User:Rfassbind/sandbox#Number of countries with PV capacities in the gigawatt-scale

{{user subpages|Rfassbind}}

Infobox planet color scheme

{{main|User:Rfassbind/sandbox/color-scheme}}

Solar System—Farthest regions

{{see|Solar System#Farthest regions}}

File:Solarmap.png in astronomical units (AU)]]

The point at which the Solar System ends can be defined by two by two separate forces—the solar wind and the Sun's gravity:

  • The limit of the Suns's solar winds and its embedded magnetic field: This is the heliosphere, the bubble-like region of space dominated by the stream of charged particles and magnetic field of the solar wind. The outer boundary of the heliosphere is considered the beginning of the interstellar medium. The radius of the Heliosphere is roughly 100 AU, or a hundred times the Earths's distance from the Sun.
  • The limit of the Sun's gravitational influence: The Sun's Hill sphere is the effective range of its gravitational dominance, its sphere of influence. This solar gravitational sphere extends much further than the solar wind's heliosphere. It is thought to extend up to a thousand times farther and encompasses the theorized Oort cloud, with the inner cloud at 2,000 to 20,000 AU and the outer Oort cloud reaching out up to 100,000 AU, or a thousand times further than the heliosphere.{{cite book|last=Littmann|first=Mark|title=Planets Beyond: Discovering the Outer Solar System|date=2004|pages=162–163|publisher=Courier Dover Publications|isbn=978-0-486-43602-9}}

The Sun's sphere of influence depends on which of its property is considered to define the outer boundary of the Solar System.

Tunguska event (revision summary)

{{main|Tunguska event}}

{{Infobox

| above = Tunguska event

| image = 300px

| caption = Location of the event in Siberia (modern map)

| header1 =

| label1 = Event

| data1 = Explosion in forest area (10–15 Mtons TNT)

| header2 =

| label2 = Time

| data2 = 30 June 1908

| header3 =

| label3 = Place

| data3 = Podkamennaya Tunguska River in Siberia, Russian Empire

| header4 =

| label4 = Effects

| data4 = Flattening {{convert|2000|sqkm|abbr=on}} of forest

| header5 =

| label5 =

| data5 =

| header6 =

| label6 = Damage

| data6 = Mostly material damages to trees

| header7 =

| label7 = Cause

| data7 = Probable air burst of small asteroid or comet

| header8 =

| label8 = Coordinates

| data8 ={{Coord|60|55|N|101|57|E|region:RU-KYA_type:event_scale:300000}}

| header9 =

| label9 =

| data9 =

| header10 =

| label10 =

| data10 =

| header11 =

| label11 =

| data11 =

}}

The Tunguska event was a large explosion of a meteor near the Stony Tunguska River in what is now Krasnoyarsk Krai, a sparsely populated region of the Eastern Siberian Taiga, Russia. The event occured in the morning of June 30, 1908 (N.S.).{{cite journal | last1 = Trayner | first1 = C | year = 1994 | title = Perplexities of the Tunguska meteorite | bibcode = 994Obs...114..227T| journal = The Observatory | volume = 114 | issue = | pages = 227–231 }}

It flattened {{convert|2000|sqkm|abbr=on}} of forest and caused no known casualties.

It is classified as an impact event, even though no impact crater has been found and the meteor is believed to have burst in mid-air at an altitude of {{convert|5|to|10|km|0|abbr=off}} rather than hit the surface of the Earth.{{cite web|url=http://apod.nasa.gov/apod/ap071114.html |title=APOD: 2007 November 14 – Tunguska: The Largest Recent Impact Event |publisher=Antwrp.gsfc.nasa.gov |accessdate=2011-09-12}}

Different studies have yielded varying estimates of the superbolide's size, on the order of {{convert|60|to|190|m|ft|0|abbr=off}}, depending on whether the meteor was a comet or a denser asteroid.{{cite journal | last1 = Lyne | first1 = J. E. | last2 = Tauber | first2 = M. | year = 1995 | title = Origin of the Tunguska Event | url = | journal = Nature | volume = 375 | issue = 6533| pages = 638–639 | doi = 10.1038/375638a0 | bibcode = 1995Natur.375..638L | s2cid = 4345310 }} It is the largest impact event on Earth in recorded history.

Since the 1908 event, there have been an estimated 1,000 scholarly papers (mainly in Russian) published on the Tunguska explosion. Many scientists have participated in Tunguska studies: the best known are Leonid Kulik, Yevgeny Krinov, Kirill Florensky, Nikolai Vladimirovich Vasiliev, and Wilhelm Fast. In 2013, a team of researchers led by Victor Kvasnytsya of the National Academy of Sciences of Ukraine published analysis results of micro-samples from a peat bog near the center of the affected area showing fragments that may be of meteoritic origin.{{cite news |last = Peplow |first = Mark |title = Rock samples suggest meteor caused Tunguska blast |newspaper = Nature News |pages = |date = Jun 10, 2013 |url = http://www.nature.com/news/rock-samples-suggest-meteor-caused-tunguska-blast-1.13163 }}{{cite journal |last = Kvasnytsya |first = Victor |authorlink = |author2=R. Wirth |author3=L. Dobrzhinetskaya |author4=J. Matzel |author5=B. Jacobsen |author6=I. Hutcheon |author7=R. Tappero |author8=M. Kovalyukh |title = New evidence of meteoritic origin of the Tunguska cosmic body |journal = Planet. Space Sci. |volume = 84|issue = |pages = 131–140|date = 2013 |doi = 10.1016/j.pss.2013.05.003 |bibcode = 2013P&SS...84..131K |url = http://gfzpublic.gfz-potsdam.de/pubman/item/escidoc:247242 }}

Estimates of the energy of the air burst range from 30 megatons of TNT (130 PJ) to {{convert|10| and |15|MtonTNT}}, depending on the exact height of burst estimated when the scaling-laws from the effects of nuclear weapons are employed.{{Cite journal| last = Shoemaker| first = Eugene| author-link = Eugene Merle Shoemaker| title = Asteroid and Comet Bombardment of the Earth| date = 1983| location = US Geological Survey, Flagstaff, Arizona| volume = 11| url = http://www.annualreviews.org/doi/abs/10.1146/annurev.ea.11.050183.002333?prevSearch=Tunguska| issue = 1| doi = 10.1146/annurev.ea.11.050183.002333| journal = Annual Review of Earth and Planetary Sciences| pages = 461–494| bibcode=1983AREPS..11..461S}}{{cite web | url = https://share.sandia.gov/news/resources/releases/2007/asteroid.html| title = Sandia supercomputers offer new explanation of Tunguska disaster| date = 2007-12-17| publisher = Sandia National Laboratories | accessdate = 2007-12-22}} While more modern supercomputer calculations that include the effect of the object's momentum estimate that the airburst had an energy range from 3 to 5 megatons of TNT (13 to 21 PJ), and that simply more of this energy was focused downward than would be the case from a nuclear explosion.

Using the 15 megaton nuclear explosion derived estimate is an energy about 1,000 times greater than that of the atomic bomb dropped on Hiroshima, Japan; roughly equal to that of the United States' Castle Bravo ground-based thermonuclear test detonation on March 1, 1954; and about two-fifths that of the Soviet Union's later Tsar Bomba (the largest nuclear weapon ever detonated).Verma (2005), p1.

It is estimated that the Tunguska explosion knocked down some 80 million trees over an area of {{convert|2150|km2}}, and that the shock wave from the blast would have measured 5.0 on the Richter scale. An explosion of this magnitude would be capable of destroying a large metropolitan area,{{Cite book | last = Longo | first = Giuseppe |editor-last = Bobrowsky | editor-first = Peter T. | editor2-last = Rickman | editor2-first = Hans | title = Comet/Asteroid Impacts and Human Society, An Interdisciplinary Approach | chapter = 18: The Tunguska event | pages = 303–330 | publisher = Springer-Verlag | place = Berlin Heidelberg New York | publication-date = 2007 | url = http://www-th.bo.infn.it/tunguska/Asteroids-Chapter-18.pdf | isbn=978-3-540-32709-7 | date = 2007 |archiveurl= http://web.archive.org/web/20131014200044/http://www-th.bo.infn.it/tunguska/Asteroids-Chapter-18.pdf |archivedate= 2013-10-14}} but due to the remoteness of the location, no fatalities were documented. This event has helped to spark discussion of asteroid impact avoidance.

= "Missing" elements =

  • meteor - superbolide/detonating fireball (terms)
  • Expedition
  • Eyewitness/contemporary summary, what has been observed. Nearby: light, sound, shock wave. From afar: earth quakes, atmospheric changes.
  • History and current status of scientific debate: "comet vs asteroid"
  • Speculation, probabilistics, NEOs

= LAST =

The Tunguska event was a large explosion, caused by a meteor, which occurred near the Stony Tunguska River in what is now Krasnoyarsk Krai, Russia, in the morning of June 30, 1908 (N.S.).{{cite journal | last1 = Trayner | first1 = C | year = 1994 | title = Perplexities of the Tunguska meteorite | bibcode = 994Obs...114..227T| journal = The Observatory | volume = 114 | issue = | pages = 227–231 }} The explosion over the sparsely populated Eastern Siberian Taiga flattened {{convert|2000|sqkm|abbr=on}} of forest and caused no known casualties. It is classified as an impact event, even though no impact crater has been found and the meteor is believed to have burst in mid-air at an altitude of {{convert|5|to|10|km|0|abbr=off}} rather than hit the surface of the Earth.{{cite web|url=http://apod.nasa.gov/apod/ap071114.html |title=APOD: 2007 November 14 – Tunguska: The Largest Recent Impact Event |publisher=Antwrp.gsfc.nasa.gov |accessdate=2011-09-12}} Different studies have yielded varying estimates of the superbolide's size, on the order of {{convert|60|to|190|m|ft|0|abbr=off}}, depending on whether the meteor was a comet or a denser asteroid.{{cite journal | last1 = Lyne | first1 = J. E. | last2 = Tauber | first2 = M. | year = 1995 | title = Origin of the Tunguska Event | url = | journal = Nature | volume = 375 | issue = 6533| pages = 638–639 | doi = 10.1038/375638a0 | bibcode = 1995Natur.375..638L | s2cid = 4345310 }} It is the largest impact event on Earth in recorded history.

Since the 1908 event, there have been an estimated 1,000 scholarly papers (mainly in Russian) published on the Tunguska explosion. Many scientists have participated in Tunguska studies: the best known are Leonid Kulik, Yevgeny Krinov, Kirill Florensky, Nikolai Vladimirovich Vasiliev, and Wilhelm Fast. In 2013, a team of researchers led by Victor Kvasnytsya of the National Academy of Sciences of Ukraine published analysis results of micro-samples from a peat bog near the center of the affected area showing fragments that may be of meteoritic origin.{{cite news |last = Peplow |first = Mark |title = Rock samples suggest meteor caused Tunguska blast |newspaper = Nature News |pages = |date = Jun 10, 2013 |url = http://www.nature.com/news/rock-samples-suggest-meteor-caused-tunguska-blast-1.13163 }}{{cite journal |last = Kvasnytsya |first = Victor |authorlink = |author2=R. Wirth |author3=L. Dobrzhinetskaya |author4=J. Matzel |author5=B. Jacobsen |author6=I. Hutcheon |author7=R. Tappero |author8=M. Kovalyukh |title = New evidence of meteoritic origin of the Tunguska cosmic body |journal = Planet. Space Sci. |volume = 84|issue = |pages = 131–140|date = 2013 |doi = 10.1016/j.pss.2013.05.003 |bibcode = 2013P&SS...84..131K |url = http://gfzpublic.gfz-potsdam.de/pubman/item/escidoc:247242 }}

Estimates of the energy of the air burst range from 30 megatons of TNT (130 PJ) to {{convert|10| and |15|MtonTNT}}, depending on the exact height of burst estimated when the scaling-laws from the effects of nuclear weapons are employed.{{Cite journal| last = Shoemaker| first = Eugene| author-link = Eugene Merle Shoemaker| title = Asteroid and Comet Bombardment of the Earth| date = 1983| location = US Geological Survey, Flagstaff, Arizona| volume = 11| url = http://www.annualreviews.org/doi/abs/10.1146/annurev.ea.11.050183.002333?prevSearch=Tunguska| issue = 1| doi = 10.1146/annurev.ea.11.050183.002333| journal = Annual Review of Earth and Planetary Sciences| pages = 461–494| bibcode=1983AREPS..11..461S}}{{cite web | url = https://share.sandia.gov/news/resources/releases/2007/asteroid.html| title = Sandia supercomputers offer new explanation of Tunguska disaster| date = 2007-12-17| publisher = Sandia National Laboratories | accessdate = 2007-12-22}} While more modern supercomputer calculations that include the effect of the object's momentum estimate that the airburst had an energy range from 3 to 5 megatons of TNT (13 to 21 PJ), and that simply more of this energy was focused downward than would be the case from a nuclear explosion.

Using the 15 megaton nuclear explosion derived estimate is an energy about 1,000 times greater than that of the atomic bomb dropped on Hiroshima, Japan; roughly equal to that of the United States' Castle Bravo ground-based thermonuclear test detonation on March 1, 1954; and about two-fifths that of the Soviet Union's later Tsar Bomba (the largest nuclear weapon ever detonated).Verma (2005), p1.

It is estimated that the Tunguska explosion knocked down some 80 million trees over an area of {{convert|2150|km2}}, and that the shock wave from the blast would have measured 5.0 on the Richter scale. An explosion of this magnitude would be capable of destroying a large metropolitan area,{{Cite book | last = Longo | first = Giuseppe |editor-last = Bobrowsky | editor-first = Peter T. | editor2-last = Rickman | editor2-first = Hans | title = Comet/Asteroid Impacts and Human Society, An Interdisciplinary Approach | chapter = 18: The Tunguska event | pages = 303–330 | publisher = Springer-Verlag | place = Berlin Heidelberg New York | publication-date = 2007 | url = http://www-th.bo.infn.it/tunguska/Asteroids-Chapter-18.pdf | isbn=978-3-540-32709-7 | date = 2007 |archiveurl= http://web.archive.org/web/20131014200044/http://www-th.bo.infn.it/tunguska/Asteroids-Chapter-18.pdf |archivedate= 2013-10-14}} but due to the remoteness of the location, no fatalities were documented. This event has helped to spark discussion of asteroid impact avoidance.

Ocean (bug GiF overlay wikitable)

= Oceanic divisions =

{{further|Borders of the oceans}}

Though generally described as several separate oceans, these waters comprise one global, interconnected body of salt water sometimes referred to as the World Ocean or global ocean.{{cite web |title=Ocean |url=http://www.sciencedaily.com/articles/o/ocean.htm |publisher=Sciencedaily.com |accessdate=2012-11-08 }}

name="UNAoO">"{{cite web |url=http://www.oceansatlas.org/unatlas/about/physicalandchemicalproperties/background/seemore1.html|title=Distribution of land and water on the planet |work=[http://www.oceansatlas.org/index.jsp UN Atlas of the Oceans] |publisher= |date= }} This concept of a continuous body of water with relatively free interchange among its parts is of fundamental importance to oceanography.{{cite journal |last=Spilhaus |first=Athelstan F. |date=July 1942 |title=Maps of the whole world ocean |publisher=American Geographical Society |volume=32 |issue=3 |pages=431–5 }}

The major oceanic divisions – listed below in descending order of area and volume – are defined in part by the continents, various archipelagos, and other criteria.{{cite web |title=Volumes of the World's Oceans from ETOPO1 |url=http://webcache.googleusercontent.com/search?q=cache:7fH7YXcl8koJ:ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html+&cd=5&hl=en&ct=clnk&gl=ca|publisher=NOAA |accessdate=2015-03-07 }}{{cite web |title=CIA World Factbook |url=https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html|publisher=CIA |accessdate=2015-04-05 }}

class="wikitable sortable" style="font-size:90%; margin:auto;"
Rank (by area)OceanLocationArea
(km{{smallsup|2}})
(%)
Volume
(km{{smallsup|3}})
(%)
Avg. depth
(m)
Coastline
(km)
1Pacific OceanSeparates Asia and Oceania from the Americas{{cite web|title=Pacific Ocean|url=http://www.eoearth.org/view/article/155111/|publisher=http://www.eoearth.org|accessdate=2015-03-07}}[NB]scope="col" style="text-align: right;" | {{nts|168723000}}
46.6
scope="col" style="text-align: right;" | {{nts|669880000}}
50.1
scope="col" style="text-align: center;" | {{nts|3970}}scope="col" style="text-align: right;" | {{nts|135663}}
2Atlantic OceanSeparates the Americas from Eurasia and Africa{{cite web|title=Atlantic Ocean|url=http://www.eoearth.org/view/article/51cbecfc7896bb431f68ef68/|publisher=http://www.eoearth.org|accessdate=2015-03-07}}scope="col" style="text-align: right;" | {{nts|85133000}}
23.5
scope="col" style="text-align: right;" | {{nts|310410900}}
23.3
scope="col" style="text-align: center;" | {{nts|3646}}scope="col" style="text-align: right;" | {{nts|111866}}
3Indian OceanWashes upon southern Asia and separates Africa and Australia{{cite web|title=Indian Ocean|url=http://www.eoearth.org/view/article/51cbee377896bb431f6962fa/|publisher=http://www.eoearth.org|accessdate=2015-03-07}}scope="col" style="text-align: right;" | {{nts|70560000}}
19.5
scope="col" style="text-align: right;" | {{nts|264000000}}
19.8
scope="col" style="text-align: center;" | {{nts|3741}}scope="col" style="text-align: right;" | {{nts|66526}}
4Southern OceanSometimes considered an extension of the Pacific, Atlantic and Indian Oceans,{{cite web|title=Southern Ocean|url=http://www.eoearth.org/view/article/51cbeeee7896bb431f69b419/|publisher=http://www.eoearth.org|accessdate=2015-03-10}}{{cite web|url=http://www.iho.int/iho_pubs/standard/S-23/S-23_Ed3_1953_EN.pdf|title=Limits of Oceans and Seas, 3rd edition|year=1953|publisher=International Hydrographic Organization|accessdate=7 February 2010}} which encircles Antarcticascope="col" style="text-align: right;" | {{nts|21960000}}
6.1
scope="col" style="text-align: right;" | {{nts|71800000}}
5.4
scope="col" style="text-align: center;" | {{nts|3270}}scope="col" style="text-align: right;" | {{nts|17968}}
5Arctic OceanSometimes considered a sea or estuary of the Atlantic,{{Cite book

| first1=Matthias

| last1=Tomczak

| first2=J. Stuart

| last2=Godfrey

| title=Regional Oceanography: an Introduction

| edition=2

| year=2003

| publisher=Daya Publishing House

| place=Delhi

| isbn=81-7035-306-8

| url=http://www.es.flinders.edu.au/~mattom/regoc/

}}{{Cite web|url=http://www.britannica.com/EBchecked/topic/33188/Arctic-Ocean/57838/Oceanography|title='Arctic Ocean' - Encyclopædia Britannica|accessdate=2012-07-02|quote=As an approximation, the Arctic Ocean may be regarded as an estuary of the Atlantic Ocean.}} which covers much of the Arctic and washes upon northern North America and Eurasia{{cite web|title=Arctic Ocean|url=http://www.eoearth.org/view/article/150195/|publisher=http://www.eoearth.org|accessdate=2015-03-07}}

scope="col" style="text-align: right;" | {{nts|15558000}}
4.3
scope="col" style="text-align: right;" | {{nts|18750000}}
1.4
scope="col" style="text-align: center;" | {{nts|1205}}scope="col" style="text-align: right;" | {{nts|45389}}
class="sortbottom" align="left"

! scope="col" align="center" colspan="3"| Total – World Ocean

! scope="col" style="text-align: right;" | {{nts|361900000}}
100

! scope="col" style="text-align: right;" | {{nts|1335000000}}
100

! scope="col" style="text-align: center;" | {{nts|3688}}

! scope="col" style="text-align: right;" | {{nts|377412}}{{cite web |title=Recommendation ITU-R RS.1624: Sharing between the Earth exploration-satellite (passive) and airborne altimeters in the aeronautical radionavigation service in the band 4 200-4 400 MHz (Question ITU-R 229/7) |url=https://www.itu.int/dms_pubrec/itu-r/rec/rs/R-REC-RS.1624-0-200305-I!!PDF-E.pdf|publisher=ITU Radiotelecommunication Sector (ITU-R) |accessdate=2015-04-05|quote=" The oceans occupy about 3.35×108 km2 of area. There are 377412 km of oceanic coastlines in the world."}}

NB: Volume, area, and average depth figures include NOAA ETOPO1 figures for marginal South China Sea.

Oceans are fringed by smaller, adjoining bodies of water such as seas, gulfs, bays, bights, and straits.

{{reflist}}

Astronomical object (lead)

{{main|Astronomical object}}

{{Redirect2|Celestial object|Celestial body|other uses|Celestial (disambiguation)}}

{{About|naturally occurring objects|artificial objects|Satellite}}

{{Refimprove|date=June 2010}}

File:Three Planets Dance Over La Silla.jpg, three astronomical objects in the Solar System—Jupiter (top), Venus (lower left), and Mercury (lower right).{{cite news|title=Three Planets Dance Over La Silla|url=http://www.eso.org/public/images/potw1322a/|accessdate=5 June 2013|newspaper=ESO Picture of the Week}} ]]

(test) Astronomical objects or celestial objects are naturally occurring physical entities, associations or structures that current science has demonstrated to exist in the observable universe.{{cite web |title=Naming Astronomical Objects |url=http://www.iau.org/public/naming/ |author=Task Group on Astronomical Designations from IAU Commission 5 |date=April 2008 |publisher=International Astronomical Union (IAU) |accessdate=4 July 2010| archiveurl= http://web.archive.org/web/20100802140541/http://www.iau.org/public/naming/#minorplanets| archivedate= 2 August 2010 | url-status= live}} The term astronomical object is sometimes used interchangeably with astronomical body. Typically, an astronomical (celestial) body refers to a single, cohesive structure that is bound together by gravity (and sometimes by electromagnetism). Examples include the asteroids, moons, planets and the stars. Astronomical objects are gravitationally bound structures that are associated with a position in space, but may consist of multiple independent astronomical bodies or objects. These objects range from single planets to star clusters, nebulae or entire galaxies. A comet may be described as a body, in reference to the frozen nucleus of ice and dust, or as an object, when describing the nucleus with its diffuse coma and tail.

The universe can be viewed as having a hierarchical structure.{{cite book | first=Jayant V. | last=Narlikar | date=1996 | title=Elements of Cosmology | publisher=Universities Press | isbn=81-7371-043-0 | url=https://books.google.com/books?id=uZgbMUypq_oC&pg=PA4 }} At the largest scales, the fundamental component of assembly is the galaxy, which are assembled out of dwarf galaxies. The galaxies are organized into groups and clusters, often within larger superclusters, that are strung along great filaments between nearly empty voids, forming a web that spans the observable universe.{{cite book | first=Lee | last=Smolin | date=1998 | page=35 | title=The life of the cosmos | publisher=Oxford University Press US | isbn=0-19-512664-5 }} Galaxies and dwarf galaxies have a variety of morphologies, with the shapes determined by their formation and evolutionary histories, including interaction with other galaxies.{{cite book | author=Buta, Ronald James; Corwin, Harold G.; Odewahn, Stephen C. | page=301 | date=2007 | title=The de Vaucouleurs atlas of galaxies | publisher=Cambridge University Press | isbn=978-0-521-82048-6 }} Depending on the category, a galaxy may have one or more distinct features, such as spiral arms, a halo and a nucleus. At the core, most galaxies have a supermassive black hole, which may result in an active galactic nucleus. Galaxies can also have satellites in the form of dwarf galaxies and globular clusters.

File:Stars Rain over ALMA.jpgs.{{cite web|title=Stars Rain over ALMA|url=http://www.eso.org/public/images/potw1514a/|website=www.eso.org|publisher=ESO Picture of the Week|accessdate=22 April 2015}}]]

The constituents of a galaxy are formed out of gaseous matter that assembles through gravitational self-attraction in a hierarchical manner. At this level, the resulting fundamental components are the stars, which are typically assembled in clusters from the various condensing nebulae.{{cite conference | last=Elmegreen | first=Bruce G. | title=The nature and nurture of star clusters | book-title=Star clusters: basic galactic building blocks throughout time and space, Proceedings of the International Astronomical Union, IAU Symposium | volume=266 | pages=3–13 |date=January 2010 | doi=10.1017/S1743921309990809 | bibcode=2010IAUS..266....3E }} The great variety of stellar forms are determined almost entirely by the mass, composition and evolutionary state of these stars. Stars may be found in multi-star systems that orbit about each other in a hierarchical organization. A planetary system and various minor objects such as asteroids, comets and debris, can form in a hierarchical process of accretion from the protoplanetary disks that surrounds newly formed stars.

The various distinctive types of stars are shown by the Hertzsprung–Russell diagram (H–R diagram)—a plot of absolute stellar luminosity versus surface temperature. Each star follows an evolutionary track across this diagram. If this track takes the star through a region containing an intrinsic variable type, then its physical properties can cause it to become a variable star. An example of this is the instability strip, a region of the H-R diagram that includes Delta Scuti, RR Lyrae and Cepheid variables.{{cite book

| first=Carl J. | last=Hansen |author2=Kawaler, Steven D.|author3= Trimble, Virginia

| page=86 | title=Stellar interiors: physical principles, structure, and evolution

| series=Astronomy and astrophysics library

| edition=2nd | publisher=Springer | date=2004

| isbn=0-387-20089-4 }} Depending on the initial mass of the star and the presence or absence of a companion, a star may spend the last part of its life as a compact object; either a white dwarf, neutron star, or black hole.

Bar chart PHA discovery statistics

{{main|Potentially hazardous object}}

{{Image frame

|width = 550

|align=center

|pos=bottom

|content=

{{ #invoke:Chart | bar-chart

| width = 525

| height = 300

| group 1 =50 : 59 : 71 : 83 : 98 : 105 : 121 : 130 : 134 : 138 : 142 : 145 : 147 : 150 : 150 : 151 : 152 : 154

| colors = #FF3366

| group names =

| units suffix = _PHA-KM discovered

| x legends = prev. : 1999 : : 2001: : 2003 : : 2005: : 2007 : : 2009 : : 2011 : : 2013 : : 2015

}}

|caption = PHA-KM: potentially hazardous asteroids larger than 1 kilometer – Cumulative number of discovered PHA by end of year (first of December). As of August 2015, there are a total of 154 PHAs larger than one kilometer.

}}

{{Image frame

|width = 550

|align=center

|pos=bottom

|content=

{{ #invoke:Chart | bar-chart

| width = 525

| height = 300

| group 1=162 : 209 : 286 : 360 : 466 : 536 : 636 : 729 : 819 : 897 : 993 : 1078 : 1158 : 1265 : 1344 : 1436 : 1524 : 1606

| colors = #003DF5

| group names =

| units suffix = _PHA discovered

| x legends = prev. : 1999 : : 2001: : 2003 : : 2005: : 2007 : : 2009 : : 2011 : : 2013 : : 2015

}}

|caption = PHA: total number of potentially hazardous asteroids – Cumulative number of all discovered PHA by end of year (first of December). As of August 2015, there are a total of 1606 PHAs.

}}

{{clear}}

Gallery with bg

{{Main|Barycenter}}

Images are representative (made by hand), not simulated.

orbit1.gif|{{longitem|Two bodies with the same mass orbiting a common barycenter (similar to the 90 Antiope system)|style=text-align: left;}}

orbit2.gif|{{longitem|Two bodies with a difference in mass orbiting a common barycenter external to both bodies, as in the Pluto–Charon system|style=text-align: left;}}

orbit3.gif|{{longitem|Two bodies with a major difference in mass orbiting a common barycenter internal to one body (similar to the Earth–Moon system)|style=text-align: left;}}

orbit4.gif|{{longitem|Two bodies with an extreme difference in mass orbiting a common barycenter internal to one body (similar to the Sun–Earth system)|style=text-align: left;}}

orbit5.gif|{{longitem|Two bodies with the same mass orbiting a common barycenter, external to both bodies, with eccentric elliptic orbits (a common situation for binary stars)|style=text-align: left;}}

File:Dopspec-inline.gif|{{longitem|Sideview of a star orbiting the barycenter of a planetary system. The radial-velocity method makes use of the star's wobble to detect extrasolar planets|style=text-align: left;}}

File:Pluto and Charon system new.png|{{longitem|Scale model of the Pluto system: Pluto and its five moons, including the location of the system's barycenter. Sizes, distances and apparent magnitude of the bodies are to scale.|style=text-align: left;}}

Mission objectives table format (discouraged)

class="wikitable" style="font-size: 90%;"

|+Science objective

style="padding-left: 12px;background-color:#cfc;" |Primary objectives (required)
style="padding-left: 24px;" |– Characterize the global geology and morphology of Pluto and Charon
style="padding-left: 24px;" |– Map chemical compositions of Pluto and Charon surfaces
style="padding-left: 24px;" |– Characterize the neutral (non-ionized) atmosphere of Pluto and its escape rate
style="padding-left: 12px; background-color: #FFE6CC;" |Secondary objectives (expected)
style="padding-left: 24px;" |– Characterize the time variability of Pluto's surface and atmosphere
style="padding-left: 24px;" |– Image select Pluto and Charon areas in stereo
style="padding-left: 24px;" |– Map the terminators (day/night border) of Pluto and Charon with high resolution
style="padding-left: 24px;" |– Map the chemical compositions of select Pluto and Charon areas with high resolution
style="padding-left: 24px;" |– Characterize Pluto's ionosphere (upper layer of the atmosphere) and its interaction with the solar wind
style="padding-left: 24px;" |– Search for neutral species such as H2, hydrocarbons, HCN and other nitriles in the atmosphere
style="padding-left: 24px;" |– Search for any Charon atmosphere
style="padding-left: 24px;" |– Determine bolometric Bond albedos for Pluto and Charon
style="padding-left: 24px;" |– Map surface temperatures of Pluto and Charon
style="padding-left: 24px;" |– Map any additional surfaces of outermost moons: Nix, Hydra, Kerberos, and Styx
style="padding-left: 12px; background-color: #CCCCFF;" |Tertiary objectives (desired)
style="padding-left: 24px;" |– Characterize the energetic particle environment at Pluto and Charon
style="padding-left: 24px;" |– Refine bulk parameters (radii, masses) and orbits of Pluto and Charon
style="padding-left: 24px;" |– Search for additional moons and any rings

List of minor planets visited by spacecraft

Since the 1990s, a total of 13 minor planets – currently all of them are asteroids and dwarf planets – have been visited by space probes. Note that moons (not directly orbiting the Sun), comets and planets are not minor planets and thus are not included in the table below.

In addition to the listed objects, two asteroids have been imaged by spacecraft at distances too large to resolve features (over 100,000 km), and are hence not considered as "visited". Asteroid 132524 APL was imaged by New Horizons in 2006 at a distance of 101,867 km, and 2685 Masursky by Cassini in 2000 at a distance of 1,600,000 km. The Hubble Space Telescope, a spacecraft in Earth orbit, has imaged several large asteroids, including 2 Pallas and 3 Juno.

class="wikitable sortable"
colspan=4 style="background-color: #ccffcc;" | Minor planet

! colspan=5 style="background-color: #FFFF99;" | Space probe

rowspan=2 style="background-color: #E5FFE5;" width=85 | Name

! rowspan=2 style="background-color: #E5FFE5;" class="unsortable"| Image

! rowspan=2 style="background-color: #E5FFE5;" | Dimensions
in km(a)

! rowspan=2 style="background-color: #E5FFE5;" width=70 | Discovery
year

! rowspan=2 style="background-color: #ffffcc;" | Name

! rowspan=2 style="background-color: #ffffcc;" width=65 data-sort-type="number"| Visiting
year

! colspan=2 style="background-color: #ffffcc;" | Closest approach

! rowspan=2 style="background-color: #ffffcc;" class="unsortable"| Remarks

width=65 style="background-color: #ffffcc;" | in km

! width=65 style="background-color: #ffffcc;" | in radii(b)

{{sort|000001|1 Ceres}}

| bgcolor=black|File:PIA19179-Ceres-DawnSpacecraft-20150204.jpg

| align=center | {{sort|952|952}}

| align=center | 1801

| Dawn

| align=center | {{sort|2015.1|2015–present}}

| align=right | {{nts|200}}{{longitem|approx.
(planned)
|style=line-height: 105%; font-size: 0.8em;}}

| align=center | 0.42

| first "close up" picture of Ceres taken in December 2014; probe entered orbit in March 2015; first dwarf planet visited by a spacecraft, largest asteroid visited by a spacecraft

{{sort|000004|4 Vesta}}

| bgcolor=black|50x50px

| align=center | {{sort|529|529}}

| align=center | 1807

| Dawn

| align=center | 2011–2012

| align=right | {{nts|200}}{{longitem|approx.|style=line-height: 80%; font-size: 0.8em;}}

| align=center | 0.76

| space probe broke orbit on 5 September 2012 and headed to Ceres; first "big four" asteroid visited by a spacecraft, largest asteroid visited by a spacecraft at the time

{{sort|000021|21 Lutetia}}

| bgcolor=black|File:Rosetta triumphs at asteroid Lutetia.jpg

| align=center | {{sort|100|{{small|120×100×80}}}}

| align=center | 1852

| Rosetta

| align=center | 2010

| align=right | {{nts|3,162}}

| align=center | 64.9

| flyby on 10 July 2010; largest asteroid visited by a spacecraft at the time

{{sort|000243|243 Ida}}

| bgcolor=black|File:243 ida crop.jpg

| align=center | {{sort|033.67|56×24×21}}

| align=center | 1884

| Galileo

| align=center | 1993

| align=right | {{nts|2,390}}

| align=center | 152

| flyby; discovered Dactyl; first asteroid with a moon visited by a spacecraft, largest asteroid visited by spacecraft at the time

{{sort|000253|253 Mathilde}}

| bgcolor=black|File:(253) mathilde crop.jpg

| align=center | {{sort|053.33|66×48×46}}

| align=center | 1885

| NEAR Shoemaker

| align=center | 1997

| align=right | {{nts|1,212}}

| align=center | 49.5

| flyby; largest asteroid visited by a spacecraft at the time

{{sort|000433|433 Eros}}

| bgcolor=black|File:Eros - PIA02923.jpg

| align=center | {{sort|019.67|13×13×33}}

| align=center | 1898

| NEAR Shoemaker

| align=center | 1998–2001

| align=right | {{nts|0}}

| align=center | 0

| 1998 flyby; 2000 orbited (first asteroid studied from orbit); 2001 landing; first asteroid landing, first asteroid orbited by a spacecraft, first near-Earth asteroid (NEA) visited by a spacecraft

{{sort|000951|951 Gaspra}}

| bgcolor=black|File:951 Gaspra.jpg

| align=center | {{sort|012.53|{{small|18.2×10.5×8.9}}}}

| align=center | 1916

| Galileo

| align=center | 1991

| align=right | {{nts|1,600}}

| align=center | 262

| flyby; first asteroid visited by a spacecraft

{{sort|002867|2867 Šteins}}

| bgcolor=black|Image:2867 Šteins by Rosetta (reprocessed).png

| align=center | {{sort|004.6|4.6}}

| align=center | 1969

| Rosetta

| align=center | 2008

| align=right | {{nts|800}}

| align=center | 302

| flyby; first asteroid visited by the ESA

{{sort|004179|4179 Toutatis}}

| bgcolor=black|

| align=center | {{sort|003.25|4.5×~2}}

| align=center | 1934

| Chang'e 2

| align=center | 2012

| align=right | {{nts|3.2}}

| align=center | 0.70

| flyby[http://www.planetary.org/multimedia/space-images/small-bodies/change-2-images-of-toutatis.html Chang'E 2 images of Toutatis – December 13, 2012 – The Planetary Society]; closest asteroid flyby, first asteroid visited by China

{{sort|005535|5535 Annefrank}}

| bgcolor=black|File:Asteroid 5535 Annefrank.jpg

| align=center | {{sort|004|4.0}}

| align=center | 1942

| Stardust

| align=center | 2002

| align=right | {{nts|3,079}}

| align=center | 1230

| flyby

{{sort|009969|9969 Braille}}

| bgcolor=black| File:PIA01345.jpg

| align=center | {{sort|001.4|2.2×0.6}}

| align=center | 1992

| Deep Space 1

| align=center | 1999

| align=right | {{nts|26}}

| align=center | 12.7

| flyby; followed by flyby of Comet Borrelly; failure, missed it during flyby

{{sort|025143|25143 Itokawa}}

| bgcolor=black|

| align=center | {{sort|0.333|{{small|0.5×0.3×0.2}}}}

| align=center | 1998

| Hayabusa

| align=center | 2005

| align=right | {{nts|0}}

| align=center | 0

| landed; returned dust samples to Earth; first asteroid with returned samples, smallest asteroid visited by a spacecraft, first asteroid visited by a non-NASA spacecraft

134340 Pluto

| bgcolor=black| File:PIA19702-Pluto-HeartFeature-NewHorizons-20150707.jpg

| align=center | {{sort|2344|2,344}}

| align=center | 1930

| New Horizons

| align=center | {{sort|2015.2|2015}}

| align=right | {{nts|12500|12,500}}

| align=center | 10.5

| flyby; first trans-Neptunian object visited

colspan=9 style="font-weight: normal; font-size: 0.85em; text-align: left; padding: 6px 4px;" |Notes:
a A minor planet's dimensions may be described by x, y, and z axes instead of an (average) diameter due to its non-spherical, irregular shape.
b Closest approach given in multiples of the minor planet's mean radius
{{·}} Default order of list: by the minor planet's designation, ascending.

List of comets visited by spacecraft

alternative layout for List of minor planets and comets visited by spacecraft, sectionList of comets visited by spacecraft

class="wikitable"
colspan=4 style="background:#D4E2FC;" | Commet

! colspan=5 style="background:#FFFF99;" | Space probe

rowspan=2 style="background:#edf3fe;" | Name

! rowspan=2 style="background:#edf3fe;" | Image

! rowspan=2 style="background:#edf3fe;" | Dimensions
in km(a)

! rowspan=2 style="background:#edf3fe;" width=70 | Discovery
year

! rowspan=2 style="background:#ffffcc;" | Name

! rowspan=2 style="background:#ffffcc;" width=65 | Visiting
year

! colspan=2 style="background:#ffffcc;"| Closest approach

! rowspan=2 style="background:#ffffcc;" | Remarks

width=65 style="background:#ffffcc;" | in km

! width=65 style="background:#ffffcc;" | in radii(b)

Giacobini–Zinner

| bgcolor=black | File:Comet 21P Giacobini-Zinner.jpg

| align=center | {{small|2}}

| align=center | 1900

| ICE

| align=center | 1985

| align=right | 7,800

| align=right | 7,800

| flyby

style="background-color: #f2f2f2;"

| rowspan=4| Halley

| rowspan=4 bgcolor=black|File:Lspn comet halley.jpg

| rowspan=4 align=center | {{small|15×9}}

| rowspan=4 align=center | {{small|Known
since
antiquity}}

| Vega 1

| align=center | 1986

| align=right | 8,889

| align=right | 1,620

| flyby

style="background-color: #f2f2f2;"

| Vega 2

| align=center | 1986

| align=right | 8,030

| align=right | 1,460

| flyby

style="background-color: #f2f2f2;"

| Suisei

| align=center | 1986

| align=right | 151,000

| align=right | 27,450

| distant flyby

style="background-color: #f2f2f2;"

| Giotto

| align=center | 1986

| align=right | 596

| align=right | 108

| flyby

Grigg–Skjellerup

| bgcolor=black | File:Grigg-Skjellerup Eso9209a.jpg

| align=center | {{small|2.6}}

| align=center | 1902

| Giotto

| align=center | 1992

| align=right | 200

| align=right | 154

| flyby

Borrelly

| bgcolor=black| File:Comet Borrelly Nucleus.jpg

| align=center | {{small|8×4×4}}

| align=center | 1904

| Deep Space 1

| align=center | 2001

| align=right | 2,171

| align=right | 814

| flyby; closest approach in September 2001 when probe entered the comet's coma{{cite web |url=http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=1998-061A |work=NASA |title=Deep Space 1 – NSSDC/COSPAR ID: 1998-061A |date=26 August 2014 |accessdate=July 2015}}

Wild 2

| bgcolor=black| File:Wild2 3.jpg

| align=center | {{small|5.5×4.0×3.3}}

| align=center | 1978

| Stardust

| align=center | 2004

| align=right | 240

| align=right | 113

| flyby; returned samples to Earth;
also see: sample return mission

style="background-color: #f2f2f2;"

| rowspan=2| Tempel 1

| rowspan=2 bgcolor=black| File:PIA02142 Tempel 1 bottom sharped.jpg

| rowspan=2 align=center| {{small|7.6×4.9}}

| rowspan=2 align=center | 1867

| Deep Impact

| align=center | 2005

| align=right | 0

| align=right | 0

| flyby; blasted a crater using an impactor

style="background-color: #f2f2f2;"

| Stardust

| align=center | 2011

| align=right | 181

| align=right | 57.9

| flyby; imaged the crater created by Deep Impact

Hartley 2

| bgcolor=black| File:Comet Hartley 2.jpg

| align=center | {{small|1.4}}

| align=center | 1986

| EPOXI
{{nowrap|{{small|(was Deep Impact)}}}}

| align=center | 2010

| align=right | 700

| align=right | 1,000

| flyby; smallest comet visited

rowspan=2| Churyumov–Gerasimenko

| rowspan=2 bgcolor=black| File:Comet 67P on 19 September 2014 NavCam mosaic.jpg

| rowspan=2 align=center | {{small|4.1×3.3×1.8}}

| rowspan=2 align=center | 1969

| Rosetta

| align=center | 2014

| align=right | 6

| align=right | 3.91
5.37

| in orbit as of 2015; OSIRIS captured image with 11 cm/px-resolution in Spring 2015{{cite web |url=http://www.space.com/28731-rosetta-comet-spacecraft-shadow-photo.html |title=Rosetta Spacecraft Sees Its Shadow on a Comet (Photo) |work=Space.com |date=5 March 2015 |quote=Rosetta flew just 3.7 miles (6 kilometers) from Comet 67P's surface, resulting in a resolution of 4.3 inches (11 centimeters) per pixel [for OSIRIS].}}

Philae
{{nowrap|{{small|(Rosetta's lander)}}}}

| align=center | 2014

| align=right | 0

| align=right | 0

| landed in November 2014

colspan=9 style="font-weight: normal; font-size: 0.85em; text-align: left; padding: 6px 4px;" |Notes:
(a)  Due to a non-spherical, irregular shape, a comet's x, y, and z axes instead of an (average) diameter are often used to describe its dimensions.
(b) Closest approach given in multiples of the comet's (average mean) radius
{{·}} List ordered in descending order of a comet's first visit

VLT

{{main|Very Large Telescope}}

== Primary mirrors ==

File:Recoating Yepun's mirror.jpg

The primary mirrors of the ESO 8-m class Very Large Telescopes are actively supported, thin Zerodur menisci, 8-.2-m diameter. The mirror blanks are produced by SCHOTT; the optical figuring, manufacturing and assembling of interfaces and auxiliary equipment are done by REOSC. Three mirror blanks have already been delivered by SCHOTT to REOSC. In November 1995 the project met a critical and very successful milestone, with the completion and testing of the first finished VLT primary mirror at REOSC. Specifications, manufacturing and above all testing methodology will be addressed, and the final results will be detailed. Optical performance at telescope level will be assessed as well.

The 8.2-m Zerodur primary mirrors (figure 1) of the ESO Very Large Telescope are 175 mm thick and their shape is actively controlled (active optics) by means of 150 axial force actuators,the necessary active corrections being obtained from wavefront sensors located off-axis on the image surface. The 23-tons mirror blanks (figure 2) are procured from SCHOTT Glaswerke and the optical figuring from REOSC (subsidiary of Groupe SFIM), together with the interfaces with the mirror cell and auxiliary equipment such as transport containers. REOSC responsibility starts at the delivery of the mirror blanks at SCHOTT premises and ends at the delivery of the finished mirrors ex works. Dedicated facilities were built by the two companies to execute their respective contracts.

Procurement of the mirror blanks started in 1988with the signature of the SCHOTT contract. The first mirror blank was delivered to REOSC in July 1993, the second in November 1994 and the third one in September 1995. The delivery of the last mirror blank is scheduled for September 1996.

The contract with REOSC for the optical figuring was formalized in 1989. Polishing of two mirrors has been completed;the first one was verified in October-November 1995 and the second is undergoing final tests at the time of redaction of this article.After active correction these two first mirrors are diffraction-limited at Ha wavelength.

The successful production of these mirrors represents a major breakthrough not only in terms of manufacturing processes but also in terms of metrology. Indeed the accurate and reliablemeasurement of a thin, flexible 50m2 optical surface represents a serious challenge.

After reviewing the specifications of the primary mirrors, manufacturing and testing plans will be presented andthe results obtained with three blanks and two finished mirrors will be detailed.

File:The SPHERE instrument attached to the VLT.jpg instrument attached to the VLT Unit Telescope 3.{{cite news|title=The Strange Case of the Missing Dwarf|url=http://www.eso.org/public/news/eso1506/|accessdate=27 February 2015|work=ESO Press Release|agency=European Southern Observatory}}]]

{{Clear}}

  • [https://www.eso.org/sci/facilities/paranal/telescopes/ut/m1unit.html The VLT primary mirrors]
  • [https://www.eso.org/sci/publications/messenger/archive/no.97-sep99/messenger-no97-4-8.pdf Performance of the VLT Mirror Coating Unit (PDF)]
  • [https://www.youtube.com/watch?v=v-zBzwgB53s YT-Recoating a Giant VLT Mirror (ESO cast)]]

{{Reflist}}

Combined map

{{multiple image

|direction = horizontal

|align= right

|width= 180

|image1=MapEuropeSmall WattPerCapita 2014.svg

|image2=MapEuropeSmall WattPerCapita 2015.svg

|footer=PV watts per capita in Europe for 2014 and 2015 (projection)

{{aligned table | cols=5

| style=width: 90%; text-align: left; font-size: 0.8em; margin-left: 10px;

| {{legend|#C5C5C5|border=1px solid #9E9E9E|<0.1, n/a}}

| {{legend|#E9C6AF|border=1px solid #D99C73|1–10}}

| {{legend|#D38D5F|border=1px solid #B46631|50–100}}

| {{legend|#A05A2C|border=1px solid #64381B|150–200}}

| {{legend|#502D16|border=1px solid #140C05|300–450}}

| {{legend|#F4E3D7|border=1px solid #E5B99A|0.1–1}}

| {{legend|#DEAA87|border=1px solid #CE7F4B|10–50}}

| {{legend|#C87137|border=1px solid #8C4F26|100–150}}

| {{legend|#784421|border=1px solid #3C2310|200–300}}

| {{legend|#28170B|border=1px solid #140C05|>450}}

}}

(also see animated map, 1992–2014)

}}

[[File:MapEuropeSmall WattPerCapita 2014.svg|thumb|left|Photovoltaic per-capita distribution in Europe (watts per inhabitant).

style="width: 100%; font-size: 0.8em;"
valign=top |

{{legend|#C5C5C5|border=1px solid #9E9E9E|<0.1, n/a}}

{{legend|#F4E3D7|border=1px solid #E5B99A|0.1–1}}

{{legend|#E9C6AF|border=1px solid #D99C73|1–10}}

{{legend|#DEAA87|border=1px solid #CE7F4B|10–50}}

| valign=top |

{{legend|#D38D5F|border=1px solid #B46631|50–100}}

{{legend|#C87137|border=1px solid #8C4F26|100–150}}

{{legend|#A05A2C|border=1px solid #64381B|150–200}}

{{legend|#784421|border=1px solid #3C2310|200–300}}

| valign=top |

{{legend|#502D16|border=1px solid #140C05|300–450}}

{{legend|#28170B|border=1px solid #140C05|>450}}

(see animated map, 1992–2014)

(see projection of 2015-version of map)

]]

{{clear}}

Planet lead-image

{{further|User:Rfassbind/sandbox/Leadimage compilations#Planet lead-image}}

Cheapest solar PPA's worldwide

{{Image frame

|width = 200

|align=left

|pos=bottom

|content=

Cheapest PPA in cts./kWh

{{ #invoke:Chart

| bar-chart

| width = 230

| height = 220

| stack = 1

| group 1 = 10.28 : 8.70 : 5.8: 7.67 : 5 : 6.91 : 6.49 : 6.13 : 5.98

| group 2 = 0 : 0 : 2.7 : 0 : 2.1 : 0 : 0 : 0 : 0

| colors = #ffcc00 : red

| group names = one : two

| hide group legends = 1

| units suffix = _¢.

| x legends = A : B: C: D : E : F : G : H : I

}}

|caption =Cheapest PPA in 2013 2014 (index, Year, country, price, Name/who)

  • A: Andhra Pradesh, India, FS
  • B: Brazil, company unknown
  • C: New Mexico, USA, FS
  • D: Jordan 7.67¢
  • E: Texas, USA, Recurrent Energy
  • F: Dubai, UAE, FRV & Saudi ALJE
  • G: Jordan 6.49¢
  • H: Jordan 6.13¢
  • I: Dubai, UAE, ACWA Power

{{legend2|#ffcc00|border=1px solid #CCA300|Price in cts./kWh}}
{{legend2|red|border=1px solid #CC0000|subsidies}}

Source: Cleantechniahttp://cleantechnica.com/2015/01/24/cheapest-solar-world-michael-liebreich-interview-series/http://www.webcitation.org/6YhQ1nMjw

}}

style="border:solid 1px #aaa;" cellpadding="0" cellspacing="0" class="floatright"

|+Share of renewable energies in gross final energy consumption in EU-28 countries in 2013 (in %).[http://ec.europa.eu/eurostat/documents/2995521/6734513/8-10032015-AP-EN.pdf/3a8c018d-3d9f-4f1d-95ad-832ed3a20a6b Share of renewable energy up to 15% of energy consumption in the EU28 in 2013]. Eurostat News Release, 11 March 2015.

ImageSize = width:420 height:500

PlotArea = left:150 bottom:75 top:10 right:30

AlignBars = justify

Period = from:0 till:60

TimeAxis = orientation:horizontal

Colors =

id:gray value:gray(0.5)

id:line1 value:gray(0.9)

id:line2 value:gray(0.7)

id:2013 value:rgb(0.42,0.72,0.23) legend:2013

id:2020 value:rgb(0.933,0.605,0.305) legend:Target_2020

ScaleMajor = start:0 increment:10 gridcolor:line2

ScaleMinor = start:0 increment:5 gridcolor:line1

BarData =

bar:Sweden text:Sweden

bar:Latvia text:Latvia

bar:Finland text:Finland

bar:Austria text:Austria

bar:Denmark text:Denmark

bar:Portugal text:Portugal

bar:Estonia text:Estonia

bar:Romania text:Romania

bar:Lithuania text:Lithuania

bar:Slovenia text:Slovenia

bar:Bulgaria text:Bulgaria

bar:Croatia text:Croatia

bar:Italy text:Italy

bar:Spain text:Spain

bar:Greece text:Greece

bar:France text:France

bar:Germany text:Germany

bar:Czech_Republic text:Czech Republic

bar:Poland text:Poland

bar:Slovakia text:Slovakia

bar:Hungary text:Hungary

bar:Cyprus text:Cyprus

bar:Belgium text:Belgium

bar:Ireland text:Ireland

bar:United_Kingdom text:United Kingdom

bar:Netherlands text:Netherlands

bar:Malta text:Malta

bar:Luxemburg text:Luxemburg

bar:European_Union text:European Union

Define $A10 = width:12 fontsize:S shift:(-100,-5) align:right anchor:from textcolor:green # Normal bar, green text

Define $A20 = width:12 fontsize:S shift:(5,-5) align:left anchor:till # Normal bar, black text

PlotData =

  1. ************** Sweden ***************

bar:Sweden color:2020 $A20 from:start till:49 text:49%

bar:Sweden color:2013 $A10 from:start till:52.1 text:52.1%

  1. ************** Latvia ***************

bar:Latvia color:2020 $A20 from:start till:40 text:40%

bar:Latvia color:2013 $A10 from:start till:37.1 text:37.1%

  1. ************** Finland **************

bar:Finland color:2020 $A20 from:start till:38 text:38%

bar:Finland color:2013 $A10 from:start till:36.8 text:36.8%

  1. ************** Austria **************

bar:Austria color:2020 $A20 from:start till:34 text:34%

bar:Austria color:2013 $A10 from:start till:32.6 text:32.6%

  1. ************** Denmark **************

bar:Denmark color:2020 $A20 from:start till:30 text:30%

bar:Denmark color:2013 $A10 from:start till:27.2 text:27.2%

  1. ************** Portugal *************

bar:Portugal color:2020 $A20 from:start till:31 text:31%

bar:Portugal color:2013 $A10 from:start till:25.7 text:25.7%

  1. ************** Estonia **************

bar:Estonia color:2020 $A20 from:start till:25 text:25%

bar:Estonia color:2013 $A10 from:start till:25.6 text:25.6%

  1. ************** Romania **************

bar:Romania color:2020 $A20 from:start till:24 text:24%

bar:Romania color:2013 $A10 from:start till:23.9 text:23.9%

  1. ************** Lithuania ************

bar:Lithuania color:2020 $A20 from:start till:23 text:23%

bar:Lithuania color:2013 $A10 from:start till:23 text:23%

  1. ************** Slovenia *************

bar:Slovenia color:2020 $A20 from:start till:25 text:25%

bar:Slovenia color:2013 $A10 from:start till:21.5 text:21.5%

  1. ************** Bulgaria *************

bar:Bulgaria color:2020 $A20 from:start till:16 text:16%

bar:Bulgaria color:2013 $A10 from:start till:19 text:19%

  1. ************** Croatia **************

bar:Croatia color:2020 $A20 from:start till:20 text:20%

bar:Croatia color:2013 $A10 from:start till:18 text:18%

  1. ************** Italy ****************

bar:Italy color:2020 $A20 from:start till:17 text:17%

bar:Italy color:2013 $A10 from:start till:16.7 text:16.7%

  1. ************** Spain ****************

bar:Spain color:2020 $A20 from:start till:20 text:20%

bar:Spain color:2013 $A10 from:start till:15.4 text:15.4%

  1. ************** Greece ***************

bar:Greece color:2020 $A20 from:start till:18 text:18%

bar:Greece color:2013 $A10 from:start till:15 text:15%

  1. ************** France ***************

bar:France color:2020 $A20 from:start till:23 text:23%

bar:France color:2013 $A10 from:start till:14.2 text:14.2%

  1. ************** Germany **************

bar:Germany color:2020 $A20 from:start till:18 text:18%

bar:Germany color:2013 $A10 from:start till:12.4 text:12.4%

  1. ************** Czech Republic *******

bar:Czech_Republic color:2020 $A20 from:start till:13 text:13%

bar:Czech_Republic color:2013 $A10 from:start till:12.4 text:12.4%

  1. ************** Poland ***************

bar:Poland color:2020 $A20 from:start till:15 text:15%

bar:Poland color:2013 $A10 from:start till:11.3 text:11.3%

  1. ************** Slovakia *************

bar:Slovakia color:2020 $A20 from:start till:14 text:14%

bar:Slovakia color:2013 $A10 from:start till:9.8 text:9.8%

  1. ************** Hungary **************

bar:Hungary color:2020 $A20 from:start till:13 text:13%

bar:Hungary color:2013 $A10 from:start till:9.8 text:9.8%

  1. ************** Cyprus ***************

bar:Cyprus color:2020 $A20 from:start till:13 text:13%

bar:Cyprus color:2013 $A10 from:start till:8.1 text:8.1%

  1. ************** Belgium **************

bar:Belgium color:2020 $A20 from:start till:13 text:13%

bar:Belgium color:2013 $A10 from:start till:7.9 text:7.9%

  1. ************** Ireland **************

bar:Ireland color:2020 $A20 from:start till:16 text:16%

bar:Ireland color:2013 $A10 from:start till:7.8 text:7.8%

  1. ************** United Kingdom *******

bar:United_Kingdom color:2020 $A20 from:start till:15 text:15%

bar:United_Kingdom color:2013 $A10 from:start till:5.1 text:5.1%

  1. ************** Netherlands **********

bar:Netherlands color:2020 $A20 from:start till:14 text:14%

bar:Netherlands color:2013 $A10 from:start till:4.5 text:4.5%

  1. ************** Malta ****************

bar:Malta color:2020 $A20 from:start till:10 text:10%

bar:Malta color:2013 $A10 from:start till:3.8 text:3.8%

  1. ************** Luxemburg ************

bar:Luxemburg color:2020 $A20 from:start till:11 text:11%

bar:Luxemburg color:2013 $A10 from:start till:3.6 text:3.6%

  1. ************** European Union *******

bar:European_Union color:2020 $A20 from:start till:20 text:20%

bar:European_Union color:2013 $A10 from:start till:15 text:15%

Legend = position:bottom orientation:vertical columns:1 top:50

{{-}}

Summary Forecast 2015

class="wikitable floatleft" style="text-align: center; font-size: 0.9em; margin-right: 12px;"

|+Summary 2015-projections

Forecast byPV installations
align=left | IEA138 GW
align=left | SPE51 GW
align=left | DB54 GW
align=left | MC55 GW
align=left | BNEF55 GW
align=left | IHS57 GW
Average || 54.2 GW
colspan=2 style="font-weight: normal; font-size: 0.85em; text-align: left; padding: 6px 2px;" | 1 excluding outdated IEA basecase

{{Clear}}

IEA annual installation forecast

class="wikitable" style="text-align: center;"

|+ IEA – projected annual PV installations

width=70 | Year2013-Editiondiff2014-Edition
201330 GW{{font color|green|+9}}39 GW
201430 GW{{font color|green|+9}}39 GW
201533 GW{{font color|green|+5}}38 GW
201636 GW{{font color|green|+3}}39 GW
201738 GW{{font color|red
2}}36 GW
201840 GW{{font color|red
3}}37 GW
2019{{small|n.a.}}{{small|n.a.}}38 GW
2020{{small|n.a.}}{{small|n.a.}}39 GW
colspan=4 style="font-size: 0.85em; text-align: left; padding: 6px 2px;" | Sources and desc

{{Clear}}

EPIA 2015 forecast

{{Image frame

|width = 300

|align=right

|pos=bottom

|content=

Projected Global Growth (MW)

{{ #invoke:Chart

| bar-chart

| width = 330

| height = 220

| stack = 1

| group 1 = 23185 : 40336 : 70469 : 100504 : 138856 : 178391 : 0 :0 :0 : 0 : 0

| group 2 = 0 : 0 : 0 : 0 : 0 : 0 : 232000 :0 :0 : 0 : 0

| group 3 = 0 : 0 : 0 : 0 : 0 : 0 : 0 : 261929 : 304251 : 348783 : 396068

| group 4 = 0 : 0 : 0 : 0 : 0 : 0 : 0 : 41438 : 70831 : 104533 : 143742

| colors = #ffcc00 : red : #29B8FF : #7FFF66

| group names = Historical : Projection 2015 : Low Estimate : Additional capacity for high scenario

| hide group legends = 1

| units suffix = _MW

| x legends = 2009 : : 2011 : : 2013 : : 2015 : : 2017 : : 2019

}}

|caption =Projected global cumulative capacity in MW

{{legend2|#ffcc00|border=1px solid #CCA300|historical cumulative capacity}}
{{legend2|red|border=1px solid #CC0000|consensus projections for 2015}}
{{legend2|#29B8FF|border=1px solid #0092DB|low scenario reaches 396 GW by 2019}}
{{legend2|#7FFF66|border=1px solid #40FF1A|high scenario reaches 540 GW by 2019 (add'l)}}

Source: SPE (EPIA), Global Market Outlook 2015–2019,{{rp|14}} amended with 2015-consensus projection of 232 GW.Consensus projection for 2015 is an overall average of estimates from IEA, SPE (EPIA), IHS, MC, Deutsche Bank, and BNEF

}}

{{Clear}}

Solar energy table

Based on [https://en.wikipedia.org/w/index.php?title=Solar_energy&diff=prev&oldid=666306810 this version, as June, 10] in article Solar energy

class="wikitable" style="text-align: center; font-size: 0.9em;"
+Annual Solar Energy Potential (Exajoules)

! Region !! North America !! Latin America and Caribbean !! Western Europe !! Central and Eastern Europe !! Former Soviet Union !! Middle East and North Africa !! Sub-Saharan Africa !! Pacific Asia !! South Asia !! Centrally planned Asia !! Pacific OECD

align=left | Minimum181.1112.625.14.5199.3412.4371.941.038.8115.572.6
align=left | Maximum7,4103,3859141548,65511,0609,5289941,3394,1352,263
colspan=12 style="font-weight: normal; text-align: left; padding: 6px 4px; font-size: 92%;" |Note:

  • Total global annual solar energy potential amounts to 1,575 EJ (minimum) to 49,837 EJ (maximum)
  • Data reflects assumptions of annual clear sky irradiance, annual average sky clearance, and available land area. All figures given in Exajoules.

Quantitative relation of global solar potential vs. primary energy consumption:

  • Ratio of potential vs. current consumption (402 EJ) as of year: 3.9 (minimum) to 124 (maximum)
  • Ratio of potential vs. projected consumption by 2050 (590–1,050 EJ): 1.5–2.7 (minimum) to 47–84 (maximum)
  • Ratio of potential vs. projected consumption by 2100 (880–1,900 EJ): 0.8–1.8 (minimum) to 26–57 (maximum)

Source: According to United Nations Development Programme World Energy Assessment (2000)

class="wikitable floatright" style="font-size: .75em; width: 250px;"
+Annual Solar Energy Potential (Exajoules)

! Region

! Minimum

! Maximum

North America

| 181.1

| 7410

Latin America and Caribbean

| 112.6

| 3385

Western Europe

| 25.1

| 914

Central and Eastern Europe

| 4.5

| 154

Former Soviet Union

| 199.3

| 8655

Middle East and North Africa

| 412.4

| 11060

Sub-Saharan Africa

| 371.9

| 9,528

Pacific Asia

| 41.0

| 994

South Asia

| 38.8

| 1339

Centrally planned Asia

| 115.5

| 4135

Pacific OECD

| 72.6

| 2263

Total

| 1575.0

| 49,837

Ratio to current primary energy consumption (402 exajoules)

| 3.9

| 124

Ratio to projected primary energy consumption in 2050 (590 - 1,050 exajoules)

| 2.7-1.5

| 84-47

Ratio to the projected primary energy consumption in 2100 (880-1900 exajoules)

| 1.8-0.8

| 57-26

colspan=5 style="font-size: 0.85em; font-weight: normal; text-align: left; padding: 6px 2px 4px 4px;" | Data reflects assumptions of annual clear sky irradiance, annual average sky clearance, and available land area.
All figures given in Exajoules
According to United Nations Development Programme World Energy Assessment (2000)

{{Clear}}

Hydroelectricity producers

[http://www.iea.org/publications/freepublications/publication/KeyWorld2014.pdf IEA- Key World Energy Statistics 2014, p.19

Remarks: % of Country hydro (top-ten in total producers) domestic electricity generation. Note: only top ten producers are considered for %-generation of domestic electricity. IEA could have (should have) merged the two data sets into one table (it's rather misleading otherwise without explicit note. Paraguay, Costa Rica, Austria and Switzerland would definitely rank in the %-chart).

{{anchor|Top 10 ranking of worldwide photovoltaic installation}}

style="max-width: 600px; margin: 1px auto;"

|+ Top 10 PV-Countries of Year 2014 in (MW)

style="background-color: none;"

| align=center |

{| class="wikitable" style="width: 240px; margin: 5px 0 0 15px;"

! colspan=3 | Produced Electricity (TWh)

align=center | 1.{{flagicon|CHN}} Chinaalign=right | 872
align=center | 2.{{flagicon|BRA}} Chinaalign=right | 415
align=center | 3.{{flagicon|CAN}} Canadaalign=right | 381
align=center | 4.{{flagicon|USA}} United Statesalign=right | 298
align=center | 5.{{flagicon|RUS}} Russiaalign=right | 167
align=center | 6.{{flagicon|NOR}} Norwayalign=right | 143
align=center | 7.{{flagicon|IND}} Indiaalign=right | 126
align=center | 8.{{flagicon|JPN}} Japanalign=right | 84
align=center | 9.{{flagicon|VEN}} Venezuelaalign=right | 82
align=center | 10.{{flagicon|SWE}} Swedenalign=right | 79
  || style="text-align: left;" | Worldwide || align=right | 3,756

| style="width: 1px;" |

| align=center|

class="wikitable" style="width: 240px; margin: 5px 0 0 15px;"

! colspan=3 | % of domestic generation

align=center| 1.{{flagicon|NOR}} Norwayalign=right | 96.7
align=center| 2.{{flagicon|BRA}} Brazilalign=right | 75.2
align=center| 3.{{flagicon|VEN}} Venezuelaalign=right | 64.8
align=center| 4.{{flagicon|CAN}} Canadaalign=right | 60.0
align=center| 5.{{flagicon|SWE}} Swedenalign=right | 47.5
align=center| 6.{{flagicon|CHN}} Chinaalign=right | 17.5
align=center| 7.{{flagicon|RUS}} Russiaalign=right | 16.5
align=center| 8.{{flagicon|IND}} Indiaalign=right | 11.2
align=center| 9.{{flagicon|JPN}} Japanalign=right | 8.1
align=center| 10.{{flagicon|USA}} United Statesalign=right | 7.0
  || style="text-align: left;" | Worldwide || align=right | 16.5

|-

| colspan=3 style="font-size: 85%; padding: 5px 0 0 20px;"|

Data: IEA - Key World Energy Statistics 2014, p.19 report, March 2014{{rp|19}}

|}

History of German feed-in tariffs

{{Image frame

|width = 300

|align=right

|pos=bottom

|content=

Feed-in tariff for rooftop Solar PV

{{ #invoke:Chart

|bar-chart

| width = 330

| height = 250

|group 1 = 50.6 : 48.1 : 45.7 : 57.4 : 54.5 : 51.8 : 49.2 : 46.75 : 43.01 : 39.14 : 28.74 : 24.43 : 17.02 : 13.68 : 12.56

|colors = #0081CC

|group names =

|units suffix = _cents

|x legends = 2001 : : : : 2005 : : : : : 2010 : : : : : 2015

}}

|caption = Development of feed-in tariff for small rooftop PV systems small than 10 kilowatt-peak capacity since 2001 in Euro-cents per kilowatt-hour{{cite web |publisher=IEA-PVPS |url=http://www.iea-pvps.org/index.php?id=6 |title=Annual Report 2014 |pages=49,78 |date=21 May 2015}}

}}

{{-}}

DEVELOPMENT OF THE FEED-IN TARIFF (FIT) FOR SMALL ROOFTOP SYSTEMS (< 10KW){{cite web |publisher=IEA-PVPS |url=http://www.iea-pvps.org/index.php?id=6 |title=Annual Report 2014 |pages=49,78 |date=21 May 2015}}

{{ #invoke:Chart

|bar-chart

|width = 550

|height = 350

|group 1 = 50.6 : 48.1 : 45.7 : 57.4 : 54.5 : 51.8 : 49.2 : 46.75 : 43.01 : 39.14 : 28.74 : 24.43 : 17.02 : 13.68 : 12.56

|colors = #D60088

|group names =

|units suffix = _cents

|x legends = : 2002 : : : : 2006 : : : : 2010 : : : : 2014 :

}}

[[Renewable energy in Germany]]

Renewables as a percentage of primary energy consumption

{{ #invoke:Chart

|bar-chart

|width = 550

|height = 350

|group 1 = 1.3 : 1.3 : 1.4 : 1.6 : 1.8 : 1.9 : 1.8 : 2.4 : 2.6 : 2.8 : 2.9 : 2.9 : 3.2 : 3.8 : 4.5 : 5.3 : 6.3 : 7.9 : 8.0 : 8.9 : 9.9 : 10.8 : 10.3 : 10.4 : 11.1

|colors = #009a39

|group names =

|units suffix = _%

|x legends = 1990 : : : : 1994 : : : : 1998 : : : : 2002 : : : : 2006 : : : : 2010 : : : : 2014

}}

class="wikitable" style="text-align: right; font-size: 1.0em; width: 100%;"
Year1990199119921993199419951996199719981999
%-share1.3%1.3%1.4%1.6%1.8%1.9%1.8%2.4%2.6%2.8%
colspan=11 style="vertical-height: 5px; background-color:#d9d9d9;" |
Year2000200120022003200420052006200720082009
%-share2.92.93.23.84.55.36.37.98.08.9
colspan=11 style="vertical-height: 5px; background-color:#d9d9d9;" |
Year2010201120122013201420152016201720182019
%-share9.910.810.310.411.1

{{clear}}

Timeline

class="wikitable collapsible uncollapsed" style="font-size: 0.9em;"
colspan="4" | Timeline of the New Horizons mission
style="width:140px;"|Date

! Event

! Description

! References

June 8, 2001

| New Horizons selected by NASA.

| After a three-month concept study before submission of the proposal, two design teams were competing: POSSE (Pluto and Outer Solar System Explorer) and New Horizons.

|

June 13, 2005

| Spacecraft departed Applied Physics Laboratory for final testing.

| Spacecraft undergoes final testing at Goddard Space Flight Center (GSFC).

| [http://www.jhuapl.edu/newscenter/pressreleases/2005/050926.asp New Horizons at the Cape] The Johns Hopkins Applied Physics Laboratory September 26, 2005

September 24, 2005

| Spacecraft shipped to Cape Canaveral

| It was moved through Andrews Air Force Base aboard a C-17 Globemaster III cargo aircraft.

|

December 17, 2005

| Spacecraft ready for in rocket positioning

| Transported from Hazardous Servicing Facility to Vertical Integration Facility at Space Launch Complex 41.

| {{citation needed|date=March 2011}}

January 11, 2006

| Primary launch window opened

| The launch was delayed for further testing.

| {{citation needed|date=March 2011}}

January 16, 2006

| Rocket moved onto launch pad

| Atlas V launcher, serial number AV-010, rolled out onto pad.

| {{citation needed|date=March 2011}}

January 17, 2006

| Launch delayed

| First day launch attempts scrubbed because of unacceptable weather conditions (high winds).

|

January 18, 2006

| Launch delayed again

| Second launch attempt scrubbed because of morning power outage at the Applied Physics Laboratory.

| {{citation needed|date=March 2011}}

January 19, 2006

| Successful launch at 14:00 EST (19:00 UTC)

| The spacecraft was successfully launched after brief delay due to cloud cover.

|

April 7, 2006

| Passes Mars

| The probe passed Mars: 1.7 AU from Earth.

| {{cite web|url=http://www.wolframalpha.com/input/?i=mars+7+april+2006|title=Distance between Mars and Earth on April 7, 2006}}

June 13, 2006

| Flyby of asteroid 132524 APL

| The probe passed closest to the asteroid 132524 APL in the Belt at about 101,867 km at 04:05 UTC. Pictures were taken.

| {{cite journal | title = The New Horizons Distant Flyby of Asteroid 2002 JF56 | journal = Bulletin of the American Astronomical Society | first1 = Catherine B. | last1 = Olkin | volume = 38 | page = 597| id = | bibcode = 2006DPS....38.5922O | display-authors = 4 | last2 = Reuter | last3 = Lunsford | last4 = Binzel | last5 = Stern | date = 2006}}

November 28, 2006

| First image of Pluto

| The image of Pluto was taken from a great distance.

|

January 10, 2007

| Navigation exercise near Jupiter

| Long-distance observations of Jupiter's outer moon Callirrhoe as a navigation exercise.

| {{cite web | url=http://www.planetary.org/blogs/emily-lakdawalla/2007/jupiter_timeline.html | title=New Horizons Jupiter Encounter Timeline | publisher=The Planetary Society | accessdate=October 24, 2014}}

February 28, 2007

| Jupiter flyby

| Closest approach occurred at 05:43:40 UTC at 2.305 million km, 21.219 km/s.

| {{cite web|url=http://www.pluto.jhuapl.edu/mission/mission_timeline.php |title=Mission Timeline |publisher=Johns Hopkins APL |archive-url=https://web.archive.org/web/20080723174449/http://www.pluto.jhuapl.edu/mission/mission_timeline.php |accessdate=August 1, 2012|archive-date=2008-07-23 }}

June 8, 2008

| Passing of Saturn's orbit

| The probe passed Saturn's orbit: 9.5 AU from Earth.

| {{cite web|url=http://www.wolframalpha.com/input/?i=saturn+on+8+june+2008|title = Distance between Saturn and Earth on June 8, 2008 | accessdate =March 2011}}

December 29, 2009

| The probe became closer to Pluto than to Earth

| Pluto was then 32.7 AU from Earth, and the probe was 16.4 AU from Earth

|{{cite web | last = Villard | first = R. | title = New Horizons Crosses Halfway Point to Pluto | publisher = Discovery Communications, LLC. | date = December 29, 2009 | url = http://news.discovery.com/space/new-horizons-crosses-halfway-point-to-pluto.html | accessdate =January 12, 2011| archiveurl = http://www.webcitation.org/5x3s1UlIF | archivedate = March 9, 2011| url-status=live}}{{cite web|url=http://www.wolframalpha.com/input/?i=pluto+29+december+2009|title=Distance between Pluto and Earth on December 29, 2009|accessdate =March 2011}}{{cite web|url=http://www.wolframalpha.com/input/?i=new+horizons+probe+29+december+2009|title=New Horizon properties on December 29, 2009|accessdate =March 2011}}

February 25, 2010

| Half mission distance reached

| Half the travel distance of {{convert|1480000000|mi|order=flip|sp=us}} was completed.

| {{cite web | url=http://www.space.com/7979-spacecraft-hits-midpoint-flight-pluto.html | title=Spacecraft Hits Midpoint on Flight to Pluto | publisher=Space.com | date=February 26, 2010 | accessdate=August 11, 2011}}

March 18, 2011

| The probe passed Uranus's orbit

| This is the fourth planetary orbit the spacecraft crossed since its start. New Horizons reached Uranus's orbit at 22:00 GMT.

| {{cite web | title = Space Spin – New Horizons ventures beyond Saturn's orbit | date = June 9, 2008 | url = http://spacespin.org/article.php/80636-new-horizons-beyond-saturn-orbit | accessdate =March 14, 2011}}{{cite web|url = http://www.space.com/11171-nasa-spacecraft-passes-uranus-orbit.html | title = NASA Pluto Probe Passes Orbit of Uranus| date = March 18, 2011| accessdate =March 19, 2011| publisher = SPACE.com | author = SPACE.com Staff}}

December 2, 2011

| New Horizons drew closer to Pluto than any other spacecraft has ever been.

| Previously, Voyager 1 held the record for the closest approach. (~10.58 AU)

| {{cite web|url=https://twitter.com/#!/NewHorizons2015/status/142249340247879681|title=Twitter.com – NewHorizons2015}}

February 11, 2012

| New Horizons was 10 AU from Pluto.

| Happened at around 4:55 UTC.

| {{cite web | url=http://pluto.jhuapl.edu/news_center/news/20120210.php | title=New Horizons on Approach: 22 AU Down, Just 10 to Go | publisher=JHU/APL | date=February 10, 2012 | accessdate=March 22, 2012}}

July 1, 2013

| New Horizons captures its first image of Charon

| Charon is clearly separated from Pluto using the Long Range Reconnaissance Imager (LORRI).

|

{{cite news

|url=http://www.slate.com/blogs/bad_astronomy/2013/07/11/new_horizons_pluto_s_moon_charon_now_visible.html

|title=New Horizons Gets a First Glimpse of Pluto's Moon Charon

|first=Phil

|last=Plait

|date=July 11, 2013

|work=Slate

}}

{{cite web

|url=http://pluto.jhuapl.edu/news_center/news/20130710.php

|title=Charon Revealed! New Horizons Camera Spots Pluto's Largest Moon

|date=July 10, 2013

|website=New Horizons; Headlines

|publisher=The Johns Hopkins University Applied Physics Laboratory

}}

October 25, 2013

| New Horizons was 5 AU from Pluto.

|

|

{{cite web

|url=http://pluto.jhuapl.edu/news_center/news/20131025.php

|title=On the Path to Pluto, 5 AU and Closing

|date=October 25, 2013

|website=New Horizons; Headlines

|publisher=The Johns Hopkins University Applied Physics Laboratory

}}

July 20, 2014

| Photos of Pluto and Charon

| Images obtained showing both bodies orbiting each other, distance 2.8 AU.

| {{cite web|url=http://pluto.jhuapl.edu/news_center/news/20140807.php|title=New Horizons Spies Charon Orbiting Pluto|publisher=Johns Hopkins APL}}

August 25, 2014

| The probe passed Neptune's orbit

| This was the fifth planetary orbit crossed.

| {{cite web|url=http://pluto.jhuapl.edu/mission/passingplanets/passingPlanets_current.php |title=Passing the Planets|publisher=Johns Hopkins APL |date=March 18, 2011 |accessdate=April 3, 2012}}

December 7, 2014

| New Horizons awoke from hibernation.

| NASA's Deep Sky Network station at Tidbinbilla, Australia received a signal confirming that it successfully awoke from hibernation.

| {{cite journal |last1=Nally |first1=Jonathan |title=Ready for a Close Encounter |journal=Australian Sky & Telescope |issue=83 |page=14 |issn=1832-0457}}

Jan 2015

| Observation of Kuiper belt object VNH0004

| Distant observations from a distance of roughly 75 million km (~0.5 AU)

| {{cite web |author=NewHorizons2015 |title=About the Jan 21o5 KBO, It's VNH0004|url=https://twitter.com/NewHorizons2015/status/237925999982034944 |accessdate=August 21, 2012}}
• {{cite web |last=Buie |first=Marc W. |title=Orbit Fit and Astrometric record for VNH0004|work=User pages |url=http://www.boulder.swri.edu/~buie/kbo/astrom/VNH0004.html |publisher=Southwest Research Institute Planetary Science Directorate |accessdate=August 21, 2012}}

January 15, 2015

| New Horizons is now close enough to Pluto and begins observing the system

|

| {{cite web|url=http://discoverynewfrontiers.nasa.gov/news/index.cfml?ID=33 |title=New Frontier News |date=December 6, 2014 |accessdate=January 8, 2015}}

March 10–11, 2015

|New Horizons was 1 AU from Pluto.

|

|http://pluto.jhuapl.edu/News-Center/News-Article.php?page=20150310

March 20, 2015

| NASA invited general public to suggest names to surface features that will be discovered on Pluto and Charon

|

| http://www.ourpluto.org/

May 15, 2015

| Better than Hubble

| Images exceed best Hubble Space Telescope resolution.

| http://www.seeplutonow.com/

July 14, 2015

| Flyby of Pluto, Charon, Hydra, Nix, Kerberos and Styx

| Flyby of Pluto around 11:47 UTC at 13,695 km, 13.78 km/s. Pluto is 32.9 AU from Sun. Flyby of Charon around 12:01 UTC at 29,473 km, 13.87 km/s.

|

2016–20

| Possible flyby of one or more Kuiper belt objects (KBOs)

| The probe will perform flybys of other KBOs, if any are in the spacecraft's trajectory.

| {{cite web|url=http://pluto.jhuapl.edu/overview/whyGo.php|title=Why Go to Pluto?|publisher=Johns Hopkins APL|accessdate=July 14, 2011}}

January 2019

| Possible flyby of 1110113Y

| 1110113Y is currently the most possible known target in the Kuiper belt.

|

2026

| Expected end of the mission

|

| {{cite web|last=NASA|title=New Horizons|url=http://sse.jpl.nasa.gov/missions/profile.cfm?Sort=Chron&Target=Jupiter&MCode=PKB&StartYear=2020&EndYear=2029&Display=Dates|work=NASA Solar System Exploration|publisher=National Aeronautics and Space Administration|accessdate=February 21, 2012|date=July 20, 2011}}

2038

| New Horizons will be 100 AU from the Sun.

| If still functioning, the probe will explore the outer heliosphere.

|{{cite web |url=http://pluto.jhuapl.edu/news_center/news/081706.php |title=New Horizons Salutes Voyager |date=August 17, 2006 |publisher=Johns Hopkins APL |accessdate=November 3, 2009| archiveurl = http://www.webcitation.org/5x3s4O3KH | archivedate = March 9, 2011| url-status=live}}

PV Barometer Table for 2014

class="wikitable sortable" style="width: 95%; text-align: right; font-size: 0.9em;"

! colspan=10 style="font-size: 1.1em; padding: 5px 5px 5px 120px; text-align: left;" | Photovoltaic Barometer Report - PV Capacity in the European Union in 2014{{rp|7–10}}

rowspan=2 data-sort-type="text" | Country

! colspan=3 style="background: #cae1ff;" | Added 2014 (MW)

! colspan=4 style="background: #ffdead;" | Total 2014 (MW)

! colspan=2 style="background: #b2e5cd;" | Generation 2014

style="background-color: #cae1ff;" data-sort-type="number" | off-
grid

! style="background-color: #cae1ff;" | on-
grid

! style="background-color: #cae1ff;" | Capacity

! style="background-color: #ffdead;" | off-
grid

! style="background-color: #ffdead;" | on-
grid

! style="background-color: #ffdead;" | Capacity

! style="background-color: #ffdead;" | Watt per
capita

! style="background-color: #b2e5cd;" | in
GWh

! style="background-color: #b2e5cd;" | in
%

align=left | {{flagicon|AUT}} Austria

| –

140.0140.0

| 4.5

766.0770.590.6

| 766.0

align=left |{{flagicon|BEL}} Belgium

| –

65.265.2

| 0.1

3,105.23,105.3277.2

| 2,768.0

align=left | {{flagicon|BUL}} Bulgaria

| –

1.31.3

| 0.7

1,019.71,020.4140.8

| 1,244.5

align=left | {{flagicon|CRO}} Croatia

| 0.2

14.014.2

| 0.7

33.534.28.1

| 35.3

align=left | {{flagicon|Cyprus}} Cyprus

| 0.2

29.730.0

| 1.1

63.664.875.5

| 104.0

align=left | {{flagicon|Czech Republic}} Czech Republic

| –

| 0.4

2,060.62,061.0196.1

| 2,121.7

align=left | {{flagicon|DEN}} Denmark

| 0.1

29.029.1

| 1.5

600.0601.5106.9

| 557.0

align=left | {{flagicon|EST}} Estonia

| –

| 0.1

0.20.1

| 0.6

align=left | {{flagicon|FIN}} Finland

| –

| 10.0

0.210.21.9

| 5.9

align=left | {{flagicon|FRA}} France

| 0.1

974.9975.0

| 10.8

5,589.04,697.687.6

| 5,500.0

align=left | {{flagicon|GER}} Germany

| –

1,899.01,899.0

| 65.0

38,236.038,301.0474.1

| 34,930.0

align=left | {{flagicon|GRE}} Greece

| –

16.916.9

| 7.0

2,595.82,602.8236.8

| 3,856.0

align=left | {{flagicon|HUN}} Hungary

| 0.1

3.13.2

| 0.7

37.538.23.9

| 26.8

align=left | {{flagicon|Ireland|shortname alias}} Ireland

| 0.0

0.00.1

| 0.9

0.21.10.2

| 0.7

align=left | {{flagicon|ITA}} Italy

| 1.0

384.0385.0

| 13.0

18,437.018,450.0303.5

| 23,299.0

align=left | {{flagicon|Latvia}} Latvia

| –

| –

1.51.50.8

| 0.0

align=left | {{flagicon|Lithuania}} Lithuania

| –

| 0.1

68.068.123.1

| 73.0

align=left | {{flagicon|LUX}} Luxembourg

| –

15.015.0

| –

110.0110.0200.1

| 120.0

align=left | {{flagicon|Malta}} Malta

| –

26.026.0

| –

54.254.2127.5

| 57.8

align=left | {{flagicon|NLD}} Netherlands

| –

361.0361.0

| 5.0

1,095.01,100.065.4

| 800.0

align=left | {{flagicon|POL}} Poland

| 0.5

19.720.2

| 2.9

21.524.40.6

| 19.2

align=left | {{flagicon|Portugal}} Portugal

| 1.2

115.0116.2

| 5.0

414.0419.040.2

| 631.0

align=left | {{flagicon|ROM}} Romania

| –

270.5270.5

| –

1,292.61,292.664.8

| 1,355.2

align=left | {{flagicon|Slovakia}} Slovakia

| –

2.02.0

| 0.1

590.0590.1109.0

| 590.0

align=left | {{flagicon|Slovenia}} Slovenia

| –

7.77.7

| 0.1

255.9256.0124.2

| 244.6

align=left | {{flagicon|ESP}} Spain

| 0.3

21.021.3

| 25.5

4,761.84,787.3102.7

| 8,211.0

align=left | {{flagicon|SWE}} Sweden

| 1.1

35.136.2

| 9.5

69.979.48.2

| 71.5

align=left | {{flagicon|UK}} United Kingdom

| –

2,448.02,448.0

| 2.3

5,228.05,230.381.3

| 3,931.0

style="text-align: left;" | {{flagicon|European Union}} European Union

! style="text-align: right;" | 4.9

! style="text-align: right;" |6,878.4

! style="text-align: right;" | 6,883.3

! style="text-align: right;" | 167.1

! style="text-align: right;" | 86,506.8

! style="text-align: right;" | 86,673.9

! style="text-align: right;" | 171.5

! style="text-align: right;" | 91,319.7

! style="text-align: right;" | –

rowspan=2 | Country

! style="background-color: #cae1ff;" | off-
grid

! style="background-color: #cae1ff;" | on-
grid

! style="background-color: #cae1ff;" | Capacity

! style="background-color: #ffdead;" | off-
grid

! style="background-color: #ffdead;" | on-
grid

! style="background-color: #ffdead;" | Capacity

! style="background-color: #ffdead;" | Watt per
capita

! style="background-color: #b2e5cd;" | in
GWh

! style="background-color: #b2e5cd;" | in
%

colspan=3 style="background: #cae1ff;" | Added 2014 (MW)

! colspan=4 style="background: #ffdead;" | Total 2014 (MW)

! colspan=2 style="background: #b2e5cd;" | Generation 2014

Pie chart

{{Pie chart

| thumb = right

| caption =Worldwide solar PV capacity. Total of 177 GW in 2014.

| other =

| label1 =China & Taiwan

| value1 =16.37

| color1 =#de2821

| label2 =Japan

| value2 =13.16

| color2 =pink

| label3 =Germany

| value3 =21.58

| color3 =#8C8C22

| label4 =Italy

| value4 =10.43

| color4 =#29A8A8

| label5 =United Kingdom

| value5 =2.88

| color5 =#B3CC33

| label6 =Rest of Europe

| value6 =14.52

| color6 =forestgreen

| label7 =United States

| value7 =10.33

| color7 =#0033CC

| label9 =Canada

| value9 =0.97

| color9 =#D24DFF

| label8 =Australia

| value8 =2.34

| color8 =#4DFFD2

| label10 =South Africa

| value10 =0.52

| color10 =#ffb612

| label11 =Rest of the World

| value11 =6.90

| color11 =#555

}}

{{clear}}

IEA projections of global PV deployment

{{Image frame

|width = 500

|align=right

|pos=bottom

|content=

Projected Global Growth (MW)

{{ #invoke:Chart

| bar-chart

| width = 530

| height = 320

| group 4 = 139 : 180 : 234 : 0 : 0 : 0 : 0 : 0

| group 3 = 137 :176 :214 :253 :289 :326 :364 :403

| group 2 = 128 :161: 194 :230 :268 :308 :0 : 0

| group 1 = 115 :140 :167 :197 :231 :0 :0 : 0

| colors = yellow : orange : red : navy

| group names = 2012-er : 2013-er : 2014-er :Actual

| hide group legends = 1

| units suffix = _MW

| x legends = 2013: 2014 : 2015 : 2016 : 2017 : 2018 : 2019: 2020

}}

|caption =IEA projections

}}

{{-}}

Top windpower electricity producing countries in 2014

class="wikitable" style="margin: 6px auto 12px auto; text-align: center; font-size: 90%;"

|+{{nowrap|Top windpower electricity producing countries in 2012 (TWh)}}

CountryWindpower Production% of World Total
align=left | United States140.926.4
align=left | China118.122.1
align=left | Spain49.19.2
align=left | Germany46.08.6
align=left | India30.05.6
align=left | United Kingdom19.63.7
align=left | France14.92.8
align=left | Italy13.42.5
align=left | Canada11.82.2
align=left | Denmark10.31.9
align=left | (rest of world)80.215.0
World Total534.3 TWh || 100%
colspan=3 style="font-weight: normal; font-size: 0.85em; text-align: left; padding: 6px 2px 4px 4px;" | Source:Observ'ER – Electricity Production From Wind Sources{{cite web |publisher=Observ'ER |url=http://www.energies-renouvelables.org/observ-er/html/inventaire/pdf/15e-inventaire-Chap02.pdf |location=2.2 Electricity Production From Wind Sources: Main Wind Power Producing Countries – 2012 (text & table) |title=Worldwide Electricity Production From Renewable Energy Sources: Stats and Figures Series: Fifteenth Inventory – Edition 2013 |accessdate=14 May 2014}}

PV short-term projection

{{Image frame

|width = 300

|align=right

|pos=bottom

|content=

Projected Global Growth (MW)

{{ #invoke:Chart

| bar-chart

| width = 330

| height = 220

| stack = 1

| group 1 = 23185 : 40336 : 70469 : 100504 : 138856 : 0 : 0 :0 :0 : 0

| group 2 = 0 : 0 : 0 : 0 : 0 : 180000 : 0 :0 :0 : 0

| group 3 = 0 : 0 : 0 : 0 : 0 : 0 : 234000 :0 :0 : 0

| group 4 = 0 : 0 : 0 : 0 : 0 : 0 : 0 : 245000 : 282000 : 321000

| group 5 = 0 : 0 : 0 : 0 : 0 : 0 : 0 : 54000 : 80000 : 109000

| colors = #ffcc00 : red : #4D00FF : #29B8FF : #7FFF66

| group names = Historical : Tentative 2014-figure : Projection 2015 : Low Estimate : Additional capacity for high scenario

| hide group legends = 1

| units suffix = _MW

| x legends = : 2010: : 2012: : 2014 : : 2016 : : 2018

}}

|caption =Short-term growth projection of global cumulative solar PV capacity in MW until 2018

{{legend2|#ffcc00|border=1px solid #CCA300|cumulative capacities of previous years}}
{{legend2|red|border=1px solid #CC0000|preliminary figure for 2014}}
{{legend2|#4D00FF|border=1px solid #111|current projections for 2015 (average)}}
{{legend2|#29B8FF|border=1px solid #0092DB|low scenario (projection)}}
{{legend2|#7FFF66|border=1px solid #40FF1A|additional capacity for high scenario}}

Source: EPIA, global market outlook,{{rp|42}} amended with estimates (2014) and projections for (2015).

}}

{{-}}

Cost analysis LCOE

class="wikitable"
UDS/W10001100120013001400150016001700180019002000
$1.00

| $0.10 || $0.09 || $0.08 || $0.08 || $0.07 || $0.07 || $0.06 || $0.06 || $0.06 || $0.05 || $0.05

$1.20

| $0.12 || $0.10 || $0.10 || $0.09 || $0.08 || $0.08 || $0.07 || $0.07 || $0.06 || $0.06 || $0.06

$1.40

| $0.13 || $0.12 || $0.11 || $0.10 || $0.09 || $0.09 || $0.08 || $0.08 || $0.07 || $0.07 || $0.07

$1.60

| $0.15 || $0.13 || $0.12 || $0.11 || $0.10 || $0.10 || $0.09 || $0.09 || $0.08 || $0.08 || $0.07

$1.80

| $0.16 || $0.15 || $0.13 || $0.12 || $0.11 || $0.11 || $0.10 || $0.09 || $0.09 || $0.08 || $0.08

$2.00

| $0.18 || $0.16 || $0.15 || $0.13 || $0.13 || $0.12 || $0.11 || $0.10 || $0.10 || $0.09 || $0.09

$2.20

| $0.19 || $0.17 || $0.16 || $0.15 || $0.14 || $0.13 || $0.12 || $0.11 || $0.11 || $0.10 || $0.10

$2.40

| $0.21 || $0.19 || $0.17 || $0.16 || $0.15 || $0.14 || $0.13 || $0.12 || $0.11 || $0.11 || $0.10

$2.60

| $0.22 || $0.20 || $0.18 || $0.17 || $0.16 || $0.15 || $0.14 || $0.13 || $0.12 || $0.12 || $0.11

$2.80

| $0.24 || $0.21 || $0.20 || $0.18 || $0.17 || $0.16 || $0.15 || $0.14 || $0.13 || $0.12 || $0.12

$3.00

| $0.25 || $0.23 || $0.21 || $0.19 || $0.18 || $0.17 || $0.16 || $0.15 || $0.14 || $0.13 || $0.13

$3.20

| $0.27 || $0.24 || $0.22 || $0.20 || $0.19 || $0.18 || $0.17 || $0.16 || $0.15 || $0.14 || $0.13

US PV system prices

{{Image frame

| width = 250

|height= 260

| align = right

|content =

U.S PV System Prices in ($/W)

{{ #invoke:Chart | bar-chart

| width = 300

| height = 260

| group 1 = 4.9 : 4.5 : 3.3

| group 2 = 4.69 : 3.89 : 3.00

| group 3 = 3.71 : 2.61 : 1.92

| group 4 = 3.29 : 2.54 : 1.80

| colors = #1A1AFF : #FFCC00 : red : #33CC4D

| group names = IEA : NREL (median) : NREL modeled : NREL 2014 2014

| hide group legends = yes

| x legends = redidential : commercial : utility-scale

| units suffix = _MW

}}

|caption =

Different price estimates for PV systems in the United States for 2013 and expected prices in 2014. Prices in USD/Watt.[http://www.nrel.gov/docs/fy14osti/62558.pdf Photovoltaic System Pricing Trends]
{{legend0|#1A1AFF|IEA 2013}}
{{legend0|#FFCC00|NREL 2013 (median or weighted avg.}}
{{legend0|red|NREL 2013 modeled}}}
{{legend0|#33CC4D|NREL 2014 (expected}}

}}

Solar PV forecast bar chart

{{Image frame

|width = 310

|align=left

|pos=bottom

|content=

{{ #invoke:Chart

| bar-chart

| width = 350

| height = 220

| stack = 1

| group 1 = 23185 : 40336 : 70469 : 100504 : 138856 : 0 : 0 :0 :0 : 0

| group 2 = 0 : 0 : 0 : 0 : 0 : 185000 : 0 :0 :0 : 0

| group 3 = 0 : 0 : 0 : 0 : 0 : 0 : 209000 : 245000 : 282000 : 321000

| group 4 = 0 : 0 : 0 : 0 : 0 : 0 : 35000 : 54000 : 80000 : 101000

| colors = #ffcc00 : red : #29B8FF : #7FFF66

| group names = Historical : Tentative 2014-figure : Low Estimate : Additional capacity for High Estimate

| hide group legends = 1

| units suffix = _MW

| x legends = : 2010: : 2012: : 2014 : : 2016 : : 2018

}}

|caption =EPIA's short-term global growth projection for cumulative solar PV capacity (estimate for 2014).{{rp|18}}

{{legend2|#ffcc00|border=1px solid #CE7F4B|Installed worldwide capacity of previous years}}
{{legend2|red|border=1px solid #CE7F4B|Last year (tentative figure)}}
{{legend2|#29B8FF|border=1px solid #CE7F4B|Low scenario (projection)}}
{{legend2|#7FFF66|border=1px solid #CE7F4B|Additional capacity for high scenario}}

}}

{{clear}}

=PV installation chart=

Price of PV-Installation in €/Wp

{{Graph:Chart|type=line

|width=180

|height=180

|showSymbols=yes|yAxisMax=5

|xAxisAngle=-40

|colors=red

|yGrid =

|x=2006,2007,2008,2009,2010,2011,2012,2013,2014

|y= 5.000,4.800,4.300,3.450,2.740,2.230,1.760,1.510,1.300

}}

{{clear}}

Standard Bar-Char country Growth

{{Image frame

|width = 300

|align=right

|pos=top

|content=

{{ #invoke:Chart | bar-chart

| width = 330

| height = 320

| group 1 = 0 :0 :0 : 70.9: 574 : 1037 : 2051 : 2768 : 2983

| colors = maroon

| group names =

| units suffix = _MW

| x legends = 2005 : : 2007 : : 2009 : : 2011 : : 2013

}}

|caption = Belgium Growth of PV Capacity in Megawatts since 2005{{cite web|title=Global Market Outlook for Photovoltaics 2014-2018|url=http://www.epia.org/fileadmin/user_upload/Publications/EPIA_Global_Market_Outlook_for_Photovoltaics_2014-2018_-_Medium_Res.pdf|website=www.epia.org|publisher=EPIA - European Photovoltaic Industry Association|accessdate=12 June 2014|archiveurl=http://www.webcitation.org/6QGSvAF7w|archivedate=12 June 2014|page=34}}collected historical data from article growth of photovoltaics

}}

{{clear}}

Solar power in Canada

{{ #invoke:Chart | bar-chart

| group 1 = 1.0 : 1.2 : 1.5 : 1.9 : 2.6 : 3.4 : 4.5 : 5.8 : 7.2 : 8.8 : 10.0 : 11.8 : 13.9 : 16.7 : 20.5 : 25.8 : 32.7 : 94.57 : 281 : 559 : 765 : 1209

| colors = firebrick

| group names =

| units suffix = _MW

| x legends = 1992 : : 1994 : : 1996 : : 1998 : : 2000 : : 2002 : : 2004 : : 2006 : : 2008 : : 2010 : : 2012 :

}}

Solar power in the United States

{{ #invoke:Chart | bar-chart

| group 1 = 43.5 : 50.3 : 57.8 : 66.8 : 76.5 : 88.2 : 100.1 : 117.3 : 138.8 : 167.8 : 212.2 : 275.2 : 376.0 : 479.0 : 624.0 : 830.5 : 1168.5 : 1255.7 : 2528 : 4383 : 7221 : 12021

| colors = lightblue

| group names =

| units suffix = _MW

| x legends = 1992 : : 1994 : : 1996 : : 1998 : : 2000 : : 2002 : : 2004 : : 2006 : : 2008 : : 2010 : : 2012 :

}}

Solar power in Australia

{{ #invoke:Chart | bar-chart

| group 1 = 7.3 : 8.9 : 10.7 : 12.7 : 15.7 : 18.7 : 22.5 : 25.3 : 29.2 : 33.6 : 39.1 : 45.6 : 52.3 : 60.6 : 70.3 : 82.5 : 104.5 : 183.6 : 571 : 1408 : 2400 : 3300

| colors = navy

| group names =

| units suffix = _MW

| x legends = 1992 : : 1994 : : 1996 : : 1998 : : 2000 : : 2002 : : 2004 : : 2006 : : 2008 : : 2010 : : 2012 :

}}

Solar power in the People's Republic of China

{{ #invoke:Chart | bar-chart

| group 1 = 0:0:0:0:0:0:0:0: 19 : 23.5 : 42 : 52 : 62 : 70 : 80 : 100 : 140 : 300 : 800 : 3300 : 7000 : 18600

| colors = tomato

| group names =

| units suffix = _MW

| x legends = 1992 : : 1994 : : 1996 : : 1998 : : 2000 : : 2002 : : 2004 : : 2006 : : 2008 : : 2010 : : 2012 :

}}

{{clear}}

BIPV

[http://cse.fraunhofer.org/Portals/55819/docs/BIPV-keynote-ICBEST.pdf BIPV-keynote-ICBEST.pdf]

[http://www.sophia-ri.eu/fileadmin/SOPHIA_docs/documents/Workshops/2nd_BIPV_workshop/Markus_SOPHIA_2nd-BIPV-WS_CHAMBERY_AIT-MR_16092014.pdf nd-BIPV-WS_CHAMBERY_AIT-MR_16092014.pdf]

File:GiPV-Anwendungen.png

{{clear}}

Energy Payback Time

Executive Summary

Energy Payback Time

{{main|Solar_cell_efficiency#Energy_payback}}

{{further|Solar_cell_efficiency#Energy_payback}}

Net energy gain

  • Material usage for silicon cells has been reduced significantly during the

last 5 years from around 16 g/Wp to 6 g/Wp due to increased efficiencies and thinner wafers.

  • The Energy Payback Time for Si PV modules is about one year for

locations in Southern Europe; thus the net clean electricity production of

a solar module is 95 %.

  • The Energy Payback Time of PV systems is dependent on the

geographical location: PV systems in Northern Europe need around 2.5

years to balance the inherent energy, while PV systems in the South

equal their energy input after 1.5 years and lesss.

http://plasmait.com/wp-content/uploads/2012/10/CabWire-Conference-Nov11-Production-of-PV-Ribbon-Presentation.pdf About PV-Ribbon Cells

  • The Energy Payback Time for CPV-Systems in Southern Europe is less than 1 year.

class="wikitable"
colspan=6 |Energy Payback Time in Years
Radiation

! colspan=3 |Crystaline Silicon

! colspan=2 | Thin-film

kWh/m²/a

!Mono

!Multi

!Ribbon

!CIS

!CdTe

1900

| ~1,5

| ~1,5

| ~0,9

| ~1,1

| ~0,7

1700

| ~1,7

| ~1,7

| ~1,1

| ~1,3

| ~0,8

1200

| ~2,4

| ~2,4

| ~1,5

| ~1,7

| ~1,2

PAGE Net energy gain

note: the term redirects to this section Energy_payback_time#Sustainables

== Vertical bar graph ==

Module:Chart is a Lua module that may be used to create several different types of vertical bar graphs.

=Line charts=

The template {{tl|Line chart}} implements line charts, such as:

{{Graph:Chart|type=line

|width=500

|height=350

|showSymbols=yes|yAxisMax=5000

|colors=red

|yGrid =

|xType = date

|x=2009-01,2009-02,2009-03,2009-04,2009-05,2009-06,2009-07,2009-08,2009-09,2009-10,2009-11,2009-12,2010-01,2010-02,2010-03,2010-04,2010-05,2010-06,2010-07,2010-08,2010-09,2010-10,2010-11,2010-12

|y= 4110,3930,3820,3740,3500,3500,3390,3230,3110,3050,2950,3060,3040,2970,3030,2930,2890,2840,2580,2610,2540,2500,2510,2470

}}

{{clear}}

Euler–Discoveries

  • Leonhard Euler Telescope
  • [http://www.eso.org/public/teles-instr/lasilla/swiss.html ESO La Silla 1.2m Leonhard Euler Telescope]
  • [http://obswww.unige.ch/~udry/planet/coralie.html Southern Sky extrasolar Planet search Programme]
  • [http://www.aanda.org/articles/aa/full/2001/31/aa10239/aa10239.html The CORALIE survey for southern extrasolar planets]
  • [http://www.exoplanets.ch/ www.exoplanets.ch]

=GJ3021=

  • [http://obswww.unige.ch/~udry/planet/gj3021.html A Planetary Companion around GJ 3021]
  • [http://obswww.unige.ch/~udry/planet/gj3021_ann.html Announcement]
  • Compare to GJ 3021 b
  • CORALIE spectrograph
  • [http://exoplanet.eu/catalog/gj_3021_b/ http://exoplanet.eu/]

Price

Price of PV-Installation in €/kWp

{{thumb

| width = 350

|pos=top

|content=

{{Graph:Chart|type=line

|width=280

|height=300

|showSymbols=yes|yAxisMax=5000

|xAxisAngle=-40

|colors=red

|yGrid =

|x=2006,2007,2008,2009,2010,2011,2012,2013,2014

|y= 5000,4568,4354,4110,3040,2480,1990,1520,1420

}}

|caption = History of average overall prices for PV-Systemsin €/kWp for systems smaller than 100 kWp. Sources: [http://www.solarwirtschaft.de/fileadmin/content_files/Faktenblatt_PV_Okt09.pdf for 2006-2008, page 4] [http://www.photovoltaik-guide.de/pv-preisindex data since 2009]

}}


http://www.photovoltaik-guide.de/wissenswertes/solaranlagen/investitionskosten prices history

[[]http://www.photovoltaik-guide.de/pv-preisindex Preisindex]

=Solar Price Installation=

[http://www.photovoltaik-guide.de/pv-preisindex]

{{thumb

|content={{ #invoke:Chart | bar chart

| width = 400

| height = 300

| group 1 = 4.110 : 3.930 : 3.820 : 3.740 : 3.500 : 3.500 : 3.390 : 3.230 : 3.110 : 3.050 : 2.950 : 3.060 : 3.040 : 2.970 : 3.030 : 2.930 : 2.890 : 2.840 : 2.580 : 2.610 : 2.540 : 2.500 : 2.510 : 2.470 : 2.480 : 2.390 : 2.350 : 2.390 : 2.370 : 2.300 : 2.210 : 2.170 : 2.120 : 2.090 : 1.960 : 1.950 : 1.990 : 1.960 : 1.990 : 1.900 : 1.870 : 1.740 : 1.720 : 1.630 : 1.610 : 1.600 : 1.570 : 1.590 : 1.520 : 1.500 : 1.570 : 1.590 : 1.570 : 1.530 : 1.560 : 1.510 : 1.480 : 1.450 : 1.500 : 1.380 : 1.420 : 1.370 : 1.450 : 1.400 : 1.340

| units suffix = _€/Wp

| group names = x

| x legends = 2009::::::::::::2010::::::::::::2011::::::::::::2012::::::::::::2013::::::::::::2014::::

}}

|caption=Price History: Complete Solar Installation in € per watt

}}

{{clear}}

  • [http://www.epia.org/index.php?eID=tx_nawsecuredl&u=0&file=/uploads/tx_epiafactsheets/110513_Fact_Sheet_on_the_Energy_Pay_Back_Time.pdf&t=1402067842&hash=1af6e8eac41d511155b139cda1178cb0c947d902 EIPA Factsheet PDF The Energy Pay Back Time, March 2011]
  • [http://www.nrel.gov/docs/fy04osti/35489.pdf PV-FAQs What is the energy payback for PV? U.S. Department of Energy - The National Renewable Energy Laboratory, January 2004]

{{clear}}

German Energy Mix 2014 (first half)

{{Image frame

|width = 252

|align=right

|pos=bottom

|content=

{{#invoke:Chart|pie chart

| radius = 125

| slices =

( 45.0 : Nuclear: #de2821)

( 69.7 : Brown Coal: #9c7d63)

( 50.9 : Hard Coal : #313c42)

( 16.6 : Natural Gas: #ef8e39)

( 26.7 : Wind : #66CCFF)

( 18.3 : Solar : #f7c35a)

( 25.6 : Biogas : #009a39)

( 10.5 : Hydro : #211873)

| units suffix = _TW

| percent = true

}}

|caption=German Mix 2014 (first half)

}}

{{Pie chart

| thumb = y

| caption =Electricity mix in 2014 (

| other =

| label1 =Nuclear

| value1 =17.1

| color1 =#de2821

| label2 =Brown Coal

| value2 =26.5

| color2 =#9c7d63

| label3 =Hard Coal

| value3 =19.3

| color3 =#313c42

| label4 =Natural Gas

| value4 =6.3

| color4 =#ef8e39

| label5 =Solar

| value5 =7.0

| color5 =#FFFF57

| label6 =Wind

| value6 =10.1

| color6 =#66CCFF

| label7 =Biogas

| value7 =9.7

| color7 =#009a39

| label8 =Hydro

| value8 =4.0

| color8 =#211873

}}

{{Pie chart

| thumb = y

| caption =Electricity mix in 2013 (

| other = x

| label1 =Nuclear

| value1 =15.4

| color1 =#de2821

| label2 =Brown Coal

| value2 =25.5

| color2 =#9c7d63

| label3 =Hard Coal

| value3 =19.4

| color3 =#313c42

| label4 =Natural Gas

| value4 =10.6

| color4 =#ef8e39

| label5 =Solar

| value5 =4.8

| color5 =#FFFF57

| label6 =Wind

| value6 =8.5

| color6 =#66CCFF

| label7 =Biogas

| value7 =6.7

| color7 =#009a39

| label8 =Hydro

| value8 =3.3

| color8 =#211873

| label9 =Waste incineration

| value9 =0.8

| color9 =wheat

| label10 =Petroleum products

| value10 =1.0

| color10 =limegreen

}}

Thin film

[http://www.ise.fraunhofer.de/de/veroeffentlichungen/veroeffentlichungen-pdf-dateien/studien-und-konzeptpapiere/aktuelle-fakten-zur-photovoltaik-in-deutschland.pdf aktuelle-fakten-zur-photovoltaik-in-deutschland.pdf, p.34]

{{Pie chart

| thumb = right

| caption =PV systes by size

| other =

| label1 =<10kWp

| value1 =13.25

| color1 =#de2821

| label2 =10–100 kWp

| value2 =43.25

| color2 =#9c7d63

| label3 =100–500 kWp

| value3 =14

| color3 =#313c42

| label4 =lbl4

| value4 =29

| color4 =#ef8e39

}}

{{Pie chart

| thumb = left

| caption =Worldwide market-share by technology in 2013.

| other =

| label1 =CI(G)S

| value1 =2.0

| color1 =yellow

| label2 =a-Si

| value2 =2.0

| color2 =#00CC00

| label3 =CdTe

| value3 =5.1

| color3 =#de2821

| label4 =Mono-Si

| value4 =36.0

| color4 =#660099

| label5 =Multi-Si

| value5 =54.9

| color5 =#3366CC

}}

{{Image frame

|width = 220

|align=right

|pos=bottom

|content=

{{#invoke:Chart|pie chart

| radius = 100

| slices =

( 3.2 : Thin-film: #de2821)

( 19.2 : Mulit-Si: #66CCFF)

( 12.6 : Mono-Si : #211873)

| units suffix = _TW

| percent = true

}}

|caption=PV Production deployment by Technology in 2013. Thin-film technologies () account for about 9% of worldwide deployment.

}}

{{Image frame

|width = 210

|align=left

|pos=bottom

|content=

{{#invoke:Chart|pie chart

| radius = 100

| slices =

( 1.8 : CdTe: #de2821)

( 0.7 : CI(G)S: #66CCFF)

( 0.7 : a-Si: green)

( 19.2 : Mulit-Si: #bbb)

( 12.6 : Mono-Si : #d0d0d0)

| units suffix = _GW

| percent = true

}}

|caption=PV Production deployment in gigawatt (GW) by technology in 2013. Thin-film technologies (in colors) account for about 9% of worldwide deployment, while 91% being crystalline silicon.[http://www.ise.fraunhofer.de/en/downloads-englisch/pdf-files-englisch/photovoltaics-report-slides.pdf Photovoltaics Report, Fraunhofer ISE, July 28, 2014, pages 18,19]

}}

{{clear}}

Solar energy in the European Union

{{main|Solar energy in the European Union}}

source{{cite web|title=Photovoltaics Report|url=http://www.ise.fraunhofer.de/en/downloads-englisch/pdf-files-englisch/photovoltaics-report-slides.pdf|publisher=Fraunhofer ISE|accessdate=31 August 2014|archiveurl=http://www.webcitation.org/6SFRTUaBS|archivedate=31 August 2014|date=28 July 2014}}

Energy Payback Time

test {{oldid2|620039758|"previous-revision"}}

[http://en.wikipedia.org/w/index.php?title=European_Space_Agency&action=edit&oldid=620039758]

:w/index.php?title=European_Space_Agency&action=edit&oldid=620039758

[http://en.wikipedia.org/w/index.php?oldid=620039758]

[http://en.wikipedia.org/w/index.php?oldid=620039758]

{{ Image frame

|align=right

|width=240

|pos=bottom

|content=

Worldwide Growth of Photovoltaics

in MW grouped by region{{cite web|title=Global Market Outlook for Photovoltaics 2014-2018|url=http://www.epia.org/fileadmin/user_upload/Publications/EPIA_Global_Market_Outlook_for_Photovoltaics_2014-2018_-_Medium_Res.pdf|website=www.epia.org|publisher=EPIA - European Photovoltaic Industry Association|accessdate=12 June 2014|archiveurl=http://www.webcitation.org/6QGSvAF7w|archivedate=12 June 2014}}

{{ #invoke:Chart | bar-chart

| height = 250

| width = 260

| stack = 1

| group 1 = 129 : 265 : 399 : 601 : 1306 : 2291 : 3289 : 5312 : 11020 : 16854 : 30505 : 52764 : 70513 : 81488

| group 2 = 368 : 496 : 686 : 916 : 1198 : 1502 : 1827 : 2098 : 2628 : 3373 : 4951 : 7513 : 12159 : 21992

| group 3 = 21 : 24 : 54: 102 : 163 : 246 : 355 : 522 : 828 : 1328 : 2410 : 4590 : 8365 : 13727

| group 4 = 19 : 24 : 42 : 52 : 62 : 70 : 80 : 100 : 140 : 300 : 800 : 3300 : 6800 : 18600

| group 5 = 0 : 0 : 0 : 0 : 1 : 1 : 1 : 2 : 3 : 25 : 80 : 205 : 570 : 953

| group 6 = 751 : 807 : 887 : 964 : 993 : 1003 : 1108 : 1150 : 1226 : 1306 : 1590 : 2098 : 2098 : 2098

| colors = Navy : Orange : ForestGreen : Crimson: Yellow : Maroon

| group names = Europe : APAC : Americas : China : MEA : RoW

| hide group legends = remove-this-text-to-show-auto-legend

| units suffix = _MWp

| x legends = :2001 : : : 2004 : : : 2007 : : : 2010 : : : 2013

}}

|caption=

}}

=Iceland=

Solar power in Iceland is almost non-existant. This is not only because of Iceland's high latitude, but mainly because there are other renewable energy sources, such as geothermal and hydro power that provide almost 100 percent of the country's electricity needs. Due to the abundant and inexpensive renewable energy, Iceland plays an increasingly important role in the silicon industry, as a world leader in the production of metallurgical grade "green silicon" with several production plants being under construction.[http://askjaenergy.org/2014/06/02/icelands-growing-silicon-industry/ Iceland’s Growing Silicon Industry]

Full blown chart

{{Hidden begin|titlestyle = background-color: #001A99; color: #FFFFFF; text-align: center;

|title=see full sized chart

}}

{{ Image frame

|align=center

|width=780

|pos=bottom

|content=

Worldwide Growth of Photovoltaics

Cumulative Capacity in Megawatts [MWp] Grouped by Region{{cite web|title=Global Market Outlook for Photovoltaics 2014-2018|url=http://www.epia.org/fileadmin/user_upload/Publications/EPIA_Global_Market_Outlook_for_Photovoltaics_2014-2018_-_Medium_Res.pdf|website=www.epia.org|publisher=EPIA - European Photovoltaic Industry Association|accessdate=12 June 2014|archiveurl=http://www.webcitation.org/6QGSvAF7w|archivedate=12 June 2014}}

{{ #invoke:Chart | bar-chart

| height = 520

| width = 800

| stack = 1

| group 1 = 129 : 265 : 399 : 601 : 1306 : 2291 : 3289 : 5312 : 11020 : 16854 : 30505 : 52764 : 70513 : 81488

| group 2 = 368 : 496 : 686 : 916 : 1198 : 1502 : 1827 : 2098 : 2628 : 3373 : 4951 : 7513 : 12159 : 21992

| group 3 = 21 : 24 : 54: 102 : 163 : 246 : 355 : 522 : 828 : 1328 : 2410 : 4590 : 8365 : 13727

| group 4 = 19 : 24 : 42 : 52 : 62 : 70 : 80 : 100 : 140 : 300 : 800 : 3300 : 6800 : 18600

| group 5 = 0 : 0 : 0 : 0 : 1 : 1 : 1 : 2 : 3 : 25 : 80 : 205 : 570 : 953

| group 6 = 751 : 807 : 887 : 964 : 993 : 1003 : 1108 : 1150 : 1226 : 1306 : 1590 : 2098 : 2098 : 2098

| colors = Navy : Orange : ForestGreen : Crimson: Yellow : Maroon

| group names = Europe : APAC : Americas : China : MEA : RoW

| hide group legends = yes or remove me in order to show

| units suffix = _MWp

| x legends = 2000 : : 2002 : : 2004 : : 2006 : : 2008 : : 2010 : : 2012 :

}}

|caption=

{{legend0|navy|Europe     }}{{legend0|orange|Asia-Pacific     }}{{legend0|forestgreen|Americas     }}{{legend0|crimson|China     }}{{legend0|yellow|Middle East and Africa     }}{{legend0|maroon|Rest of the World}}

}}

class="wikitable" style="width: 790px; margin: -20px auto 0 auto; text-align: center; font-size: 85%;"
style="text-align: right; padding-right: 20px;" | Year end

! 2005

20062007200820092010201120122013
style="text-align: right; padding-right: 20px;" | Capacity (MWp)

| 5,100 || 6,600 || 9,100 || 15,800 || 23,200 || 40,300 || 70,500 || 100,500 || 138,900

style="text-align: right; padding-right: 20px;" | Growth (year-to-year)

| 35% || 29% || 38% || 74% || 47% || 73% || 75% || 43% || 38%

{{Hidden end}}

{{-}}

= EPBT variant =

class="wikitable" style="text-align: center;"

|+ Energy Payback Time in Years for different locations and technologies

rowspan=2 |Location
Examples

! colspan=3 |Crystaline Silicon

! colspan=2 | Thin-film

! rowspan=2 |Radiation
Map Color

! rowspan=2 |Global Solar Potential in kWh/m²/a

Mono

! Multi

! Ribbon

! CIGS

! CdTe

style="background-color: #F2FAD6;" | North-and Central Europe, Canada, New England

| bgcolor=#F2FAD6| 2,4

| bgcolor=#F2FAD6| 2,4

| bgcolor=#F2FAD6| 1,5

| bgcolor=#F2FAD6| 1,7

| bgcolor=#F2FAD6| 1,2

| bgcolor=#C7E850 | 1200 kWh

|rowspan=3 cellpadding=0 | 300px

style="background-color: #FCF0D4;" | Southern Europe, South Africa, USA. South America

| bgcolor=#FCF0D4| 1,7

| bgcolor=#FCF0D4 | 1,7

| bgcolor=#FCF0D4| 1,1

| bgcolor=#FCF0D4| 1,3

| bgcolor=#FCF0D4| 0,8

| bgcolor=#F2B82C| 1700 kWh

style="background-color: #FCE6CF" | American Southwest, Australia, North Africa, Middle East

| bgcolor=#FCE6CF| 1,5

| bgcolor=#FCE6CF| 1,5

| bgcolor=#FCE6CF| 0,9

| bgcolor=#FCE6CF| 1,1

| bgcolor=#FCE6CF| 0,7

| bgcolor=#ED8413| 1900 kWh

colspan=8 style="background-color: #f2f2f2; text-align: left; padding: 5px 10px; font-size: 0.8em;" | Source:

= Alternative TBL =

class="wikitable" style="text-align: center;"

|+ Energy Payback Time in Years for differnt locations and technologies

rowspan=2 |Location
Examples

! colspan=3 |Crystaline Silicon

! colspan=2 | Thin-film

! rowspan=2 |Radiation
Map Color

! rowspan=2 |Global Solar Potential in kWh/m²/a

Mono

! Multi

! Ribbon

! CIGS

! CdTe

| North-and Central Europe, Canada, New England

| | 2,4

| | 2,4

| | 1,5

| | 1,7

| | 1,2

| bgcolor=#C7E850 | 1200 kWh

|rowspan=3 cellpadding=0 | 300px

| Southern Europe, South Africa, USA. South America

| | 1,7

| | 1,7

| | 1,1

| | 1,3

| | 0,8

| bgcolor=#F2B82C| 1700 kWh

| American Southwest, Australia, North Africa, Middle East

| | 1,5

| | 1,5

| | 0,9

| | 1,1

| | 0,7

| bgcolor=#ED8413| 1900 kWh

colspan=8 style="background-color: #f2f2f2; text-align: left; padding: 6px 10px; font-size: 0.8em;" | Source:

== Lab cells ==

Approx- estimated figures to be amended

In 2013, record lab cell efficiency was highest for crystalline silicon. However, multi-silicon is followed closely by Cadmium Telluride and Copper indium gallium selenide solar cells

  1. 25.0% – mono-Si cell
  2. 20.4% – mulit-Si cell
  3. 19.8% – CIGS cell
  4. 19.6% – CdTe cell

class="wikitable" style="text-align: right; width: 380px;"

|+Best Research Cell Efficiency in the Laboratory

Technology

! 2014

! 2011

! 2008

style="font-weight: bold; text-align: left; padding-left: 10px;background-color: #f2f2f2;" |mono-Si

| 25.0%

| 25.0%

| 25.0%

style="font-weight: bold; text-align: left; padding-left: 10px;background-color: #f2f2f2;" | multi-Si

| 20.4%

| 20.4%

| 20.4%

style="font-weight: bold; text-align: left; padding-left: 10px;background-color: #f2f2f2;" |CIGS

|21.7%

|19%

|18%

style="font-weight: bold; text-align: left; padding-left: 10px;background-color: #f2f2f2;" | CdTe

|21.0%

| 17%

|16%

Composition of atmosphere

class="wikitable" style="text-align: center;"

|+Major constituents of dry air, by volumeSource for figures: Carbon dioxide, [http://www.esrl.noaa.gov/gmd/ccgg/trends/#mlo NOAA Earth System Research Laboratory], (updated 2013-03). Methane, IPCC [http://www.grida.no/climate/ipcc_tar/wg1/221.htm#tab61 TAR table 6.1], (updated to 1998). The NASA total was 17 ppmv over 100%, and {{CO2}} was increased here by 15 ppmv. To normalize, N2 should be reduced by about 25 ppmv and O2 by about 7 ppmv.

colspan=2| Gas

! colspan=2 style="font-weight: normal;" | Volume(A)

style="width: 100px;" | Name

! style="width: 50px;" | Formula

! style="width: 100px;" | in ppmv(B)

! style="width: 100px;" | in %

align=left | Nitrogen

| N2

| 780,840

| 78.084

align=left | Oxygen

| O2

| 209,460

| 20.946

align=left | Argon

| Ar

| 9,340

| 0.9340

align=left | Carbon dioxide

| {{CO2}}

| 397

| 0.0397

align=left | Neon

| Ne

| 18.18

| 0.001818

align=left | Helium

| He

| 5.24

| 0.000524

align=left | Methane

| CH4

| 1.79

| 0.000179

colspan=4 | Not included in above dry atmosphere:
align=left | Water vapor(C)

| align=center | H2O

| 10–50,000(D)

| 0.001%–5%(D)

colspan=4 style="font-size: 0.85em; padding: 5px 2px 5px 10px; text-align: left; font-weight: normal;" | notes:

(A) volume fraction is equal to mole fraction for ideal gas only,
    also see volume (thermodynamics)

(B) ppmv: parts per million by volume

(C) Water vapor about 0.25% by mass over full atmosphere

(D) Water vapor strongly varies locally

Silicon producers

class="wikitable sortable" style="text-align: center; width: 320px;"

|+ World producer of ferrosilicon

Country

!width="80" data-sort-type="number" | 2009

!width="80" data-sort-type="number" | 2013

align="left" | Bhutan(B)

|n.a.

|61

align="left" | Brazil

|224

|230

align="left" | Canada

|53

|35

align="left" | China

|4310

|5100

align="left" | France

|66

|170

align="left" | Iceland

|81

|80

align="left" | India(B)

|59

|70

align="left" | Norway

|301

|175

align="left" | Russia

|537

|700

align="left" | South Africa

|116

|130

align="left" | Ukraine(B)

|98

|78

align="left" | United States

|139

|360

align="left" | Venezuela(B)

|54

|60

align="left" style="font-weight: normal; font-style: italics;" | Other countries

!style="font-weight: normal; font-style: italics;" | 266

!style="font-weight: normal; font-style: italics;" | 430

align="left" | World total(i)

!6,310

!7,700

colspan="9" style="font-size: 0.85em; padding: 6px 6px; text-align: left; font-weight: normal; line-height: 1.2em" | Source: minerals.usgs.gov [http://minerals.usgs.gov/minerals/pubs/commodity/silicon/mcs-2014-simet.pdf 2013], [http://minerals.usgs.gov/minerals/pubs/commodity/silicon/mcs-2011-simet.pdf 2009]
Ferrosilicon grades include the two standard grades of ferrosilicon50% and 75% siliconplus miscellaneous silicon alloys, (ii) rounded

Coal

Original Table in article Coal

class="wikitable"
German Classification

! English Designation

! Volatiles %

! C Carbon %

! H Hydrogen %

! O Oxygen %

! S Sulfur %

! Heat content kJ/kg

Braunkohle

|Lignite (brown coal)

|45–65

|60–75

|6.0–5.8

|34-17

|0.5-3

|<28,470

Flammkohle

| Flame coal

|40-45

|75-82

|6.0-5.8

|>9.8

|~1

|<32,870

Gasflammkohle

|Gas flame coal

|35-40

|82-85

|5.8-5.6

|9.8-7.3

|~1

|<33,910

Gaskohle

|Gas coal

|28-35

|85-87.5

|5.6-5.0

|7.3-4.5

|~1

|<34,960

Fettkohle

|Fat coal

|19-28

|87.5-89.5

|5.0-4.5

|4.5-3.2

|~1

|<35,380

Esskohle

|Forge coal

|14-19

|89.5-90.5

|4.5-4.0

|3.2-2.8

|~1

|<35,380

Magerkohle

|Nonbaking coal

|10-14

|90.5-91.5

|4.0-3.75

|2.8-3.5

|~1

|35,380

Anthrazit

|Anthracite

|7-12

|>91.5

|<3.75

|<2.5

|~1

|<35,300

colspan=8| Percent by weight

LCOE - IEA

class="wikitable" style="text-align: center; width: 100%;"

|+ Projections for LCOE for new-built utility-scale PV plants to 2050

USD/MWh

!width="80" | 2013

!width="80" | 2020

!width="80" | 2025

!width="80" | 2030

!width="80" | 2035

!width="80" | 2040

!width="80" | 2045

!width="80" | 2050

align="left" | Minimum

|119

|96

|71

|56

|48

|45

|42

|40

align="left" | Average

|177

|133

|96

|81

|72

|68

|59

|56

align="left" | Maximum

|318

|250

|180

|139

|119

|109

|104

|97

colspan="9" style="font-size: 0.85em; padding: 6px 6px; text-align: left; background-color: #f2f2f2; line-height: 1.2em" | Source: IEA – Technology Roadmap: Solar Photovoltaic Energy report

{{cite web

|author1=http://www.iea.org

|title=Technology Roadmap: Solar Photovoltaic Energy

|url=http://www.iea.org/publications/freepublications/publication/TechnologyRoadmapSolarPhotovoltaicEnergy_2014edition.pdf

|publisher=IEA

|accessdate=7 October 2014

|archiveurl=http://www.webcitation.org/6T92GIRhW

|archivedate=7 October 2014|year=2014

|url-status=live

}}{{rp|24}}

Note: All LCOE calculations in this table rest on 8% real discount rates as in ETP 2014 (IEA, 2014b). Actual LCOE might be lower with lower WACC.

System cost alternative

class="wikitable sortable" style="text-align: center; width: 240px;"

|+ Residential PV system prices

Country

! Cost ($/W)

align=left |Australia

| 1.8

align=left | China

| 1.5

align=left | France

| 4.1

align=left | Germany

| 2.4

align=left | Italy

| 2.8

align=left | Japan

| 4.2

align=left | United Kingdom

| 2.8

align=left | United States

| 4.9

colspan=2 style="font-weight: normal; text-align: left; font-size: 0.85em; padding: 8px 0 4px 4px;" | For residential PV systems in 2013

{{cite web

|author1=http://www.iea.org

|title=Technology Roadmap: Solar Photovoltaic Energy

|url=http://www.iea.org/publications/freepublications/publication/TechnologyRoadmapSolarPhotovoltaicEnergy_2014edition.pdf

|publisher=IEA

|accessdate=7 October 2014

|archiveurl=http://www.webcitation.org/6T92GIRhW

|archivedate=7 October 2014|year=2014

|url-status=live

}}{{rp|15}}

class="wikitable sortable" style="text-align: center; width: 240px;"

|+ Commercial PV system prices

Country

! Cost ($/W)

align=left |Australia

|1.7

align=left | China

|1.4

align=left | France

|2.7

align=left | Germany

|1.8

align=left | Italy

|1.9

align=left | Japan

|3.6

align=left | United Kingdom

|2.4

align=left | United States

|4.5

colspan=2 style="font-weight: normal; text-align: left; font-size: 0.85em; padding: 8px 0 4px 4px;" | For commercial PV systems in 2013

{{cite web

|author1=http://www.iea.org

|title=Technology Roadmap: Solar Photovoltaic Energy

|url=http://www.iea.org/publications/freepublications/publication/TechnologyRoadmapSolarPhotovoltaicEnergy_2014edition.pdf

|publisher=IEA

|accessdate=7 October 2014

|archiveurl=http://www.webcitation.org/6T92GIRhW

|archivedate=7 October 2014|year=2014

|url-status=live

}}{{rp|15}}

class="wikitable sortable" style="text-align: center; width: 240px;"

|+ Utility-scale PV system prices

Country

! Cost ($/W)

align=left |Australia

|2.0

align=left | China

|1.4

align=left | France

|2.2

align=left | Germany

|1.4

align=left | Italy

|1.5

align=left | Japan

|2.9

align=left | United Kingdom

|1.9

align=left | United States

|3.3

colspan=2 style="font-weight: normal; text-align: left; font-size: 0.85em; padding: 8px 0 4px 4px;" | For utility-scale PV systems in 2013

{{cite web

|author1=http://www.iea.org

|title=Technology Roadmap: Solar Photovoltaic Energy

|url=http://www.iea.org/publications/freepublications/publication/TechnologyRoadmapSolarPhotovoltaicEnergy_2014edition.pdf

|publisher=IEA

|accessdate=7 October 2014

|archiveurl=http://www.webcitation.org/6T92GIRhW

|archivedate=7 October 2014|year=2014

|url-status=live

}}{{rp|15}}

Storage Batteries

Source [https://ir.citi.com/UAXL%2F1gNFctVBgY9Y%2BYI2AVo44t83FCcT4CS6TgoRho8dlIkm1tZOw%3D%3D Citi Research, DarwinismII, p.21]

20. Comparison of major storage device technologies: Lithium-ion batteries offer high voltages and storage densities

class="wikitable" style="text-align: center;"

|+ Comparison of major storage device technologies: Lithium-ion batteries offer high voltages and storage densities

width=170|Battery
type

!Lithium
ion

!Nickel
Hydrogen

!Nickel
Cadmium

!Lead
Acid

!NAS

!Redox
Flow

!EDLC

!Lithium ion
Capacitor

style="text-align: left; padding-left: 10px;" |Discharge potential (V)

|2.4-3.8

|1.2

|1.2

|2.1

|2.08

|1.4

|0-3

|2.2-3.8

style="text-align: left; padding-left: 10px;" |Power density (W/kg)

|400-4,000

|150-2,000

|100-200

|100-200

|–

|–

|1,000-5,000

|1,000-5,000

style="text-align: left; padding-left: 10px;" |Energy density (Wh/kg)

|120-200

|70

|50

|35

|100

|30

|2-20

|10-40

style="text-align: left; padding-left: 10px;" |Cycle life (times)

|500-6,000

|500-1,000

|500-1,000

|500-5,000

|4,500

|10,000>

|50,000>

|50,000>

style="text-align: left; padding-left: 10px;" |Charging efficiency

|95%

|85%

|85%

|80%

|75-85%

|80%

|95%

|95%

style="text-align: left; padding-left: 10px;" |Cost

|Poor

|Good

|Good

|Excellent

|Poor

|Poor

|Very poor

|Very poor

style="text-align: left; padding-left: 10px;" |Safety

|Poor

|Excellent

|Good

|Good

|Very poor

|Excellent

|Excellent

|Excellent

style="text-align: left; padding-left: 10px;" |Cathode material

|Lithium compounds

|Nickel hydroxide

|Nickel hydroxide

|Lead oxide

|Sulfur

|Carbon

|NA

|NA

style="text-align: left; padding-left: 10px;" |Anode material

|Graphite

|Hydrogen storing alloy

|Cadmium hydroxide

|Lead

|Sodium

|Carbon

|NA

|NA

style="text-align: left; padding-left: 10px;" |Electrolyte

|Organic solvent lithium salt

|Potassium hydroxide solution

|Potassium hydroxide solution

|Dilute sulfuric acid

|βAlumina

|Vanadium sulfate solution

|NA

|NA

style="text-align: left; padding-left: 10px;" |Characters

|Risk of combustion

|Self-discharge
Memory effect

|Memory effect
Cadmium is toxic

|Easily deteriorated
Lead is toxic

|Operation at 300°C
Risk of combustion

|Pump circulation
Vanadium is toxic

|Good power density
Self-discharge

|Good power density
Self-discharge

colspan="9" style="font-weight: normal; text-align: left; font-size: 0.85em;" | Source: Company data, Citi Research Energy Darwinism II, 2014

{{cite web

|author1=Citi research

|title=Energy Darwinism II

|url=https://ir.citi.com/UAXL%2F1gNFctVBgY9Y%2BYI2AVo44t83FCcT4CS6TgoRho8dlIkm1tZOw%3D%3D

|website=http://icg.citi.com/icg/citi_research/index.jsp

|publisher=Citigroup Global Markets Inc.

|accessdate=3 November 2014

|archiveurl=http://www.webcitation.org/6ToFtHphe

|archivedate=3 November 2014

|page=21

|format=PDF

|date=25 September 2014

|url-status=live

}}

{{clear}}

Number of PV systems

class="wikitable sortable" style="text-align: right; width: 260px;"

|+Households with solar power 2013

Country

!# PV systems

align=left | Australia

|1,000,000

align=left | France

|300,000

align=left | Germany

|1,400,000

align=left | India

|7,000,000

align=left | Japan

|1,400,000

align=left | United Kingdom

|510,000

align=left | United Kingdom(A)

|440,000

colspan="2" style="font-weight: normal; font-size: 0.85em; text-align: left; padding: 6px 0 4px 8px;" | Sources: Citi Research (A)US-figureshttp://www.greentechmedia.com/articles/read/u.s.-solar-market-grows-41-has-record-year-in-2013

Timeline of the largest PV power stations in the world

class="wikitable" style="text-align: center;"
width=70 | YearName of PV power stationCountryCapacity
MW
1982align=left | LugoUnited States1
1985align=left | Carrisa PlainUnited States5.6
2005align=left | Bavaria Solarpark (Mühlhausen)Germany6.3
2006align=left | Erlasee Solar ParkGermany11.4
2008align=left | Olmedilla Photovoltaic ParkSpain60
2010align=left | Sarnia Photovoltaic Power PlantCanada97
2011align=left | Huanghe Hydropower Golmud Solar ParkChina200
2012align=left | Agua Caliente Solar ProjectUnited States290
2014align=left | Topaz Solar FarmUnited States550
colspan="4" style="background-color: #f2f2f2; font-size: 0.85em; padding: 6px 0 4px 6px;"| sources, table article, year= Final commissioning

Comparing capacity to other technologies

{{main|List of largest power stations in the world}}

For comparison, the largest power stations by technology are:

class="wikitable sortable"
Capacity
(MW)
TechnologyLargest power stationInfo and list
392concentrated solar thermal (CSP)Ivanpah Solar Power FacilityExample
8,200Nuclear powerKashiwazaki-Kariwa Nuclear Power PlantOperation suspended since 2011, List of nuclear power stations
22,500Hydro powerThree Gorges DamExample
Example[[Wind powerExampleExample
ExampleExampleExampleExample

Table AU examples

class="wikitable sortable" style="text-align: center; width: 650px; font-size: 0.9em;"
width= 100 | Object

! width= 80 | AU

! width= 40 class="unsortable"| Range

! class="unsortable" | Comment and reference point

! width= 25 class="unsortable" | Refs

align=left | Earth

| 0.0003

| ± 0.02

| align=left | Circumference of the Earth at the Equator (rounded)

| –

align=left | Moon

| 0.0026

| ± 0.0001

| align=left | Average distance from the Earth. It took the Apollo missions about 3 days to travel that distance.

| –

align=left | Mercury

| 0.39

| ± 0.09

| align=left | Average distance from the Sun

| –

align=left | Venus

| 0.72

| ± 0.01

| align=left | Average distance from the Sun

| –

align=left | Earth

| 1.00

| ± 0.02

| align=left | Average distance from the Sun

| –

align=left | Mars

| 1.52

| ± 0.14

| align=left | Average distance from the Sun

| –

align=left | Ceres

| 2.77

| ± 0.22

| align=left | Average distance from the Sun

| –

align=left | Jupiter

| 5.20

| ± 0.25

| align=left | The largest planet's average distance of from the Sun

| –

align=left | Betelgeuse

| 5.5

| –

| align=left | Mean diameter of the red supergiant

| –

align=left | NML Cygni

| 7.67

| –

| align=left | Radius of the largest known star

| –

align=left | Saturn

| 9.58

| ± 0.53

| align=left | Average distance from the Sun

| –

align=left | Uranus

| 19.23

| ± 0.85

| align=left | Average distance from the Sun

| –

align=left | Neptune

| 30.10

| ± 0.34

| align=left | Average distance from the Sun

| –

align=left | Kuiper belt

| 30

| –

| align=left | Begins at roughly that distance from the Sun

| {{Citation | url=http://www.iop.org/EJ/article/0004-637X/490/2/879/36659.html | author=Alan Stern | title=Collisional Erosion in the Primordial Edgeworth-Kuiper Belt and the Generation of the 30–50 au Kuiper Gap | journal=The Astrophysical Journal | volume=490 | issue=2 | pages=879–882 | date=1997 | doi=10.1086/304912 | last2=Colwell | first2=Joshua E. | bibcode=1997ApJ...490..879S | s2cid=123177461 | postscript=.}}

align=left | New Horizons

| 31.46

| –

| align=left | Spacecraft's distance from the Sun, as of 21 January 2015

| As of 21 January 2015 [http://pluto.jhuapl.edu/mission/whereis_nh.php Where Is New Horizons?]

align=left | Pluto

| 39.3

| ± 9.6

| align=left | Average distance from the Sun. Varies by almost 10 AU due to its elliptic orbit.

| –

align=left | Scattered disc

| 45

| –

| align=left | Roughly begins at that distance from the Sun. It overlaps about 10 AU with Kuiper Belt

| –

align=left | Kuiper belt

| 52

| ± 3

| align=left | Ends at that distance from the Sun

| –

align=left | Eris

| 68.01

| 29.64

| align=left | The dwarf planets distance from the Sun

| –

align=left | 90377 Sedna

| 76

| –

| align=left | Closet distance from the Sun (perihelion)

| –

align=left | 90377 Sedna

| 87

| –

| align=left | Current distance from the Sun, {{As of|2012|lc=y}}. It is an object of the scattered disc and takes 11,400 years to orbit the Sun.

| {{citation |title = AstDys (90377) Sedna Ephemerides |publisher = Department of Mathematics, University of Pisa, Italy |url = http://hamilton.dm.unipi.it/astdys/index.php?pc=1.1.3.0&n=Sedna |accessdate = 5 May 2011}}

align=left | Termination shock

| 94

| –

| align=left | Distance from the Sun of boundary between solar winds/interstellar winds/interstellar medium

| –

align=left | Eris

| 96.7

| –

| align=left | Distance form the Sun, {{As of|2009|lc=y}}. Eris and its moon are currently the most distant known objects in the Solar System apart from long-period comets and space probes.

| {{Citation|title=Spacecraft escaping the Solar System|publisher=Heavens-Above|author=Chris Peat|url=http://www.heavens-above.com/solar-escape.asp|accessdate=25 January 2008}}

align=left | Heliosheath

| 100

| –

| align=left | The region of the heliosphere beyond the termination shock, where the solar wind is slowed down, turbulent and compressed due to the interstellar medium

| –

align=left | Voyager 1

| 125

| –

| align=left | {{As of|2013|08|lc=y}}, the space probe is the furthest human-made object from the Sun; it is currently traveling at about 3½ au/yr.

| [http://voyager.jpl.nasa.gov/where/index.html Voyager 1], Where are the Voyagers – NASA Voyager 1

align=left | 90377 Sedna

| 942

| –

| align=left | Farthest distance from the Sun (aphelion)

| –

align=left | Hills cloud

| 2,000

| ± 1000

| align=left | Beginning of Hills cloud/inner Oort cloud

| –

align=left | Hills cloud

| 20,000

| –

| align=left | Ending of Hills cloud/inner Oort cloud, beginning of outer Oort cloud

| –

align=left | Light-year

| 63,241

| –

| align=left | The distance light travels in 1 Julian year (365.25 days, rounded)

| –

align=left | Oort cloud

| 75,000

| ± 25,000

| align=left | Distance of the outer limit of Oort cloud from the Sun (estimated, corresponds to 1.2 ly)

| –

align=left | Parsec

| 206,265

| –

| align=left | Distance of one parsec in AU (rounded)

| –

align=left | Hill/Roche sphere

| 230,000

| –

| align=left | Maximum extent of influence of the Sun's gravitational field ()—beyond this is true interstellar medium. This distance is {{convert|1.1|pc|ly|abbr=off}}.

| {{Citation|last=Chebotarev|first=G.A.|title=Gravitational Spheres of the Major Planets, Moon and Sun|journal=Soviet Astronomy|volume=7|issue=5|pages=618–622|date=1964|bibcode=1964SvA.....7..618C}}

align=left | Proxima Centauri

| 268,000

| est

| align=left | Distance to the nearest star to our Solar System

| –

align=left | Sirius

| 544,000

| –

| align=left | Distance of the brightest star in the Earth's night sky (corresponds to 8.6 light-years)

| –

align=left | Betelgeuse

| 40,663,000

| –

| align=left | Distance to the star in the constellation of Orion (corresponds to 643 light-years)

| –

align=left | Galactic Center

| 1,700,000,000

| –

| align=left | Distance from the Sun to the center of the Milky Way {{val|1.7|e=9|u=au}}

| –

colspan=5 style="font-weight: normal; font-size: 0.9em; text-align: left; padding: 6px 2px 4px 4px" | Note: figures in this table are generally rounded, estimates, often rough estimates, and may considerably differ from other sources. Table also includes other units of length for comparison.

Growth PV+CSP barcheart

; Test to confirm functionallity

{{countdown-ymd

|year = 2015

|month = 07

|day = 14

|hour = 11

|minute= 50

|lead=Countdown to a defined date:

|tail =

|color=black

}}

{{ Image frame

|align=right

|width=220

|pos=bottom

|content=

Deployment of Solar Power

Capacity in MW by Technology

{{ #invoke:Chart | bar-chart

| height = 250

| width = 240

| stack = 1

| group 1 = 6660 : 9183 : 15844 : 23185 : 40336 : 70469 : 100504 : 138856

| group 2 = 355 : 429 : 484 :663 : 969 : 1598 : 2553 : 3425

| colors = #f7c35a: #de2821

| group names = Solar PV : CSP - Solar thermal

| hide group legends = dont-show-this

| units suffix = _MWp

| x legends = 2006 : : : : 2010 : : : 2013

}}

|caption=

Worldwide deplyoment of solar power by technology since 2006.

{{cite web

|title=Global Market Outlook for Photovoltaics 2014-2018

|url=http://www.epia.org/fileadmin/user_upload/Publications/EPIA_Global_Market_Outlook_for_Photovoltaics_2014-2018_-_Medium_Res.pdf

|website=www.epia.org

|publisher=EPIA - European Photovoltaic Industry Association

|accessdate=12 June 2014

|archiveurl=http://www.webcitation.org/6QGSvAF7w

|archivedate=12 June 2014

|year=2014

|page=17

|url-status=live

}}

{{cite web

|url=http://www.ren21.net/Portals/0/documents/Resources/GSR/2014/GSR2014_full%20report_low%20res.pdf

|title=Renewables 2014: Global Status Report

|author=REN21

|archiveurl=http://www.webcitation.org/6SKF06GAX

|archivedate=4 September 2014

|year=2014

}}

{{rp|51}}

[http://www.csp-world.com/resources/4-csp-facts-figures CSP Facts & Figures]. Csp-world.com. Retrieved on 22 April 2013.

[http://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-CSP.pdf Concentrating Solar Power]. irena.org, p. 11.

{{legend0|#f7c35a|Solar PV}}   

{{legend0|#de2821|CSP - Solar thermal}}

}}

{{-}}

Refs

{{refs}}