phylum
{{short description|High level taxonomic rank for organisms sharing a similar body plan}}
{{Other uses|Phyla (disambiguation)}}
{{pp-move-indef}}
{{Use dmy dates|date=June 2020}}
{{Biological classification}}
In biology, a phylum ({{IPAc-en|ˈ|f|aɪ|l|əm}}; {{plural form}}: phyla) is a level of classification, or taxonomic rank, that is below kingdom and above class. Traditionally, in botany the term division has been used instead of phylum, although the International Code of Nomenclature for algae, fungi, and plants accepts the terms as equivalent.{{Cite book |year=2012 |editor-last=McNeill |editor-first=J. |display-editors=etal |title=International Code of Nomenclature for algae, fungi, and plants (Melbourne Code), Adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011 |edition=electronic |publisher=International Association for Plant Taxonomy |url=http://www.iapt-taxon.org/nomen/main.php?page=art3 |access-date=2017-05-14 |archive-date=10 October 2020 |archive-url=https://web.archive.org/web/20201010230658/https://www.iapt-taxon.org/nomen/main.php?page=art3 |url-status=dead }}{{cite book|title=The American Heritage New Dictionary of Cultural Literacy|chapter-url=http://dictionary.reference.com/browse/phylum|access-date=2008-10-04|edition=third|year=2005|publisher=Houghton Mifflin Company|chapter=Life sciences
|quote=Phyla in the plant kingdom are frequently called divisions.}}{{cite book|last=Berg|first=Linda R.|title=Introductory Botany: Plants, People, and the Environment|url=https://books.google.com/books?id=I71WWH9ZmfsC&pg=PA15|access-date=2012-07-23|edition=2|date=2 March 2007 |publisher=Cengage Learning|isbn=9780534466695|page=15}} Depending on definitions, the animal kingdom Animalia contains about 31 phyla, the plant kingdom Plantae contains about 14 phyla, and the fungus kingdom Fungi contains about eight phyla. Current research in phylogenetics is uncovering the relationships among phyla within larger clades like Ecdysozoa and Embryophyta.
General description
The term phylum was coined in 1866 by Ernst Haeckel from the Greek {{transl|grc|phylon}} ({{linktext|φῦλον|lang=grc}}, "race, stock"), related to {{transl|grc|phyle}} ({{linktext|φυλή|lang=grc}}, "tribe, clan").{{sfn|Valentine|2004|p=8}}{{cite book |last1=Haeckel |first1=Ernst |title=Generelle Morphologie der Organismen |trans-title=The General Morphology of Organisms |date=1866 |publisher=G. Reimer |location=Berlin, (Germany) |volume=1 |pages=[https://archive.org/details/generellemorphol01haec/page/28 28]–29 |url=https://archive.org/details/generellemorphol01haec |language=de}} Haeckel noted that species constantly evolved into new species that seemed to retain few consistent features among themselves and therefore few features that distinguished them as a group ("a self-contained unity"): "perhaps such a real and completely self-contained unity is the aggregate of all species which have gradually evolved from one and the same common original form, as, for example, all vertebrates. We name this aggregate [a] {{lang|de|Stamm}} [i.e., stock / tribe] ({{lang|de|Phylon}})."{{efn| {{lang|de|"Wohl aber ist eine solche reale und vollkommen abgeschlossene Einheit die Summe aller Species, welche aus einer und derselben gemeinschaftlichen Stammform allmählig sich entwickelt haben, wie z. B. alle Wirbelthiere. Diese Summe nennen wir Stamm (Phylon)."}}}} In plant taxonomy, August W. Eichler (1883) classified plants into five groups named divisions, a term that remains in use today for groups of plants, algae and fungi.{{cite book |last=Naik |first=V. N. |year=1984 |page=27 |title=Taxonomy of Angiosperms |publisher=Tata McGraw-Hill |isbn=9780074517888 |url=https://books.google.com/books?id=GanmtXAyU0gC}}
The definitions of zoological phyla have changed from their origins in the six Linnaean classes and the four {{lang|fr|embranchements}} of Georges Cuvier.{{cite journal |vauthors=Collins AG, Valentine JW |year=2001 |url=http://si-pddr.si.edu/jspui/bitstream/10088/7403/1/Collins_Valentine_EvDev2001.pdf |title=Defining phyla: evolutionary pathways to metazoan body plans |journal=Evolution and Development |volume=3 |pages=432–442 |access-date=5 March 2013 |archive-date=27 April 2020 |archive-url=https://web.archive.org/web/20200427032535/https://repository.si.edu/handle/10088/7403 |url-status=dead }}
Informally, phyla can be thought of as groupings of organisms based on general specialization of body plan.{{cite book |last=Valentine |first=James W. |year=2004 |title=On the Origin of Phyla |publisher=University of Chicago Press |location=Chicago |isbn=978-0-226-84548-7 |page=7 |quote=Classifications of organisms in hierarchical systems were in use by the seventeenth and eighteenth centuries. Usually, organisms were grouped according to their morphological similarities as perceived by those early workers, and those groups were then grouped according to their similarities, and so on, to form a hierarchy.}} At its most basic, a phylum can be defined in two ways: as a group of organisms with a certain degree of morphological or developmental similarity (the phenetic definition), or a group of organisms with a certain degree of evolutionary relatedness (the phylogenetic definition).{{cite journal |last1=Budd |first1=G. E. |last2=Jensen |first2=S. |date=May 2000 |title=A critical reappraisal of the fossil record of the bilaterian phyla |journal=Biological Reviews |volume=75 |issue=2 |pages=253–295 |doi=10.1111/j.1469-185X.1999.tb00046.x |url=http://www.journals.cambridge.org/abstract_S000632310000548X |pmid=10881389 |s2cid=39772232 |access-date=26 May 2007 |archive-date=15 September 2019 |archive-url=https://web.archive.org/web/20190915160434/https://www.cambridge.org/core/journals/biological-reviews/article/critical-reappraisal-of-the-fossil-record-of-the-bilaterian-phyla/84D1DF6738A47E565B400A50590E15E2 |url-status=dead }} Attempting to define a level of the Linnean hierarchy without referring to (evolutionary) relatedness is unsatisfactory, but a phenetic definition is useful when addressing questions of a morphological nature—such as how successful different body plans were.{{citation needed|date=May 2017}}
= Definition based on genetic relation =
The most important objective measure in the above definitions is the "certain degree" that defines how different organisms need to be members of different phyla. The minimal requirement is that all organisms in a phylum should be clearly more closely related to one another than to any other group. Even this is problematic because the requirement depends on knowledge of organisms' relationships: as more data become available, particularly from molecular studies, we are better able to determine the relationships between groups. So phyla can be merged or split if it becomes apparent that they are related to one another or not. For example, the bearded worms were described as a new phylum (the Pogonophora) in the middle of the 20th century, but molecular work almost half a century later found them to be a group of annelids, so the phyla were merged (the bearded worms are now an annelid family).{{cite journal |last=Rouse |first=G. W. |title=A cladistic analysis of Siboglinidae Caullery, 1914 (Polychaeta, Annelida): formerly the phyla Pogonophora and Vestimentifera | journal=Zoological Journal of the Linnean Society | volume=132 | issue=1| year=2001 | pages=55–80 | doi = 10.1006/zjls.2000.0263| doi-access=free }} On the other hand, the highly parasitic phylum Mesozoa was divided into two phyla (Orthonectida and Rhombozoa) when it was discovered the Orthonectida are probably deuterostomes and the Rhombozoa protostomes.{{cite journal |vauthors=Pawlowski J, Montoya-Burgos JI, Fahrni JF, Wüest J, Zaninetti L |title=Origin of the Mesozoa inferred from 18S rRNA gene sequences |journal=Molecular Biology and Evolution |volume=13 |issue=8 |pages=1128–32 |date=October 1996 |pmid=8865666 |doi=10.1093/oxfordjournals.molbev.a025675|doi-access=free }}
This changeability of phyla has led some biologists to call for the concept of a phylum to be abandoned in favour of placing taxa in clades without any formal ranking of group size.
= Definition based on body plan =
A definition of a phylum based on body plan has been proposed by paleontologists Graham Budd and Sören Jensen (as Haeckel had done a century earlier). The definition was posited because extinct organisms are hardest to classify: they can be offshoots that diverged from a phylum's line before the characters that define the modern phylum were all acquired. By Budd and Jensen's definition, a phylum is defined by a set of characters shared by all its living representatives.
This approach brings some small problems—for instance, ancestral characters common to most members of a phylum may have been lost by some members. Also, this definition is based on an arbitrary point of time: the present. However, as it is character based, it is easy to apply to the fossil record. A greater problem is that it relies on a subjective decision about which groups of organisms should be considered as phyla.
The approach is useful because it makes it easy to classify extinct organisms as "stem groups" to the phyla with which they bear the most resemblance, based only on the taxonomically important similarities. However, proving that a fossil belongs to the crown group of a phylum is difficult, as it must display a character unique to a sub-set of the crown group. Furthermore, organisms in the stem group of a phylum can possess the "body plan" of the phylum without all the characteristics necessary to fall within it. This weakens the idea that each of the phyla represents a distinct body plan.{{Cite journal | last = Budd | first = G. E. | date = September 1998 | journal = Lethaia | title = Arthropod body-plan evolution in the Cambrian with an example from anomalocaridid muscle | volume = 31 | issue = 3 | pages = 197–210 | doi = 10.1111/j.1502-3931.1998.tb00508.x}}
A classification using this definition may be strongly affected by the chance survival of rare groups, which can make a phylum much more diverse than it would be otherwise.{{Cite journal |year=2005 |title=Wonderful strife: systematics, stem groups, and the phylogenetic signal of the Cambrian radiation |journal=Paleobiology |volume=31 |issue=2 (Suppl) |pages=94–112 |doi=10.1666/0094-8373(2005)031[0094:WSSSGA]2.0.CO;2 |last1=Briggs |first1=D. E. G. |author1-link = Derek Briggs |last2=Fortey |first2=R. A. |s2cid=44066226 |author-link2 = Richard Fortey}}
Known phyla
= Animals =
{{main|Animal}}
{{More citations needed section|date=February 2013}}
Total numbers are estimates; figures from different authors vary wildly, not least because some are based on described species,{{cite journal|last=Zhang|first=Zhi-Qiang|date=2013-08-30|title=Animal biodiversity: An update of classification and diversity in 2013. In: Zhang, Z.-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013)|url=https://biotaxa.org/Zootaxa/article/download/zootaxa.3703.1.3/4273|journal=Zootaxa|volume=3703|issue=1|page=5|doi=10.11646/zootaxa.3703.1.3|doi-access=free}} some on extrapolations to numbers of undescribed species. For instance, around 25,000–27,000 species of nematodes have been described, while published estimates of the total number of nematode species include 10,000–20,000; 500,000; 10 million; and 100 million.{{cite book |last1=Felder |first1=Darryl L. |last2=Camp |first2=David K. |title=Gulf of Mexico Origin, Waters, and Biota: Biodiversity |url=https://books.google.com/books?id=CphA8hiwaFIC&pg=RA1-PA1111 |year=2009 |publisher=Texas A&M University Press |isbn=978-1-60344-269-5 |page=1111}}
class="wikitable" |
style="background: #ffe0e0" width="15%"|
|rowspan="4"| Bilateria |rowspan="2"| Nephrozoa |
style="background: #f8de7e"| |
style="background: #a0b0d0"|
| Basal/disputed |
style="background: #f8be9a"| |
style="background: #bebebe"|
|colspan="2"| Others |
class="wikitable sortable mw-collapsible"
!Phylum!!Meaning!!Common name!!Distinguishing characteristic!!Taxa described |
style="background: #bebebe"
|Fragmented | |Calcareous conical shells |5 species, extinct |
style="background: #ffe0e0"
|Little ring {{cite book | last1 = Margulis | first1 = Lynn | author-link = Lynn Margulis | last2 = Chapman | first2 = Michael J. | title = Kingdoms and Domains: An Illustrated Guide to the Phyla of Life on Earth | publisher = Academic Press | edition = 4th corrected | date = 2009 | location = London | isbn = 9780123736215 | url=https://books.google.com/books?id=9IWaqAOGyt4C}}{{rp|306}} |Segmented worms, annelids |Multiple circular segments |{{nts|22000}}+ extant |
style="background: #ffe0e0"
|Jointed foot |Arthropods |Segmented bodies and jointed limbs, with Chitin exoskeleton |
style="background: #ffe0e0"
|Lophophore and pedicle |{{nts|300}}–500 extant; 12,000+ extinct |
style="background: #ffe0e0"
|Moss animals |Moss animals, sea mats, ectoprocts{{rp|332}} |Lophophore, no pedicle, ciliated tentacles, anus outside ring of cilia |
style="background: #ffe0e0"
|Longhair jaw |Chitinous spines either side of head, fins |{{nts|100|prefix={{abbr|approx.|approximately}} }} extant |
style="background: #f8de7e"
|With a cord |Chordates |Hollow dorsal nerve cord, notochord, pharyngeal slits, endostyle, post-anal tail |
style="background: #bebebe"
|Stinging nettle | Cnidarians |Nematocysts (stinging cells) |
style="background: #bebebe"
|Comb bearer |Eight "comb rows" of fused cilia |{{nts|100|prefix=approx. }}–150 extant |
style="background: #ffe0e0"
|Wheel carrying | |Circular mouth surrounded by small cilia, sac-like bodies |{{nts|3}}+ |
style="background: #ffe0e0"
|Lozenge animal | |Single anteroposterior axial celled endoparasites, surrounded by ciliated cells |{{nts|100}}+ |
style="background: #f8de7e"
|Spiny skin |Fivefold radial symmetry in living forms, mesodermal calcified spines |{{nts|7500|prefix=approx. }} extant; approx. 13,000 extinct |
style="background: #ffe0e0"
|Inside anus{{rp|292}} |Goblet worms |Anus inside ring of cilia |{{nts|150|prefix=approx. }} |
style="background: #ffe0e0"
|Hairybellies |Two terminal adhesive tubes |{{nts|690|prefix=approx. }} |
style="background: #ffe0e0"
|Jaw orifice |Tiny worms related to rotifers with no body cavity |{{nts|100|prefix=approx. }} |
style="background: #f8de7e"
|Acorn worms, hemichordates |Stomochord in collar, pharyngeal slits |{{nts|130|prefix=approx. }} extant |
style="background: #ffe0e0"
|Motion snout |Mud dragons |Eleven segments, each with a dorsal plate |{{nts|150|prefix=approx. }} |
style="background: #ffe0e0"
|Armour bearer |Brush heads |Umbrella-like scales at each end |{{nts|122|prefix=approx. }} |
style="background: #ffe0e0"
|Tiny jaw animals | |Accordion-like extensible thorax |{{nts|2}} |
style="background: #ffe0e0"
|Mollusks/molluscs |Muscular foot and mantle round shell |{{nts|85000}}+ extant; 80,000+ extinctFeldkamp, S. (2002) Modern Biology. Holt, Rinehart, and Winston, USA. (pp. 725) |
style="background: #bebebe"
|Monoblastozoa |One sprout animals | | distinct anterior/posterior parts and being densely ciliated, especially around the "mouth" and "anus". |1 |
style="background: #ffe0e0"
|Thread like |Roundworms, threadworms, eelworms, nematodes{{rp|274}} |
style="background: #ffe0e0"
|Horsehair worms, Gordian worms{{rp|276}} |Long, thin parasitic worms closely related to nematodes |{{nts|320|prefix=approx. }} |
style="background: #ffe0e0"
|Unsegmented worms, with a proboscis housed in a cavity derived from the coelom called the rhynchocoel |{{nts|1200|prefix=approx. }} |
style="background: #ffe0e0"
|Claw bearer |Worm-like animal with legs tipped by chitinous claws |{{nts|200|prefix=approx. }} extant |
style="background: #ffe0e0"
|Straight swimmer | | Parasitic, microscopic, simple, wormlike organisms |20 |
style="background: #f8be9a"
|Shaped like leaves | |An extinct phylum from the Ediacaran. They are bottom-dwelling and immobile, shaped like leaves (frondomorphs), feathers or spindles. |3 classes, extinct |
style="background: #ffe0e0"
|Phoronida |Zeus's mistress |Horseshoe worms |U-shaped gut |{{nts|11}} |
style="background: #a6ba9e"
|Plate animals |Trichoplaxes, placozoans{{rp|242}} |Differentiated top and bottom surfaces, two ciliated cell layers, amoeboid fiber cells in between |{{nts|4}}+ |
style="background: #bebebe"
|Flattened worms with no body cavity. Many are parasitic. |
style="background: #a6ba9e"
|Pore bearer |Perforated interior wall, simplest of all known animals |
style="background: #bebebe"
|Little Priapus |Penis worms |Penis-shaped worms | {{nts|20|prefix=approx. }} |
style="background: #f8be9a"
|Before articulates | |An extinct group of mattress-like organisms that display "glide symmetry." Found during the Ediacaran. |3 classes, extinct |
style="background: #ffe0e0"
|Wheel bearer |Anterior crown of cilia |
style="background: #a0b0d0"
|Saccus : "pocket" and "wrinkle" | |Saccorhytus is only about 1 mm (1.3 mm) in size and is characterized by a spherical or hemispherical body with a prominent mouth. Its body is covered by a thick but flexible cuticle. It has a nodule above its mouth. Around its body are 8 openings in a truncated cone with radial folds. Considered to be a deuterostome{{Cite journal |last1=Han |first1=Jian |last2=Morris |first2=Simon Conway |last3=Ou |first3=Qiang |last4=Shu |first4=Degan |last5=Huang |first5=Hai |date=2017 |title=Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China) |url=https://www.nature.com/articles/nature21072 |journal=Nature |language=en |volume=542 |issue=7640 |pages=228–231 |doi=10.1038/nature21072 |pmid=28135722 |bibcode=2017Natur.542..228H |s2cid=353780 |issn=1476-4687}} or an early ecdysozoan.{{Cite journal |last1=Liu |first1=Yunhuan |last2=Carlisle |first2=Emily |last3=Zhang |first3=Huaqiao |last4=Yang |first4=Ben |last5=Steiner |first5=Michael |last6=Shao |first6=Tiequan |last7=Duan |first7=Baichuan |last8=Marone |first8=Federica |last9=Xiao |first9=Shuhai |last10=Donoghue |first10=Philip C. J. |date=2022-08-17 |title=Saccorhytus is an early ecdysozoan and not the earliest deuterostome |url=https://www.nature.com/articles/s41586-022-05107-z |journal=Nature |volume=609 |issue=7927 |language=en |pages=541–546 |doi=10.1038/s41586-022-05107-z |pmid=35978194 |bibcode=2022Natur.609..541L |s2cid=251646316 |issn=1476-4687|hdl=1983/454e7bec-4cd4-4121-933e-abeab69e96c1 |hdl-access=free }} |2 species, extinct |
style="background: #ffe0e0"
|Slow step |Water bears, moss piglets |Microscopic relatives of the arthropods, with a four segmented body and head |{{nts|1000}} |
style="background: #f8be9a"
|Three-lobed animal |Trilobozoans |A taxon of mostly discoidal organisms exhibiting tricentric symmetry. All are Ediacaran-aged |18 genera, extinct |
style="background: #f8de7e"
|Ancient dweller |Vetulicolians |Might possibly be a subphylum of the chordates. Their body consists of two parts: a large front part and covered with a large "mouth" and a hundred round objects on each side that have been interpreted as gills or openings near the pharynx. Their posterior pharynx consists of 7 segments. |15 species, extinct |
style="background: #a0b0d0"
|Strange hollow form |Xenacoelomorphs |Small, simple animals. Bilaterian, but lacking typical bilaterian structures such as gut cavities, anuses, and circulatory systems{{cite journal|last1=Cannon |first1=J.T. |last2=Vellutini |first2=B.C. |last3=Smith |first3=J. |last4=Ronquist |first4=F. |last5=Jondelius |first5=U. |last6=Hejnol |first6=A. |title=Xenacoelomorpha is the sister group to Nephrozoa |journal=Nature |volume=530 |issue=7588 |date=4 February 2016 |pages=89–93 |pmid=26842059 |doi=10.1038/nature16520|url=http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-1844 |bibcode=2016Natur.530...89C |s2cid=205247296 }} |{{nts|400}}+ |
class="sortbottom"
|Total: 39 | | | |
= Plants =
{{Main|Plant}}
The kingdom Plantae is defined in various ways by different biologists (see Current definitions of Plantae). All definitions include the living embryophytes (land plants), to which may be added the two green algae divisions, Chlorophyta and Charophyta, to form the clade Viridiplantae. The table below follows the influential (though contentious) Cavalier-Smith system in equating "Plantae" with Archaeplastida,{{cite journal | last = Cavalier-Smith | first = Thomas | author-link = Thomas Cavalier-Smith | title = Only Six Kingdoms of Life | journal = Proceedings: Biological Sciences | volume = 271 | issue = 1545 | pages = 1251–1262 | date = 22 June 2004 | doi=10.1098/rspb.2004.2705| pmid = 15306349 | pmc = 1691724 }} a group containing Viridiplantae and the algal Rhodophyta and Glaucophyta divisions.
The definition and classification of plants at the division level also varies from source to source, and has changed progressively in recent years. Thus some sources place horsetails in division Arthrophyta and ferns in division Monilophyta,{{sfn|Mauseth|2012|pp=514, 517}} while others place them both in Monilophyta, as shown below. The division Pinophyta may be used for all gymnosperms (i.e. including cycads, ginkgos and gnetophytes),{{cite journal | last=Cronquist | first=A. |author2=A. Takhtajan |author3=W. Zimmermann | date=April 1966 | title=On the higher taxa of Embryobionta | journal=Taxon | issue=4 | pages=129–134 | doi=10.2307/1217531 | volume=15 | jstor=1217531 }} or for conifers alone as below.
Since the first publication of the APG system in 1998, which proposed a classification of angiosperms up to the level of orders, many sources have preferred to treat ranks higher than orders as informal clades. Where formal ranks have been provided, the traditional divisions listed below have been reduced to a very much lower level, e.g. subclasses.{{Citation |last1=Chase |first1=Mark W. |last2=Reveal |first2=James L. |date=October 2009 |title=A phylogenetic classification of the land plants to accompany APG III |journal=Botanical Journal of the Linnean Society |volume=161 |issue=2 |pages=122–127 |doi=10.1111/j.1095-8339.2009.01002.x |name-list-style=amp |doi-access=free }}
class="wikitable" |
rowspan="3" |Archaeplastida
|Other algae | style="background: #bebebe" | |
rowspan="2" |Viridiplantae
| style="background: #c2e085" | |
Embryophyte (Land plants)
| style="background: #cbfdcb" width="15%" | |
class="wikitable sortable"
!Division!!Meaning!!Common name!!Distinguishing characteristics!!Species described |
style="background: #cbfdcb"
| Anthocerotophyta{{cite book | last = Mauseth | first = James D. | title = Botany : An Introduction to Plant Biology | edition = 5th | year = 2012 | isbn = 978-1-4496-6580-7 | publisher = Jones and Bartlett Learning | location = Sudbury, MA}} p. 489 | Anthoceros-like plants | Hornworts | Horn-shaped sporophytes, no vascular system | {{nts|100}}–300+ |
style="background: #cbfdcb"
| Bryum-like plants, moss plants | Mosses | Persistent unbranched sporophytes, no vascular system | {{nts|12000|prefix=approx. }} |
style="background: #c2e085"
| Chara-like plants | Charophytes | | {{nts|1000|prefix=approx. }} |
style="background: #c2e085"
| (Yellow-)green plants{{rp|200}} | Chlorophytes | | {{nts|7000|prefix=approx. }} |
style="background: #cbfdcb"
| Cycadophyta{{sfn|Mauseth|2012|p=540}} | Cycas-like plants, palm-like plants | Cycads | Seeds, crown of compound leaves | {{nts|100|prefix=approx. }}–200 |
style="background: #cbfdcb"
| Ginkgophyta{{sfn|Mauseth|2012|p=542}} | Ginkgo-like plants | Ginkgophytes | Seeds not protected by fruit | {{nts|1|prefix=only }} extant; 50+ extinct |
style="background: #bebebe"
| Blue-green plants | Glaucophytes | | {{nts|15}} |
style="background: #cbfdcb"
| Gnetophyta{{sfn|Mauseth|2012|p=543}} | Gnetum-like plants | Gnetophytes | Seeds and woody vascular system with vessels | {{nts|70|prefix=approx. }} |
style="background: #cbfdcb"
| Lycophyta{{sfn|Mauseth|2012|p=509}} |Lycopodium-like plants Wolf plants | Clubmosses |Microphyll leaves, vascular system | {{nts|1290}} extant |
style="background: #cbfdcb"
| Seed container | Flowering plants, angiosperms | Flowers and fruit, vascular system with vessels | {{nts|300000}} |
style="background: #cbfdcb"
| Marchantiophyta,{{cite book | last1=Crandall-Stotler | first1=Barbara | last2=Stotler | first2=Raymond E. | year=2000 | chapter=Morphology and classification of the Marchantiophyta | page=21 |editor1=A. Jonathan Shaw |editor2=Bernard Goffinet | title=Bryophyte Biology | location=Cambridge | publisher=Cambridge University Press | isbn=978-0-521-66097-6 }} | Marchantia-like plants Liver plants | Liverworts | Ephemeral unbranched sporophytes, no vascular system | {{nts|9000|prefix=approx. }} |
style="background: #cbfdcb"
|Polypodium-like plants |Ferns |Megaphyll leaves, vascular system | {{nts|10560|prefix=approx. }} |
style="background: #bebebe"
| Extremely small animals |Picozoans, picobiliphytes | |1 |
style="background: #cbfdcb"
| Pinophyta, Coniferophyta{{sfn|Mauseth|2012|p=535}} |Pinus-like plants Cone-bearing plant | Conifers | Cones containing seeds and wood composed of tracheids | {{nts|629}} extant |
style="background: #bebebe"
| Prasinoderma-like plants |Picozoans, picobiliphytes, biliphytes | |8 |
style="background: #bebebe"
|Rose plants |Red algae |Use phycobiliproteins as accessory pigments. |{{nts|7000|prefix=approx. }} |
wowowowk
|Total: 14 | | | |
= Fungi =
{{Main|Fungi}}
class="wikitable sortable"
!Division!!Meaning!!Common name!!Distinguishing characteristics!!Species described |
Ascomycota
| Ascomycetes,{{rp|396}} sac fungi |Tend to have fruiting bodies (ascocarp).{{Cite journal|title=Advances in Applied Microbiology Chapter 2 - Fungal Spores for Dispersion in Space and Time|journal=Advances in Applied Microbiology|volume=85|pages=43–91 |last1=Wyatt |first1=T. |last2=Wösten |first2=H. |last3=Dijksterhuis |first3=J. |doi = 10.1016/B978-0-12-407672-3.00002-2|pmid=23942148|year=2013}} Filamentous, producing hyphae separated by septa. Can reproduce asexually.{{Cite web|url=https://courses.lumenlearning.com/boundless-biology/chapter/classifications-of-fungi/|title=Classifications of Fungi {{!}} Boundless Biology|website=courses.lumenlearning.com|access-date=2019-05-05}} |30,000 |
Basidiomycota
| Basidiomycetes,{{rp|402}} club fungi |Bracket fungi, toadstools, smuts and rust. Sexual reproduction.{{cite web |title=Archaeal Genetics {{!}} Boundless Microbiology |url=https://courses.lumenlearning.com/boundless-microbiology/chapter/archaeal-genetics/ |website=courses.lumenlearning.com}} | 31,515 |
Blastocladiomycota
| Offshoot branch fungus{{cite web | url = http://comenius.susqu.edu/biol/202/fungi/blastocladiomycota/default.htm | title = Blastocladiomycota | last1 = Holt | first1 = Jack R. | last2 = Iudica | first2 = Carlos A. | date = 1 October 2016 | website = Diversity of Life | publisher = Susquehanna University | access-date = 29 December 2016}} | Blastoclads | | Less than 200 |
Chytridiomycota
| Little cooking pot fungus{{cite web | url = http://comenius.susqu.edu/biol/202/fungi/chytridiomycota/default.htm | title = Chytridiomycota | last1 = Holt | first1 = Jack R. | last2 = Iudica | first2 = Carlos A. | date = 9 January 2014 | website = Diversity of Life | publisher = Susquehanna University | access-date = 29 December 2016}} | Chytrids |Predominantly Aquatic saprotrophic or parasitic. Have a posterior flagellum. Tend to be single celled but can also be multicellular.{{Cite web|url=https://www.britannica.com/science/Chytridiomycota|title=Chytridiomycota {{!}} phylum of fungi|website=Encyclopedia Britannica|language=en|access-date=2019-05-05}}{{Cite book|title=Physical Chemical Properties of Fungi|last=McConnaughey|first=M|doi = 10.1016/B978-0-12-801238-3.05231-4|year = 2014|isbn = 9780128012383}}{{Cite journal|title=Fossil Fungi Chapter 4 - Chytridiomycota|last1=Taylor |last2=Krings |last3=Taylor|first1=Thomas |first2=Michael |first3=Edith|doi=10.1016/b978-0-12-387731-4.00004-9|year=2015|journal=Fossil Fungi|pages=41–67}} |1000+ |
Glomeromycota
| Ball of yarn fungus{{rp|394}} | Glomeromycetes, {{abbr|AM|arbuscular mycorrhizal}} fungi{{rp|394}} |Mainly arbuscular mycorrhizae present, terrestrial with a small presence on wetlands. Reproduction is asexual but requires plant roots. |284 |
Microsporidia
| Small seeds{{cite web | url = http://comenius.susqu.edu/biol/202/fungi/microsporidia/default.htm | title = Microsporidia | last1 = Holt | first1 = Jack R. | last2 = Iudica | first2 = Carlos A. | date = 12 March 2013 | website = Diversity of Life | publisher = Susquehanna University | access-date = 29 December 2016}} | | 1400 |
Neocallimastigomycota
| New beautiful whip fungus{{cite web | url = http://comenius.susqu.edu/biol/202/fungi/neocallimastigomycota/default.htm | title = Neocallimastigomycota | last1 = Holt | first1 = Jack R. | last2 = Iudica | first2 = Carlos A. | date = 23 April 2013 | website = Diversity of Life | publisher = Susquehanna University | access-date = 29 December 2016}} | Neocallimastigomycetes |Predominantly located in digestive tract of herbivorous animals. Anaerobic, terrestrial and aquatic.{{Cite web|url=https://biologywise.com/types-of-fungi|title=Types of Fungi|website=BiologyWise|date=22 May 2009|language=en-US|access-date=2019-05-05}} |
Zygomycota
|Most are saprobes and reproduce sexually and asexually. | approx. 1060 |
class="sortbottom"
|Total: 8 | | | |
Phylum Microsporidia is generally included in kingdom Fungi, though its exact relations remain uncertain,{{cite journal | vauthors = Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüssler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N | display-authors = 6 | title = A higher-level phylogenetic classification of the Fungi | journal = Mycological Research | volume = 111 | issue = Pt 5 | pages = 509–47 | date = May 2007 | pmid = 17572334 | doi = 10.1016/j.mycres.2007.03.004 | url = http://www.clarku.edu/faculty/dhibbett/AFTOL/documents/AFTOL%20class%20mss%2023,%2024/AFTOL%20CLASS%20MS%20resub.pdf | url-status = dead | archive-url = https://web.archive.org/web/20090326135053/http://www.clarku.edu/faculty/dhibbett/AFTOL/documents/AFTOL%20class%20mss%2023%2C%2024/AFTOL%20CLASS%20MS%20resub.pdf | archive-date = 26 March 2009| citeseerx = 10.1.1.626.9582 | s2cid = 4686378 }} and it is considered a protozoan by the International Society of Protistologists (see Protista, below). Molecular analysis of Zygomycota has found it to be polyphyletic (its members do not share an immediate ancestor),{{cite journal
| last1 = White
| first1 = Merlin M.
| last2 = James
| first2 = Timothy Y.
| last3 = O'Donnell
| first3 = Kerry
| last4 = Cafaro
| first4 = Matías J.
| last5 = Tanabe
| first5 = Yuuhiko
| last6 = Sugiyama
| first6 = Junta
| display-authors = 3
| title = Phylogeny of the Zygomycota Based on Nuclear Ribosomal Sequence Data
| journal = Mycologia
| volume = 98
| issue = 6
| pages = 872–884
| date = Nov–Dec 2006
| doi=10.1080/15572536.2006.11832617| pmid = 17486964
| s2cid = 218589354
}} which is considered undesirable by many biologists. Accordingly, there is a proposal to abolish the Zygomycota phylum. Its members would be divided between phylum Glomeromycota and four new subphyla incertae sedis (of uncertain placement): Entomophthoromycotina, Kickxellomycotina, Mucoromycotina, and Zoopagomycotina.
= Protists =
{{Main|Taxonomy of Protista}}
Kingdom Protista (or Protoctista) is included in the traditional five- or six-kingdom model, where it can be defined as containing all eukaryotes that are not plants, animals, or fungi.{{rp|120}} Protista is a paraphyletic taxon,{{cite journal| last = Hagen| first = Joel B.| date = January 2012| title = Five Kingdoms, More or Less: Robert Whittaker and the Broad Classification of Organisms| journal = BioScience| volume = 62| issue = 1 | pages = 67–74| doi=10.1525/bio.2012.62.1.11| doi-access = free}} which is less acceptable to present-day biologists than in the past. Proposals have been made to divide it among several new kingdoms, such as Protozoa and Chromista in the Cavalier-Smith system.{{cite journal | last1 = Blackwell | first1 = Will H. | last2 = Powell | first2 = Martha J. | title = Reconciling Kingdoms with Codes of Nomenclature: Is It Necessary? | journal = Systematic Biology | volume = 48 | issue = 2 | pages = 406–412 | date = June 1999 | doi=10.1080/106351599260382| pmid = 12066717 | doi-access = free }}
Protist taxonomy has long been unstable,{{cite web | url = http://faculty.msj.edu/davisr/potpouri/protista.htm | title = Kingdom PROTISTA | last = Davis | first = R. A. | date = 19 March 2012 | website = College of Mount St. Joseph | access-date = 28 December 2016}} with different approaches and definitions resulting in many competing classification schemes. Many of the phyla listed below are used by the Catalogue of Life,{{cite web | url = http://www.catalogueoflife.org/col/browse/tree?de3fa845167fa2ccdac6ddcb6e8d9a28 | title = Taxonomic tree | date = 23 December 2016 | website = Catalogue of Life | access-date = 28 December 2016 | archive-date = 1 August 2021 | archive-url = https://web.archive.org/web/20210801083911/https://www.catalogueoflife.org/col/browse/tree?de3fa845167fa2ccdac6ddcb6e8d9a28 | url-status = dead }} and correspond to the Protozoa-Chromista scheme,{{cite journal | last1 = Ruggiero | first1 = Michael A. | last2 = Gordon | first2 = Dennis P. | last3 = Orrell | first3 = Thomas M. | last4 = Bailly | first4 = Nicholas | last5 = Bourgoin | first5 = Thierry | last6 = Brusca | first6 = Richard C. | last7 = Cavalier-Smith | first7 = Thomas | last8 = Guiry | first8 = Michael D. | last9 = Kirk | first9 = Paul M. | display-authors=3 | title = A Higher Level Classification of All Living Organisms | journal = PLOS ONE | volume = 10 | issue = 6 | date = 29 April 2015 | doi=10.1371/journal.pone.0119248 | pmid = 25923521 | pmc = 4418965 | page=e0119248| bibcode = 2015PLoSO..1019248R | doi-access = free }} with updates from the latest (2022) publication by Cavalier-Smith.{{cite journal|vauthors=Cavalier-Smith T|title=Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi|journal=Protoplasma|volume=259|pages=487–593|date=2022|doi=10.1007/s00709-021-01665-7|pmc=9010356}} Other phyla are used commonly by other authors, and are adapted from the system used by the International Society of Protistologists (ISP). Some of the descriptions are based on the 2019 revision of eukaryotes by the ISP.{{cite journal|vauthors=Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, Cárdenas P, Čepička I, Chistyakova L, del Campo J, Dunthorn M, Edvardsen B, Eglit Y, Guillou L, Hampl V, Heiss AA, Hoppenrath M, James TY, Karnkowska A, Karpov S, Kim E, Kolisko M, Kudryavtsev A, Lahr DJ, Lara E, Le Gall L, Lynn DH, Mann DG, Massana R, Mitchell EA, Morrow C, Park JS, Pawlowski JW, Powell MJ, Richter DJ, Rueckert S, Shadwick L, Shimano S, Spiegel FW, Torruella G, Youssef N, Zlatogursky V, Zhang Q|year=2019|title=Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes|journal=Journal of Eukaryotic Microbiology|volume=66|issue=1 |pages=4–119|doi=10.1111/jeu.12691|pmid=30257078 |pmc=6492006 }}
class="wikitable" |
style="background: #fff9a6" width="15%"|
| rowspan="4" |"Chromista" |
style="background: #ffc8a6" width="15%"| |
style="background: #f8de7e" width="15%"| |
style="background: #cfffa6" |
|"Hacrobia" |
style="background: #c5dafc" |
| "Sarcomastigota" | rowspan="2" |"Protozoa" |
style="background:#ffd4fe" |
|"Excavata" |
style="background: #d6d6d6" width="15%"|
| colspan="2"| Orphan groups |
class="wikitable sortable"
!Phylum!!Meaning!!Common name!!Distinguishing characteristics!!Species described!!Image |
style="background: #c5dafc"
| Amorphous animals | Amoebozoans | Presence of pseudopodia for amoeboid movement, tubular cristae. | 100px |
style="background: #ffc8a6"
| Apicomplexans, sporozoans | Mostly parasitic, at least one stage of the life cycle with flattened subpellicular vesicles and a complete apical complex, non-photosynthetic apicoplast. | 100px |
style="background: #c5dafc"
| Apusozoa{{br}}{{small|(paraphyletic)}} | Apusomonas-like animals | | Gliding biciliates with two or three connectors between centrioles | 32 | 100px |
style="background: #fff9a6"
| Bigyra | Two rings | | Stramenopiles with a double helix in ciliary transition zone | | 100px |
style="background: #f8de7e"
| Cercozoa | Flagellated animal | Cercozoans | Defined by molecular phylogeny, lacking distinctive morphological or behavioural characters. | | 100px |
style="background: #ffc8a6"
| Chromera-like organisms | Chrompodellids, chromerids, colpodellids{{cite Q|Q30662251}} | Biflagellates, chloroplasts with four membranes, incomplete apical complex, cortical alveoli, tubular cristae. | 100px |
style="background: #c5dafc"
| Choanozoa{{br}}{{small|(paraphyletic)}} | Opisthokont protists | Filose pseudopods; some with a colar of microvilli surrounding a flagellum | 100px |
style="background: #ffc8a6"
| Cilia bearers | Ciliates | Presence of multiple cilia and a cytostome. | 100px |
style="background: #ddfa5a"
| | Defined by molecular phylogeny, flat cristae. | 100px |
style="background: #ffc8a6"
| Dinoflagellates | Biflagellates with a transverse ribbon-like flagellum with multiple waves beating to the cell’s left and a longitudinal flagellum beating posteriorly with only one or few waves. | {{nts|2957}} extant{{br}}955 fossil | 100px |
style="background: #f8de7e"
| Endomyxa | Within mucus{{cite Q|Q28212529}} | | Defined by molecular phylogeny, typically plasmodial endoparasites of other eukaryotes. | | 100px |
style="background: #ffd4fe"
| Eolouka{{br}}{{small|(paraphyletic)}} | | Heterotrophic biflagellates with ventral feeding groove. | {{nts|23}} | 100px |
style="background: #ffd4fe"
| True eye animals | | Biflagellates, one of the two cilia inserted into an apical or subapical pocket, unique ciliary configuration. | {{nts|2037}} extant{{br}}20 fossil | 100px |
style="background: #fff9a6"
| Ochrophyta,{{br}}Heterokontophyta | Ochre plants, heterokont plants | Heterokont algae, stramenochromes, ochrophytes, heterokontophytes | Biflagellates with tripartite mastigonemes, chloroplasts with four membranes and chlorophylls a and c, tubular cristae. | {{nts|21052}} extant{{br}}2,262 fossil{{cite Q|Q124684077}} | 100px |
style="background: #ddfa5a"
| Haptista | | Thin microtubule-based appendages for feeding (haptonema in haptophytes, axopodia in centrohelids), complex mineralized scales. | {{nts|517}} extant{{br}}1,205 fossil | 100px |
style="background: #d6d6d6"
| Incomplete or atypical flagellates | Hemimastigotes{{cite Q|Q58834974}} | Ellipsoid or vermiform phagotrophs, two slightly spiraling rows of around 12 cilia each, thecal plates below the membrane supported by microtubules and rotationally symmetrical, tubular and saccular cristae.{{cite Q|Q85570914}} |60px |
style="background: #ffd4fe"
| Malawimonas-like organisms | Malawimonads | Small free-living bicilates with two kinetosomes, one or two vanes in posterior cilium. | 100px |
style="background: #ffd4fe"
| Middle monads | Metamonads | Anaerobic or microaerophilic, some without mitochondria; four kinetosomes per kinetid | | 100px |
style="background: #c5dafc"
| Opisthosporidia | Opisthokont spores{{Cite journal|last1=Karpov|first1=Sergey|last2=Mamkaeva|first2=Maria A.|last3=Aleoshin|first3=Vladimir|last4=Nassonova|first4=Elena|last5=Lilje|first5=Osu|last6=Gleason|first6=Frank H.|date=2014-01-01|title=Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia|journal= Frontiers in Microbiology|volume=5|pages=112|doi=10.3389/fmicb.2014.00112|pmc=3975115|pmid=24734027|doi-access=free}} | | Parasites with chitinous spores and extrusive host-invasion apparatus | | 100px |
style="background: #ffd4fe"
| Percolomonas-like animals | | Complex life cycle containing amoebae, flagellates and cysts. | | 100px |
style="background: #ffc8a6"
| Perkinsus-like animals | Perkinsozoans, perkinsids | Parasitic biflagellates, incomplete apical complex, formation of zoosporangia or undifferentiated cells via a hypha-like tube. | {{nts|26}} | 100px |
style="background: #d6d6d6"
| Provora | Devouring voracious protists | | Defined by molecular phylogeny, free-living eukaryovorous heterotrophic biflagellates with ventral groove and extrusomes.{{cite Q|Q115933632}} | 50px |
style="background: #fff9a6"
| False fungi | | Defined by molecular phylogeny, phagotrophic heterokonts with a helical ciliary transition zone.{{cite Q|Q28303534}} | {{nts|1200|prefix=over }}{{cite journal|vauthors=Thines M|date=2018|title=Oomycetes|journal=Current Biology|volume=28|issue=15|pages=R812–R813|doi=10.1016/j.cub.2018.05.062|url=https://www.cell.com/current-biology/fulltext/S0960-9822(18)30698-5|doi-access=free}} | 100px |
style="background: #f8de7e"
| Retaria | Reticulopodia-bearing organisms | | Feeding by reticulopodia (or axopodia) typically projected through various types of skeleton, closed mitosis.{{cite Q|Q28261633}} | {{nts|10000}} extant{{br}}50,000 fossil | 100px |
style="background: #c5dafc"
| Sulcozoa{{br}}{{small|(paraphyletic)}} | | Aerobic flagellates (none, 1, 2 or 4 flagella) with dorsal semi-rigid pellicle of one or two submembrane dense layers, ventral feeding groove, branching ventral pseudopodia, typically filose. | {{nts|40}}+ | 70px |
style="background: #d6d6d6"
| Telonema-like organisms | Phagotrophic pyriform biflagellates with a unique complex cytoskeleton, tubular cristae, tripartite mastigonemes, cortical alveoli.{{cite journal |last1=Shalchian-Tabrizi |first1=K |last2=Eikrem |first2=W |last3=Klaveness |first3=D |last4=Vaulot |first4=D |last5=Minge |first5=M.A |last6=Le Gall |first6=F |last7=Romari |first7=K |last8=Throndsen |first8=J |last9=Botnen |first9=A |last10=Massana |first10=R |last11=Thomsen |first11=H.A |last12=Jakobsen |first12=K.S |title=Telonemia, a new protist phylum with affinity to chromist lineages |journal=Proceedings of the Royal Society B: Biological Sciences |date=28 April 2006 |volume=273 |issue=1595 |pages=1833–1842 |doi=10.1098/rspb.2006.3515 |pmid=16790418 |pmc=1634789 }}{{cite journal | last1=Tikhonenkov | first1=Denis V. | last2=Jamy | first2=Mahwash | last3=Borodina | first3=Anastasia S. | last4=Belyaev | first4=Artem O. | last5=Zagumyonnyi | first5=Dmitry G. | last6=Prokina | first6=Kristina I. | last7=Mylnikov | first7=Alexander P. | last8=Burki | first8=Fabien | last9=Karpov | first9=Sergey A. | title=On the origin of TSAR: morphology, diversity and phylogeny of Telonemia | journal=Open Biology | publisher=The Royal Society | volume=12 | issue=3 | year=2022 | issn=2046-2441 | doi=10.1098/rsob.210325| pmid=35291881 | pmc=8924772 | doi-access=free }} | {{nts|7}} | 100px |
class="sortbottom"
| colspan="6"|Total: 26, but see below. |
The number of protist phyla varies greatly from one classification to the next. The Catalogue of Life includes Rhodophyta and Glaucophyta in kingdom Plantae, but other systems consider these phyla part of Protista.{{cite journal| last = Corliss| first = John O.| date = 1984| title = The Kingdom Protista and its 45 Phyla| journal = BioSystems| volume = 17| issue = 2| pages = 87–176|doi=10.1016/0303-2647(84)90003-0| pmid = 6395918}} In addition, less popular classification schemes unite Ochrophyta and Pseudofungi under one phylum, Gyrista, and all alveolates except ciliates in one phylum Myzozoa, later lowered in rank and included in a paraphyletic phylum Miozoa. Even within a phylum, other phylum-level ranks appear, such as the case of Bacillariophyta (diatoms) within Ochrophyta. These differences became irrelevant after the adoption of a cladistic approach by the ISP, where taxonomic ranks are excluded from the classifications after being considered superfluous and unstable. Many authors prefer this usage, which lead to the Chromista-Protozoa scheme becoming obsolete.
= Bacteria =
{{main|Bacterial phyla}}
Currently there are 41 bacterial phyla (not including "Cyanobacteria") that have been validly published according to the Bacteriological Code{{cite web | vauthors = Euzéby JP, Parte AC | url = https://lpsn.dsmz.de/text/names-of-phyla | title = Names of phyla | access-date = April 3, 2022 | publisher = List of Prokaryotic names with Standing in Nomenclature (LPSN)}}
- Abditibacteriota
- Acidobacteriota, phenotypically diverse and mostly uncultured
- Actinomycetota, High-G+C Gram positive species
- Aquificota, deep-branching
- Armatimonadota
- Atribacterota
- Bacillota, Low-G+C Gram positive species, such as the spore-formers Bacilli (aerobic) and Clostridia (anaerobic)
- Bacteroidota
- Balneolota
- Bdellovibrionota
- Caldisericota, formerly candidate division OP5, Caldisericum exile is the sole representative
- Calditrichota
- Campylobacterota
- Chlamydiota
- Chlorobiota, green sulphur bacteria
- Chloroflexota, green non-sulphur bacteria
- Chrysiogenota, only 3 genera (Chrysiogenes arsenatis, Desulfurispira natronophila, Desulfurispirillum alkaliphilum)
- Coprothermobacterota
- Deferribacterota
- Deinococcota, Deinococcus radiodurans and Thermus aquaticus are "commonly known" species of this phyla
- Dictyoglomota
- Elusimicrobiota, formerly candidate division Thermite Group 1
- Fibrobacterota
- Fusobacteriota
- Gemmatimonadota
- Ignavibacteriota
- Kiritimatiellota
- Lentisphaerota, formerly clade VadinBE97
- Mycoplasmatota, notable genus: Mycoplasma
- Myxococcota
- Nitrospinota
- Nitrospirota
- Planctomycetota
- Pseudomonadota, the most well-known phylum, containing species such as Escherichia coli or Pseudomonas aeruginosa
- Rhodothermota
- Spirochaetota, species include Borrelia burgdorferi, which causes Lyme disease
- Synergistota
- Thermodesulfobacteriota
- Thermomicrobiota
- Thermotogota, deep-branching
- Verrucomicrobiota
= Archaea =
{{main|Archaea}}
Currently there are 2 phyla that have been validly published according to the Bacteriological Code
- Nitrososphaerota
- Thermoproteota, second most common archaeal phylum
Other phyla that have been proposed, but not validly named, include:
- "Euryarchaeota", most common archaeal phylum
- "Korarchaeota"
- "Nanoarchaeota", ultra-small symbiotes, single known species
See also
{{portal|Biology}}
Notes
{{notelist}}
References
{{reflist|30em}}
External links
{{Wikispecies}}
{{Wiktionary|Phylum}}
- [https://web.archive.org/web/20060622202444/http://www.pandasthumb.org/archives/2005/04/down_with_phyla_1.html Are phyla "real"? Is there really a well-defined "number of animal phyla" extant and in the fossil record?]
- [http://waynesword.palomar.edu/trnov01.htm Major Phyla Of Animals] {{Webarchive|url=https://web.archive.org/web/20060716113027/http://waynesword.palomar.edu/trnov01.htm |date=16 July 2006 }}
{{Taxonomic ranks|state=expanded}}
{{Life on Earth}}
{{Authority control}}