User:Double sharp/List of uniform tilings by Schwarz triangle
{{noindex}}
Yes, I'm fully aware that this is a misnomer: Schwarz triangles are spherical. I should really be referring to Coxeter polytopes (since we're referring to tilings of E2/H2, I could say Coxeter polygons.)
This is the Euclidean and hyperbolic version of List of uniform polyhedra by Schwarz triangle.
What exactly sabotages {5,10/3}, {5/2,10}, {7,14/5}, {7/2,14/3}, {7/3,14} etc. and makes them have infinite density though they'd fit in the plane? – ah, I see, from Regular Polytopes (3rd ed.), p.108: they would have rotational symmetries that are not 2-, 3-, 4-, or 6-fold, which we know to be impossible.
Basically what we need is:
Add and subtract interior angles of {3} (60°), {4} (90°), {6} (120°), {8} (135°), {8/3} (45°), {12} (150°), {12/5} (30°), {∞} (180°) to yield some multiple of 360°. This will determine a candidate vertex figure. We may reject everything containing consecutive positive and negative terms of the same angle as degenerate. Some candidates may also be excluded by symmetric concerns, such as {8/3, 8} above. (Though we need to prove that only the above tiles are possible.) However such a bald listing ends up creating lots of junk as well...
Summary table
Image:Wythoff construction-pqr.png
There are seven generator points with each set of p,q,r (and a few special forms):
class="wikitable"
!colspan=4|General !colspan=4|Right triangle (r=2) |
Description
!Wythoff !Coxeter !Wythoff !Vertex !Coxeter |
---|
align=center
|rowspan=3|regular and | q | p r | (p.r)q |{{CDD|3|node_1|p|node|q|node|r}} | q | p 2 | pq | {p,q} |{{CDD|node_1|p|node|q|node}} |
align=center
| p | q r | (q.r)p |{{CDD|3|node|p|node|q|node_1|r}} | p | q 2 | qp | {q,p} |{{CDD|node|p|node|q|node_1}} |
align=center
| r | p q |(q.p)r |{{CDD|3|node|p|node_1|q|node|r}} | 2 | p q |''(q.p)² | t1{p,q} |{{CDD|node|p|node_1|q|node}} |
align=center
|rowspan=3|truncated and | q r | p |q.2p.r.2p |{{CDD|3|node_1|p|node_1|q|node|r}} | q 2 | p |''q.2p.2p | t0,1{p,q} |{{CDD|node_1|p|node_1|q|node}} |
align=center
| p r | q | p.2q.r.2q |{{CDD|3|node|p|node_1|q|node_1|r}} | p 2 | q | p. 2q.2q | t0,1{q,p} |{{CDD|node|p|node_1|q|node_1}} |
align=center
| p q | r |2r.q.2r.p |{{CDD|3|node_1|p|node|q|node_1|r}} | p q | 2 |4.q.4.p | t0,2{p,q} |{{CDD|node_1|p|node|q|node_1}} |
align=center
|rowspan=2| even-faced | p q r | | 2r.2q.2p |{{CDD|3|node_1|p|node_1|q|node_1|r}} | p q 2 | | 4.2q.2p | t0,1,2{p,q} |{{CDD|node_1|p|node_1|q|node_1}} |
align=center
| p q (r s) | | 2p.2q.-2p.-2q | - | p 2 (r s) | | 2p.4.-2p.4/3 | | - |
align=center
|rowspan=2| snub | | p q r | 3.r.3.q.3.p |{{CDD|3|node_h|p|node_h|q|node_h|r}} | | p q 2 | 3.3.q.3.p | s{p,q} |{{CDD|node_h|p|node_h|q|node_h}} |
align=center
| | p q r s | (4.p.4.q.4.r.4.s)/2 | - | - | - | | - |
There are three special cases:
- p q (r s) | – This is a mixture of p q r | and p q s |.
- | p q r – Snub forms (alternated) are give this otherwise unused symbol.
- | p q r s – A unique snub form for U75 that isn't Wythoff-constructible.
Euclidean tilings
The only plane triangles that tile the plane once over are (3 3 3), (4 2 4), and (3 2 6): they are respectively the equilateral triangle, the 45-45-90 right isosceles triangle, and the 30-60-90 right triangle. It follows that any plane triangle tiling the plane multiple times must be built up from multiple copies of one of these. The only possibility is the 30-120-120 isosceles triangle (3/2 6 6) = (6 2 3) + (2 6 3) tiling the plane twice over. Each triangle counts twice with opposite orientations, with a branch point at the 120° vertices.Coxeter, Regular Polytopes, p. 114
The tiling {∞,2} made from two apeirogons is not accepted, because its faces meet at more than one edge.
Here ∞' denotes the retrograde counterpart to ∞.
The degenerate named forms are:
- chatit: compound of 3 hexagonal tilings + triangular tiling
- chata: compound of 3 hexagonal tilings + triangular tiling + double covers of apeirogons along all edge sequences
- cha: compound of 3 hexagonal tilings + double covers of apeirogons along all edge sequences
- cosa: square tiling + double covers of apeirogons along all edge sequences
class="wikitable" |
(p q r)
! q {{pipe}} p r ! p {{pipe}} q r ! r {{pipe}} p q ! q r {{pipe}} p ! p r {{pipe}} q ! p q {{pipe}} r ! p q r {{pipe}} ! {{pipe}} p q r |
---|
(6 3 2)
| bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px |
(4 4 2)
| bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px |
(3 3 3)
| bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px |
(∞ 2 2)
| bgcolor=#ff9999 | — | bgcolor=#ff9999 | — | bgcolor=#ff9999 | — | bgcolor=#ff9999 | — | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px |
(3/2 3/2 3)
| bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#ff9999 | ∞-covered {3} | bgcolor=#ff9999 | ∞-covered {3} | bgcolor=#99ff99 | 108px | bgcolor=#ff9999 | [degenerate] | |
(4 4/3 2)
| bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | 108px | bgcolor=#ff9999 | ∞-covered {4} | 108px | |
(4/3 4/3 2)
| bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | 108px | 108px | bgcolor=#99ff99 | 108px | 108px | 108px |
(3/2 6 2)
| bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#ff9999 | [degenerate] | bgcolor=#99ff99 | 108px | 108px | bgcolor=#ff9999 | [degenerate] | |
(3 6/5 2)
| bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | 108px | 108px | 108px | |
(3/2 6/5 2)
| bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#ff9999 | [degenerate] | 108px | bgcolor=#99ff99 | 108px | bgcolor=#ff9999 | [degenerate] | |
(3/2 6 6)
| bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | [degenerate] | 108px | 108px | bgcolor=#ff9999 | [degenerate] | |
(3 6 6/5)
| bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | ∞-covered {6} | 108px | 108px | 108px | |
(3/2 6/5 6/5)
| bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | [degenerate] | 108px | 108px | bgcolor=#ff9999 | [degenerate] | |
(3 3/2 ∞)
| 108px | 108px | bgcolor=#ff9999 | — | bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | [degenerate] | 108px | bgcolor=#ff9999 | [degenerate] | |
(3 3 ∞')
| 108px | 108px | bgcolor=#ff9999 | — | bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | [degenerate] | bgcolor=#ff9999 | [degenerate] | |
(3/2 3/2 ∞')
| 108px | 108px | bgcolor=#ff9999 | — | bgcolor=#ff9999 | [degenerate] | bgcolor=#ff9999 | [degenerate] | bgcolor=#ff9999 | [degenerate] | bgcolor=#ff9999 | [degenerate] | |
(4 4/3 ∞)
| bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | — | 108px | 108px | 108px | 108px | 108px |
(4 4 ∞')
| bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | — | 108px | 108px | bgcolor=#ff9999 | [degenerate] | bgcolor=#ff9999 | [degenerate] | |
(4/3 4/3 ∞')
| bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | — | 108px | 108px | bgcolor=#ff9999 | [degenerate] | bgcolor=#ff9999 | [degenerate] | |
(6 6/5 ∞)
| bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | — | 108px | 108px | bgcolor=#ff9999 | 108px | 108px | |
(6 6 ∞')
| bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | — | 108px | 108px | bgcolor=#ff9999 | [degenerate] | bgcolor=#ff9999 | [degenerate] | |
(6/5 6/5 ∞')
| bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | 108px | bgcolor=#ff9999 | — | 108px | 108px | bgcolor=#ff9999 | [degenerate] | bgcolor=#ff9999 | [degenerate] | |
The tiling 6 6/5 | ∞ is generated as a double cover by Wythoff's construction:
class="wikitable" |
108px 6.∞.6/5.∞ hoha hemi(6 6/5 {{pipe}} ∞) |
Also there are a few tilings with the mixed symbol p q {{su|p=r|b=s}} |:
class=wikitable |
108px 4.12.4/3.12/11 sraht 2 6 {{su|p=3/2|b=3}} {{pipe}} |108px |108px |108px |
There are also some non-Wythoffian tilings:
class=wikitable |
bgcolor=#99ff99 | 108px 3.3.3.4.4 etrat |108px |4.8.8/3.4/3.∞ |4.8/3.8.4/3.∞ |4.8.4/3.8.4/3.∞ |4.8/3.4.8/3.4/3.∞ |
Hyperbolic
OK, apparently the hyperbolic fundamental domains are called Lannér triangles (compact) per Coxeter–Dynkin diagram#Hyperbolic Coxeter groups, Koszul triangles (paracompact) and Vinberg triangles (noncompact). But these are only right for simplices, no? So in general I'd write "Coxeter polygons" again.
class="wikitable" |
(p q r)
! q {{pipe}} p r ! p {{pipe}} q r ! r {{pipe}} p q ! q r {{pipe}} p ! p r {{pipe}} q ! p q {{pipe}} r ! p q r {{pipe}} ! {{pipe}} p q r |
---|
(7 3 2)
| bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px |
(8 3 2)
| bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px |
(5 4 2)
| bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px |
(6 4 2)
| bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px |
(5 5 2)
| bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px |
(6 6 2)
| bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px |
(4 3 3)
| bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px |
(4 4 3)
| bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px |
(4 4 4)
| bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px | bgcolor=#99ff99 | 108px |
Symmetry mutations
(should really also add *333, but this is a start, from [http://www2u.biglobe.ne.jp/~hsaka/mandara/index.html Mandara: The World of Uniform Tessellations]
Families which contain only degenerate members (e.g. the quasitruncated {3,n}) are not shown; neither are those Wythoff symbols that already contain reducible fractions. Those that turn out to be degenerate anyway but do not satisfy either criterion are still shown. In some cases I have naughtily silently corrected the "doubled" constructions of the hemipolyhedra. Some of the Euclidean families involving {∞} correspond quite nicely to the hemipolyhedra, taking {∞} as an equator of r{4,4} or r{3,6}. However, some others do not have clear spherical analogues.
class=wikitable
! *332 ! *432 ! *532 ! *632 ! *442 |
108px 3.3.3 tet 3 {{pipe}} 2 3 |
108px 3.3.3 tet 3 {{pipe}} 2 3 |108px |108px |
108px 3.3.3.3 oct 2 {{pipe}} 3 3 |
108px 3.4.3/2.4 thah 3 3/2 {{pipe}} 2 |108px |108px |108px |108px |
108px 3.4.3/2.4 thah 3 3/2 {{pipe}} 2 |108px |108px |108px |108px |
108px 3.6.6 tut 2 3 {{pipe}} 3 |108px |
108px 3.6/2.6/2 3tet 2 3 {{pipe}} 3/2 |108px |108px |108px |108px |
108px 3.6.6 tut 2 3 {{pipe}} 3 |
108px 3.4.3.4 co 3 3 {{pipe}} 2 |108px |108px |
108px 3.6.3/2.6 oho 3/2 3 {{pipe}} 3 |108px |108px |108px | |
108px 4.6.4/3.6 cho 2 3 (3/2 3/2) {{pipe}} |108px |108px |108px | |
108px 3/2.4.3.4 thah 3/2 3 {{pipe}} 2 |108px |108px |108px |∞-covered {4} |
108px 3.6/2.3.6/2 2oct 3 3 {{pipe}} 3/2 |108px |108px |108px | |
|108px 4.8/3.4/3.8/5 groh 2 4/3 (3/2 4/2) {{pipe}} | |108px | |
108px 3.6.3/2.6 oho 3/2 3 {{pipe}} 3 | |108px | | |
|108px 3.8.4/3.8 socco 3 4/3 {{pipe}} 4 |108px | | |
|108px 6.8.8/3 cotco 3 4 4/3 {{pipe}} |108px | | |
108px 4.6.6 toe 2 3 3 {{pipe}} |108px |108px |
108px 4.6.6/2 cho+4{6/2} 2 3 3/2 {{pipe}} |108px |108px |108px |108px |
108px 6.6.6/2 2tut 3 3 3/2 {{pipe}} |108px |108px |108px | |
|
| |108px |108px |
|
| |108px |108px |
|
| |108px |108px |
|
| |108px |108px |
108px 3.3.3.3.3 ike {{pipe}} 2 3 3 |108px |108px |
108px (3.3.3.3.3)/2 gike {{pipe}} 2 3/2 3/2 | | | |108px |
|
| | |108px |
References
Klitzing:
- [http://www.bendwavy.org/klitzing/dimensions/flat.htm Euclidean tessellations and honeycombs]
- [http://www.bendwavy.org/klitzing/dimensions/hyperbolic.htm Hyperbolic tessellations and honeycombs]
McNeill:
- [http://www.orchidpalms.com/polyhedra/tessellations/tessel.htm Tessellations of the Plane]