units
1 ton of TNT equivalent is approximately:
- {{val|1.0|e=9}} calories{{Cite web |title=Tons Of Tnt to Calories {{!}} Kyle's Converter |url=https://www.kylesconverter.com/energy,-work,-and-heat/tons-of-tnt-to-calories |access-date=2022-03-22 |website=www.kylesconverter.com}}
- {{val|4.184|e=9}} joules{{Cite web |title=Convert tons of TNT to joules {{!}} energy conversion |url=https://convert-to.com/conversion/energy/convert-tn-to-j.html |access-date=2022-03-22 |website=convert-to.com}}
- {{val|3.96831|e=6}} British thermal units{{Cite web |title=Convert tons of TNT to BTU - British Thermal Unit {{!}} energy conversion |url=https://convert-to.com/conversion/energy/convert-tn-to-btu.html |access-date=2022-03-22 |website=convert-to.com}}
- {{val|3.086|e=9}} foot-pounds{{Cite web |title=Convert tons of TNT to foot pounds {{!}} energy conversion |url=https://convert-to.com/conversion/energy/convert-tn-to-ft-lb.html |access-date=2022-03-22 |website=convert-to.com}}
- {{val|1.162|e=3}} kilowatt-hours{{Cite web |title=Tons Of Tnt to Kilowatt-hours {{!}} Kyle's Converter |url=https://www.kylesconverter.com/energy,-work,-and-heat/tons-of-tnt-to-kilowatt--hours |access-date=2022-03-22 |website=www.kylesconverter.com}}
- {{val|2.611|e=28}} electronvolts
- {{val|4.655|e=-8}} kilograms mass equivalent{{Cite web |title=4.184 gigajoules / c^2 in kilograms {{!}} Google |url=https://www.google.com/search?q=4.184+gigajoules+%2F+c^2+in+kilograms |access-date=2025-05-24 |website=www.google.com}}
Examples
{{Further|Orders of magnitude (energy)}}
== Relative effectiveness factor ==
The relative effectiveness factor (RE factor) relates an explosive's demolition power to that of TNT, in units of the TNT equivalent/kg (TNTe/kg). The RE factor is the relative mass of TNT to which an explosive is equivalent: The greater the RE, the more powerful the explosive.
This enables engineers to determine the proper masses of different explosives when applying blasting formulas developed specifically for TNT. For example, if a timber-cutting formula calls for a charge of 1 kg of TNT, then based on octanitrocubane's RE factor of 2.38, it would take only 1.0/2.38 (or 0.42) kg of it to do the same job. Using PETN, engineers would need 1.0/1.66 (or 0.60) kg to obtain the same effects as 1 kg of TNT. With ANFO or ammonium nitrate, they would require 1.0/0.74 (or 1.35) kg or 1.0/0.32 (or 3.125) kg, respectively.
Calculating a single RE factor for an explosive is, however, impossible. It depends on the specific case or use. Given a pair of explosives, one can produce 2× the shockwave output (this depends on the distance of measuring instruments) but the difference in direct metal cutting ability may be 4× higher for one type of metal and 7× higher for another type of metal. The relative differences between two explosives with shaped charges will be even greater. The table below should be taken as an example and not as a precise source of data.
style="font-size: 100%; text-align: right;" class="wikitable sortable" border="1"
|+ Some relative effectiveness factor examples{{citation needed|reason=sources needed for these figures|date=April 2019}} |
style="text-align: center"
! Explosive, grade ! data-sort-type="number" | Density ! data-sort-type="number" | Detonation ! data-sort-type="number" | Relative |
align=left|Ammonium nitrate (AN + <0.5% H2O)
| 0.88 | 2,700US Army FM 3–34.214: Explosives and Demolition, 2007, page 1–2. | 0.32{{Cite journal| volume = 14| issue = 11| pages = 2671–2678| last1 = Török| first1 = Zoltán| last2 = Ozunu| first2 = Alexandru| title = Hazardous properties of ammonium nitrate and modeling of explosions using TNT equivalency.| journal = Environmental Engineering & Management Journal | date = 2015| doi = 10.30638/eemj.2015.284| bibcode = 2015EEMJ...14.2671T}}{{cite web |last1=Queensland Government |title=Storage requirements for security sensitive ammonium nitrate (SSAN) |url=https://www.dnrme.qld.gov.au/business/mining/safety-and-health/alerts-and-bulletins/explosives/storage-req-security-sensitive-ammonium-nitrate-ssan |access-date=24 August 2020 |archive-date=22 October 2020 |archive-url=https://web.archive.org/web/20201022034302/https://www.dnrme.qld.gov.au/business/mining/safety-and-health/alerts-and-bulletins/explosives/storage-req-security-sensitive-ammonium-nitrate-ssan |url-status=live }} |
align=left|Mercury(II) fulminate
| 4.42 | 4,250 |
align=left|Black powder (75% KNO3 + 19% C + 6% S, ancient low explosive)
| 1.65 | 400 |
align=left| Hexamine dinitrate (HDN)
| 1.30 | 5,070 | 0.60 |
align=left|Dinitrobenzene (DNB)
| 1.50 | 6,025 | 0.60 |
align=left|HMTD (hexamine peroxide)
| 0.88 | 4,520 | 0.74 |
align=left|ANFO (94% AN + 6% fuel oil)
| 0.92 | 4,200 | 0.74 |
align=left|Urea nitrate
| 1.67 | 4,700 | 0.77 |
align=left|TATP (acetone peroxide)
| 1.18 | 5,300 | 0.80 |
align=left|Tovex Extra (AN water gel) commercial product
| 1.33 | 5,690 | 0.80 |
align=left|Hydromite 600 (AN water emulsion) commercial product
| 1.24 | 5,550 | 0.80 |
align=left| ANNMAL (66% AN + 25% NM + 5% Al + 3% C + 1% TETA)
| 1.16 | 5,360 | 0.87 |
align=left|Amatol (50% TNT + 50% AN)
| 1.50 | 6,290 | 0.91 |
align=left|Nitroguanidine
| 1.32 | 6,750 | 0.95 |
align=left|Trinitrotoluene (TNT)
| 1.60 | 6,900 | 1.00 |
align=left|Hexanitrostilbene (HNS)
| 1.70 | 7,080 | 1.05 |
align=left|Nitrourea
| 1.45 | 6,860 | 1.05 |
align=left|Tritonal (80% TNT + 20% aluminium){{efn|name=TBX-EBX|TBX (thermobaric explosives) or EBX (enhanced blast explosives), in a small, confined space, may have over twice the power of destruction. The total power of aluminized mixtures strictly depends on the condition of explosions.}}
| 1.70 | 6,650 | 1.05 |
align=left|Nickel hydrazine nitrate (NHN)
| 1.70 | 7,000 | 1.05 |
align=left|Amatol (80% TNT + 20% AN)
| 1.55 | 6,570 | 1.10 |
align=left|Nitrocellulose (13.5% N, NC; AKA guncotton)
| 1.40 | 6,400 | 1.10 |
align=left|Nitromethane (NM)
| 1.13 | 6,360 | 1.10 |
align=left| PBXW-126 (22% NTO, 20% RDX, 20% AP, 26% Al, 12% PU's system){{efn|name=TBX-EBX}}
| 1.80 | 6,450 | 1.10 |
align=left|Diethylene glycol dinitrate (DEGDN)
| 1.38 | 6,610 | 1.17 |
align=left| PBXIH-135 EB (42% HMX, 33% Al, 25% PCP-TMETN's system){{efn|name=TBX-EBX}}
| 1.81 | 7,060 | 1.17 |
align=left| PBXN-109 (64% RDX, 20% Al, 16% HTPB's system){{efn|name=TBX-EBX}}
| 1.68 | 7,450 | 1.17 |
align=left| Triaminotrinitrobenzene (TATB)
| 1.80 | 7,550 | 1.17 |
align=left|Picric acid (TNP)
| 1.71 | 7,350 | 1.17 |
align=left|Trinitrobenzene (TNB)
| 1.60 | 7,300 | 1.20 |
align=left|Tetrytol (70% tetryl + 30% TNT)
| 1.60 | 7,370 | 1.20 |
align=left|Dynamite, Nobel's (75% NG + 23% diatomite)
| 1.48 | 7,200 | 1.25 |
align=left|Tetryl
| 1.71 | 7,770 | 1.25 |
align=left|Torpex (aka HBX, 41% RDX + 40% TNT + 18% Al + 1% wax){{efn|name=TBX-EBX}}
| 1.80 | 7,440 | 1.30 |
align=left|Composition B (63% RDX + 36% TNT + 1% wax)
| 1.72 | 7,840 | 1.33 |
align=left|Composition C-3 (78% RDX)
| 1.60 | 7,630 | 1.33 |
align=left|Composition C-4 (91% RDX)
| 1.59 | 8,040 | 1.34 |
align=left|Pentolite (56% PETN + 44% TNT)
| 1.66 | 7,520 | 1.33 |
align=left|Semtex 1A (76% PETN + 6% RDX)
| 1.55 | 7,670 | 1.35 |
align=left| Hexal (76% RDX + 20% Al + 4% wax){{efn|name=TBX-EBX}}
|1.79 |7,640 |1.35 |
align=left| RISAL P (50% IPN + 28% RDX + 15% Al + 4% Mg + 1% Zr + 2% NC){{efn|name=TBX-EBX}}
| 1.39 | 5,980 | 1.40 |
align=left| Hydrazine nitrate
| 1.59 | 8,500 | 1.42 |
align=left| Mixture: 24% nitrobenzene + 76% TNM
| 1.48 | 8,060 | 1.50 |
align=left| Mixture: 30% nitrobenzene + 70% nitrogen tetroxide
| 1.39 | 8,290 | 1.50 |
align=left|Nitroglycerin (NG)
| 1.59 | 7,700 | 1.54 |
align=left|Methyl nitrate (MN)
| 1.21 | 7,900 | 1.54 |
align=left|Octol (80% HMX + 19% TNT + 1% DNT)
| 1.83 | 8,690 | 1.54 |
align=left|Nitrotriazolone (NTO)
| 1.87 | 8,120 | 1.60 |
align=left|DADNE (1,1-diamino-2,2-dinitroethene, FOX-7)
| 1.77 | 8,330 | 1.60 |
align=left|Gelignite (92% NG + 7% nitrocellulose)
| 1.60 | 7,970 | 1.60 |
align=left|Plastics Gel® (in toothpaste tube: 45% PETN + 45% NG + 5% DEGDN + 4% NC)
| 1.51 | 7,940 | 1.60 |
align=left|Composition A-5 (98% RDX + 2% stearic acid)
| 1.65 | 8,470 | 1.60 |
align=left|Erythritol tetranitrate (ETN)
| 1.72 | 8,206 | 1.60 |
align=left|Hexogen (RDX)
| 1.78 | 8,600 | 1.60 |
align=left| PBXW-11 (96% HMX, 1% HyTemp, 3% DOA)
| 1.81 | 8,720 | 1.60 |
align=left|Penthrite (PETN)
| 1.77 | 8,400 | 1.66 |
align=left|Ethylene glycol dinitrate (EGDN)
| 1.49 | 8,300 | 1.66 |
align=left|MEDINA (Methylene dinitroamine){{Cite web |last=PubChem |title=Medina |url=https://pubchem.ncbi.nlm.nih.gov/compound/26524 |access-date=2024-05-20 |website=pubchem.ncbi.nlm.nih.gov |language=en}}{{Cite web |title=methylenedinitramine {{!}} CH4N4O4 {{!}} ChemSpider |url=https://www.chemspider.com/Chemical-Structure.24707.html |access-date=2024-05-20 |website=www.chemspider.com}}
| 1.65 | 8,700 | 1.70 |
align=left|Trinitroazetidine (TNAZ)
| 1.85 | 9,597 | 1.70 |
align=left|Octogen (HMX grade B)
| 1.86 | 9,100 | 1.70 |
align=left|Hexanitrobenzene (HNB)
| 1.97 | 9,340 | 1.80 |
align=left|Hexanitrohexaazaisowurtzitane (HNIW; AKA CL-20)
| 1.97 | 9,500 | 1.90 |
align=left|DDF (4,4’-Dinitro-3,3’-diazenofuroxan)
| 1.98 | 10,000 | 1.95 |
align=left|Heptanitrocubane (HNC){{efn|name=predicted|Predicted values}}
| 1.92 | 9,200 | N/A |
align=left|Octanitrocubane (ONC)
| 1.95 | 10,600 | 2.38 |
align=left|Octaazacubane (OAC){{efn|name=predicted}}
| 2.69 | 15,000 | |{{nts|5.00|prefix=>}} |
=Nuclear examples=
style="font-size: 100%; text-align: right;" class="wikitable sortable" border="1"
|+ Nuclear weapons and the most powerful non-nuclear weapon examples |
style="text-align: center"
! Weapon ! data-sort-type="number" | Total yield ! data-sort-type="number" | Mass ! Relative |
align="left" |GBU-57 bomb (Massive Ordnance Penetrator, MOP)
| 0.0035 | 13,600 | 0.26 |
align="left" |Grand Slam (Earthquake bomb, M110)
| 0.0065 | 9,900 | 0.66 |
align=left|Bomb used in Oklahoma City (ANFO based on racing fuel)
| 0.0018 | 2,300 | 0.78 |
align=left|BLU-82 (Daisy Cutter)
| 0.0075 | 6,800 | 1.10 |
align=left|MOAB (non-nuclear bomb, GBU-43)
| 0.011 | 9,800 | 1.13 |
align=left|FOAB (advanced thermobaric bomb, ATBIP)
| 0.044 | 9,100 | 4.83 |
align=left|W54, Mk-54 (Davy Crockett)
| 0.022 | 23 | 1,000 |
align="left" |Little Boy (dropped on Hiroshima) A-bomb
|15 |4,400 |4,000 |
align="left" |Fat Man (dropped on Nagasaki) A-bomb
| 20 | 4,600 | 4,500 |
align=left|W54, B54 (SADM)
| 1.0 | 23 | 43,500 |
align="left" |Classic (one-stage) fission A-bomb
| 22 | 420 | 50,000 |
align=left|Hypothetical suitcase nuke
| 2.5 | 31 | 80,000 |
align=left|Typical (two-stage) nuclear bomb
| 500–1000 | 650–1,120 | 900,000 |
align="left" |W88 modern thermonuclear warhead (MIRV)
| 470 | 355 | 1,300,000 |
align="left" |Tsar nuclear bomb (three-stage)
| 50,000–56,000 | 26,500 | 2,100,000 |
align="left" |B53 nuclear bomb (two-stage)
| 9,000 | 4,050 | 2,200,000 |
align="left" |Operation Dominic Housatonic{{Cite web | url=https://i.imgur.com/yHlPKb4.png | title=Ripple | format=PNG}}{{Cite web | url=https://i.imgur.com/nTirCcn.png | title=Postulated Ripple design (Dominic Housatonic) | format=PNG}}{{Citation |title=Nuclear weapon design |date=2024-05-28 |work=Wikipedia |url=https://en.wikipedia.org/w/index.php?title=Nuclear_weapon_design&oldid=1226041993 |access-date=2024-07-07 |language=en}} (two-stage)
|9,960 |3,239 |3,042,400 |
align=left|W56 thermonuclear warhead
|1,200 |272–308 |4,960,000 |
align=left|B41 nuclear bomb (three-stage)
| 25,000 | 4,850 | 5,100,000 |
See also
- Brisance
- Net explosive quantity
- Nuclear weapon yield
- Orders of magnitude (energy)
- Table of explosive detonation velocities
- Tonne of oil equivalent, a unit of energy almost exactly 10 tonnes of TNT
Footnotes
{{notelist}}
References
{{Reflist|30em}}
External links
- {{cite journal |first1=A. |last1=Thompson |first2=B.N. |last2=Taylor |title=Guide for the Use of the International System of Units (SI) |journal=NIST |publisher=National Institute of Standards and Technology |date=July 2008 |series=NIST Special Publication |volume=811 |id=Version 3.2 |url=https://physics.nist.gov/Pubs/SP811/contents.html |ref={{harvid|NIST SI Guide|2008}}}}
- [https://nuclearweaponarchive.org/Nwfaq/Nfaq1.html#nfaq1.3 Nuclear Weapons FAQ Part 1.3]
- {{cite book |first=Richard |last=Rhodes |title=The Making of the Atomic Bomb |edition=25th Anniversary |url=https://books.google.com/books?id=2G2TlJOhGI8C |year=2012 |publisher=Simon & Schuster |isbn=978-1-4516-7761-4}}
- {{Citation
|last= Cooper
|first= Paul W.
|title= Explosives Engineering
|location= New York
|publisher= Wiley-VCH
|year= 1996
|isbn= 978-0-471-18636-6
}}
- {{Citation
|last=HQ Department of the Army
|title=Field Manual 5-25: Explosives and Demolitions
|pages= 83–84
|location= Washington, D.C.
|publisher= Pentagon Publishing
|year=2004
|orig-year= 1967
|isbn= 978-0-9759009-5-6
}}
- {{Citation
|last= Urbański
|first= Tadeusz
|title= Chemistry and Technology of Explosives
|others= Volumes I–IV
|location= Oxford
|publisher= Pergamon
|year=1985
|edition= second
|orig-year= 1984
}}
- {{Citation
|first1= Jörg |last1=Mathieu |first2= Hans |last2=Stucki
|title= Military High Explosives
|pages= 383–389
|journal= CHIMIA International Journal for Chemistry
|year= 2004
|volume= 58|issue=6
|issn=0009-4293|doi=10.2533/000942904777677669|doi-access= free}}
- {{Cite book
|url= https://www.nap.edu/openbook/0309091608/html/16.html
|chapter= 3. Thermobaric Explosives
|title= Advanced Energetic Materials
|publisher= The National Academies Press, nap.edu
|date= 2004
|doi=10.17226/10918|isbn= 978-0-309-09160-2
}}
{{Nuclear technology}}