Water of crystallization

{{Short description|Water molecules present inside crystals}}

In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions.{{Greenwood&Earnshaw2nd}} In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.

Upon crystallization from water, or water-containing solvents, many compounds incorporate water molecules in their crystalline frameworks. Water of crystallization can generally be removed by heating a sample but the crystalline properties are often lost.

Compared to inorganic salts, proteins crystallize with large amounts of water in the crystal lattice. A water content of 50% is not uncommon for proteins.

Applications

Knowledge of hydration is essential for calculating the masses for many compounds. The reactivity of many salt-like solids is sensitive to the presence of water.

The hydration and dehydration of salts is central to the use of phase-change materials for energy storage.{{cite journal|doi=10.1016/j.rser.2007.10.005|title=Review on thermal energy storage with phase change materials and applications|year=2009|last1=Sharma|first1=Atul|last2=Tyagi|first2=V.V.|last3=Chen|first3=C.R.|last4=Buddhi|first4=D.|journal=Renewable and Sustainable Energy Reviews|volume=13|issue=2|pages=318–345|bibcode=2009RSERv..13..318S }}

Position in the crystal structure

File:H-bondingFeSO47aq.tif crystallizes with water of hydration, which interacts with the sulfate and with the {{chem2|[Fe(H2O)6](2+)}} centers.]]

A salt with associated water of crystallization is known as a hydrate. The structure of hydrates can be quite elaborate, because of the existence of hydrogen bonds that define polymeric structures.{{cite journal | url=http://pubs.acs.org/doi/abs/10.1021/ic025915o | doi=10.1021/ic025915o | title=Novel Hydrogen-Bonded Three-Dimensional Networks Encapsulating One-Dimensional Covalent Chains: [M(4,4′-bipy)(H2O)4](4-abs)2·nH2O (4,4′-bipy = 4,4′-Bipyridine; 4-abs = 4-Aminobenzenesulfonate) (M = Co, n = 1; M = Mn, n = 2) | year=2002 | last1=Wang | first1=Yonghui | last2=Feng | first2=Liyun | last3=Li | first3=Yangguang | last4=Hu | first4=Changwen | last5=Wang | first5=Enbo | last6=Hu | first6=Ninghai | last7=Jia | first7=Hengqing | journal=Inorganic Chemistry | volume=41 | issue=24 | pages=6351–6357 | pmid=12444778 | url-access=subscription }}

{{cite journal | doi=10.1016/j.inoche.2009.12.033 | title=Formation of 2D water morphologies in the lattice of the salt with [Cu2(OH)2(H2O)2(phen)2]2+ as cation and 4,6-dimethyl-1,2,3-triazolo[4,5-d]pyrimidin-5,7-dionato as anion | year=2010 | last1=Maldonado | first1=Carmen R. | last2=Quirós | first2=Miguel | last3=Salas | first3=J.M. | journal=Inorganic Chemistry Communications | volume=13 | issue=3 | pages=399–403 }}

Historically, the structures of many hydrates were unknown, and the dot in the formula of a hydrate was employed to specify the composition without indicating how the water is bound. Per IUPAC's recommendations, the middle dot is not surrounded by spaces when indicating a chemical adduct.{{cite book |last1=Connelly|first1=Neil G.|last2=Damhus|first2=Ture|last3=Hartshorn|first3=Richard M.|last4=Hutton|first4=Alan T. |title=Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005 (the "Red Book") |date=2005 |isbn= 0-85404-438-8 |page=56 |url=https://iupac.org/wp-content/uploads/2016/07/Red_Book_2005.pdf |access-date=10 January 2023}} Examples:

  • {{chem2|CuSO4*5H2O}} – copper(II) sulfate pentahydrate
  • {{chem2|CoCl2*6H2O}} – cobalt(II) chloride hexahydrate
  • {{chem2|SnCl2*2H2O}} – tin(II) (or stannous) chloride dihydrate

For many salts, the exact bonding of the water is unimportant because the water molecules are made labile upon dissolution. For example, an aqueous solution prepared from {{chem2|CuSO4*5H2O}} and anhydrous {{chem2|CuSO4}} behave identically. Therefore, knowledge of the degree of hydration is important only for determining the equivalent weight: one mole of {{chem2|CuSO4*5H2O}} weighs more than one mole of {{chem2|CuSO4}}. In some cases, the degree of hydration can be critical to the resulting chemical properties. For example, anhydrous {{chem2|RhCl3}} is not soluble in water and is relatively useless in organometallic chemistry whereas {{chem2|RhCl3*3H2O}} is versatile. Similarly, hydrated {{chem2|AlCl3}} is a poor Lewis acid and thus inactive as a catalyst for Friedel-Crafts reactions. Samples of {{chem2|AlCl3}} must therefore be protected from atmospheric moisture to preclude the formation of hydrates.

File:Ca(aq)6 improved image.tif.]]

Crystals of hydrated copper(II) sulfate consist of {{chem2|[Cu(H2O)4](2+)}} centers linked to {{chem2|SO4(2-)}} ions. Copper is surrounded by six oxygen atoms, provided by two different sulfate groups and four molecules of water. A fifth water resides elsewhere in the framework but does not bind directly to copper.{{cite book|last1=Moeller|first1=Therald|title=Chemistry: With Inorganic qualitative Analysis|date=Jan 1, 1980|publisher=Academic Press Inc (London) Ltd|isbn=978-0-12-503350-3|page=909|url=https://books.google.com/books?id=uyjjgw_EmXEC&q=dehydration+of+copper(lI)+sulfate+pentahydrate|access-date=15 June 2014}} The cobalt chloride mentioned above occurs as {{chem2|[Co(H2O)6](2+)}} and {{chem2|Cl-}}. In tin chloride, each Sn(II) center is pyramidal (mean {{chem2|O/Cl\sSn\sO/Cl}} angle is 83°) being bound to two chloride ions and one water. The second water in the formula unit is hydrogen-bonded to the chloride and to the coordinated water molecule. Water of crystallization is stabilized by electrostatic attractions, consequently hydrates are common for salts that contain +2 and +3 cations as well as −2 anions. In some cases, the majority of the weight of a compound arises from water. Glauber's salt, {{chem2|Na2SO4(H2O)10}}, is a white crystalline solid with greater than 50% water by weight.

Consider the case of nickel(II) chloride hexahydrate. This species has the formula {{chem2|NiCl2(H2O)6}}. Crystallographic analysis reveals that the solid consists of {{nowrap|[trans-{{chem2|NiCl2(H2O)4]}}}} subunits that are hydrogen bonded to each other as well as two additional molecules of {{chem2|H2O}}. Thus one third of the water molecules in the crystal are not directly bonded to {{chem2|Ni(2+)}}, and these might be termed "water of crystallization".

Analysis

The water content of most compounds can be determined with a knowledge of its formula. An unknown sample can be determined through thermogravimetric analysis (TGA) where the sample is heated strongly, and the accurate weight of a sample is plotted against the temperature. The amount of water driven off is then divided by the molar mass of water to obtain the number of molecules of water bound to the salt.

Other solvents of crystallization

Water is particularly common solvent to be found in crystals because it is small and polar. But all solvents can be found in some host crystals. Water is noteworthy because it is reactive, whereas other solvents such as benzene are considered to be chemically innocuous. Occasionally more than one solvent is found in a crystal, and often the stoichiometry is variable, reflected in the crystallographic concept of "partial occupancy". It is common and conventional for a chemist to "dry" a sample with a combination of vacuum and heat "to constant weight".

For other solvents of crystallization, analysis is conveniently accomplished by dissolving the sample in a deuterated solvent and analyzing the sample for solvent signals by NMR spectroscopy. Single crystal X-ray crystallography is often able to detect the presence of these solvents of crystallization as well. Other methods may be currently available.

Table of crystallization water in some inorganic halides

In the table below are indicated the number of molecules of water per metal in various salts.{{cite journal|author=K. Waizumi |author2=H. Masuda |author3=H. Ohtaki |title=X-Ray Structural Studies of FeBr2·4H2O, CoBr2·4H2O, NiCl2·4H2O, and CuBr2·4H2O. cis/trans Selectivity in Transition Metal(II) Dihalide Tetrahydrate|journal=Inorganica Chimica Acta|year=1992|volume=192|issue=2 |pages=173–181|doi=10.1016/S0020-1693(00)80756-2 }}{{cite journal|author=B. Morosin|title=An X-ray Diffraction Study on Nickel(II) Chloride Dihydrate|journal=Acta Crystallographica |year=1967|volume=23|issue=4 |pages= 630–634|doi=10.1107/S0365110X67003305|bibcode=1967AcCry..23..630M }}

class="wikitable"

! Hydrated metal halides
and their formulas

Coordination sphere
of the metal
Equivalents of water of crystallization
that are not bound to M
Remarks
Calcium chloride
{{chem2|CaCl2(H2O)6}}
{{chem2|[Ca(μ\-H2O)6(H2O)3](2+)}}{{CNone|none}}example of water as a bridging ligand{{cite journal|last1=Agron|first1=P. A.|last2= Busing|first2=W. R.|title=Calcium and Strontium Dichloride Hexahydrates by Neutron Diffraction|journal=Acta Crystallographica Section C|year=1986|volume=42|issue=2|page=14|doi=10.1107/S0108270186097007|bibcode=1986AcCrC..42..141A |s2cid=97718377 }}
Titanium(III) chloride
{{chem2|TiCl3(H2O)6}}
trans-{{chem2|[TiCl2(H2O)4]+}}style="text-align:center;" | twoisomorphous with {{chem2|VCl3(H2O)6}}
Titanium(III) chloride
{{chem2|TiCl3(H2O)6}}
{{chem2|[Ti(H2O)6]}}3+{{CNone|none}}isomeric with {{chem2|[TiCl2(H2O)4]Cl}}.2H2O{{Greenwood&Earnshaw2nd|page = 965}}
Zirconium(IV) fluoride
{{chem2|ZrF4(H2O)3}}
{{chem2|(μ\sF)2[ZrF3(H2O)3]2}}{{CNone|none}}rare case where Hf and Zr differ{{Greenwood&Earnshaw2nd|page=965}}
Hafnium tetrafluoride
{{chem2|HfF4(H2O)3}}
{{nowrap|{{chem2|(μ\sF)2[HfF2(H2O)2]}}{{mvar|n}}({{H2O-nl}}){{mvar|n}}}}style="text-align:center;" | onerare case where Hf and Zr differ
Vanadium(III) chloride
{{chem2|VCl3(H2O)6}}
trans-{{chem2|[VCl2(H2O)4]+}}style="text-align:center;" | two
Vanadium(III) bromide
{{chem2|VBr3(H2O)6}}
trans-{{chem2|[VBr2(H2O)4]+}}{{cite journal|doi=10.1039/DT9750000894|title=Crystal and Molecular Structures of Aquahalogenovanadium(III) Complexes. Part I. X-Ray Crystal Structure of trans-Tetrakisaquadibromo-Vanadium(III) Bromide Dihydrate and the Isomorphous Chloro- Compound|year=1975|last1=Donovan|first1=William F.|last2=Smith|first2=Peter W.|journal=Journal of the Chemical Society, Dalton Transactions|issue=10|page=894}}style="text-align:center;" | two
Vanadium(III) iodide
{{chem2|VI3(H2O)6}}
{{chem2|[V(H2O)6](3+)}}{{CNone|none}}relative to {{chem2|Cl-}} and {{chem2|Br-}}, {{chem2|I-}} competes poorly
with water as a ligand for V(III)
{{chem2|Nb6Cl14(H2O)8}}{{chem2|[Nb6Cl14(H2O)2]}}style="text-align:center;" |four
Chromium(III) chloride
{{chem2|CrCl3(H2O)6}}
trans-{{chem2|[CrCl2(H2O)4]+}}style="text-align:center;" | twodark green isomer, aka "Bjerrums's salt"
Chromium(III) chloride
{{chem2|CrCl3(H2O)6}}
{{chem2|[CrCl(H2O)5](2+)}}style="text-align:center;" | oneblue-green isomer
Chromium(II) chloride
{{chem2|CrCl2(H2O)4}}
trans-{{chem2|[CrCl2(H2O)4]}}{{CNone|none}}square planar/tetragonal distortion
Chromium(III) chloride
{{chem2|CrCl3(H2O)6}}
{{chem2|[Cr(H2O)6](3+)}}{{CNone|none}}violet isomer. isostructural with aluminium compound{{cite journal|last1=Andress|first1=K. R.|last2=Carpenter|first2= C.|title=Die Struktur von Chromchlorid- und Aluminiumchloridhexahydrat|journal=Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie|year=1934|volume=87|pages=446–463}}
Manganese(II) chloride
{{chem2|MnCl2(H2O)6}}
trans-{{chem2|[MnCl2(H2O)4]}}style="text-align:center;" | two
Manganese(II) chloride
{{chem2|MnCl2(H2O)4}}
cis-{{chem2|[MnCl2(H2O)4]}}{{CNone|none}}cis molecular, the unstable trans isomer has also been detected{{cite journal|title=Crystal Structure of Manganese Dichloride Tetrahydrate|author1=Zalkin, Allan|author2=Forrester, J. D.|author3=Templeton, David H.|journal=Inorganic Chemistry|year=1964|volume=3|issue=4|pages=529–533|doi=10.1021/ic50014a017|url=http://www.escholarship.org/uc/item/7vf7p79j}}
Manganese(II) bromide
{{chem2|MnBr2(H2O)4}}
cis-{{chem2|[MnBr2(H2O)4]}}{{CNone|none}}cis, molecular
Manganese(II) iodide
{{chem2|MnI2(H2O)4}}
trans-{{chem2|[MnI2(H2O)4]}}{{CNone|none}}molecular, isostructural with FeCl2(H2O)4.{{cite journal |doi=10.1107/S0108270185007466|title=Structure of Manganese(II) Iodide Tetrahydrate, MnI2·4H2O|year=1985|last1=Moore|first1=J. E.|last2=Abola|first2=J. E.|last3=Butera|first3=R. A.|journal=Acta Crystallographica Section C |volume=41|issue=9|pages=1284–1286|bibcode=1985AcCrC..41.1284M }}
Manganese(II) chloride
{{chem2|MnCl2(H2O)2}}
trans-{{chem2|[MnCl4(H2O)2]}}{{CNone|none}}polymeric with bridging chloride
Manganese(II) bromide
{{chem2|MnBr2(H2O)2}}
trans-{{chem2|[MnBr4(H2O)2]}}{{CNone|none}}polymeric with bridging bromide
Rhenium(III) chloride
{{chem2|Re3Cl9(H2O)4}}
triangulo-{{chem2|[Re3Cl9(H2O)3]}}{{CNone|none}}heavy early metals form M-M bonds{{cite journal |doi=10.1002/zaac.19875520908 |title=Rhenium trichloride, ReCl3, and its 5/3-hydrate synthesis, crystal structure, and thermal expansion |date=1987 |last1=Irmler |first1=Manfred |last2=Meyer |first2=Gerd |journal=Zeitschrift für Anorganische und Allgemeine Chemie |volume=552 |issue=9 |pages=81–89 }}
Iron(II) chloride
{{chem2|FeCl2(H2O)6}}
trans-{{chem2|[FeCl2(H2O)4]}}style="text-align:center;" | two
Iron(II) chloride
{{chem2|FeCl2(H2O)4}}
trans-{{chem2|[FeCl2(H2O)4]}}{{CNone|none}}molecular
Iron(II) bromide
{{chem2|FeBr2(H2O)4}}
trans-{{chem2|[FeBr2(H2O)4]}}{{CNone|none}}molecular, hydrates of FeI2 are not known
Iron(II) chloride
{{chem2|FeCl2(H2O)2}}
trans-{{chem2|[FeCl4(H2O)2]}}{{CNone|none}}polymeric with bridging chloride
Iron(III) chloride
{{chem2|FeCl3(H2O)6}}
trans-{{chem2|[FeCl2(H2O)4]+}}style="text-align:center;" | twoone of four hydrates of ferric chloride,{{cite journal|author=Simon A. Cotton|year=2018|title=Iron(III) Chloride and Its Coordination Chemistry |journal=Journal of Coordination Chemistry| volume=71|issue=21|pages=3415–3443|doi=10.1080/00958972.2018.1519188|s2cid=105925459}} isostructural with Cr analogue
Iron(III) chloride
{{chem2|FeCl3(H2O)2.5}}
cis-{{chem2|[FeCl2(H2O)4]+}}style="text-align:center;" | twothe dihydrate has a similar structure, both contain {{chem2|FeCl4-}} anions.
Cobalt(II) chloride
{{chem2|CoCl2(H2O)6}}
trans-{{chem2|[CoCl2(H2O)4]}}style="text-align:center;" | two
Cobalt(II) bromide
{{chem2|CoBr2(H2O)6}}
trans-{{chem2|[CoBr2(H2O)4]}}style="text-align:center;" | two
Cobalt(II) iodide
{{chem2|CoI2(H2O)6}}
{{chem2|[Co(H2O)6](2+)}}{{CNone|none}}{{cite journal|title=Structure Cristalline et Expansion Thermique de l'Iodure de Nickel Hexahydrate" (Crystal structure and thermal expansion of nickel(II) iodide hexahydrate)|last1=Louër|first1=Michele|last2=Grandjean|first2=Daniel|last3= Weigel|first3=Dominique|journal=Journal of Solid State Chemistry|year=1973|volume=7|pages=222–228|doi= 10.1016/0022-4596(73)90157-6}}iodide competes poorly with water
Cobalt(II) bromide
{{chem2|CoBr2(H2O)4}}
trans-{{chem2|[CoBr2(H2O)4]}}{{CNone|none}}molecular
Cobalt(II) chloride
{{chem2|CoCl2(H2O)4}}
cis-{{chem2|[CoCl2(H2O)4]}}{{CNone|none}}note: cis molecular
Cobalt(II) chloride
{{chem2|CoCl2(H2O)2}}
trans-{{chem2|[CoCl4(H2O)2]}}{{CNone|none}}polymeric with bridging chloride
Cobalt(II) bromide
{{chem2|CoBr2(H2O)2}}
trans-{{chem2|[CoBr4(H2O)2]}}{{CNone|none}}polymeric with bridging bromide
Nickel(II) chloride
{{chem2|NiCl2(H2O)6}}
trans-{{chem2|[NiCl2(H2O)4]}}style="text-align:center;" | two
Nickel(II) chloride
{{chem2|NiCl2(H2O)4}}
cis-{{chem2|[NiCl2(H2O)4]}}{{CNone|none}}note: cis molecular{{cite journal |doi=10.1016/S0020-1693(00)80756-2| title=X-ray Structural Studies of FeBr2·4H2O, CoBr2·4H2O, NiCl2·4H2O and CuBr2·4H2O. cis/trans Selectivity in Transition Metal(II) Dihalide Tetrahydrate | year=1992 | last1=Waizumi | first1=Kenji | last2=Masuda | first2=Hideki | last3=Ohtaki | first3=Hitoshi | journal=Inorganica Chimica Acta | volume=192 | issue=2 | pages=173–181 }}
Nickel(II) bromide
{{chem2|NiBr2(H2O)6}}
trans-{{chem2|[NiBr2(H2O)4]}}style="text-align:center;" | two
Nickel(II) iodide
{{chem2|NiI2(H2O)6}}
{{chem2|[Ni(H2O)6](2+)}}{{CNone|none}}iodide competes poorly with water
Nickel(II) chloride
{{chem2|NiCl2(H2O)2}}
trans-{{chem2|[NiCl4(H2O)2]}}{{CNone|none}}polymeric with bridging chloride
Platinum(IV) chloride
{{chem2|[Pt(H2O)2Cl4](H2O)3}}{{cite journal |doi=10.1524/zkri.1995.210.8.606|title=Crystal Structure of trans-Diaquatetrachloroplatinum(IV) trihydrate, Pt(H2O)2Cl4(H2O)3 |journal=Zeitschrift für Kristallographie - Crystalline Materials |year=1995 |volume=210 |issue=8 |page=606 |bibcode=1995ZK....210..606R |last1=Rau |first1=F. |last2=Klement |first2=U. |last3=Range |first3=K. -J. }}
trans-{{chem2|[PtCl4(H2O)2]}}style="text-align: center" | 3octahedral Pt centers; rare example of non-first row chloride-aquo complex
Platinum(IV) chloride
{{chem2|[Pt(H2O)3Cl3]Cl(H2O)0.5}}{{cite journal |doi=10.1524/zkri.1995.210.8.605|title=Crystal Structure of fac-Triaquatrichloroplatinum(IV) Chloride Hemihydrate, (Pt(H2O)3Cl3)Cl(H2O)0.5 |journal=Zeitschrift für Kristallographie - Crystalline Materials |year=1995 |volume=210 |issue=8 |page=605 |bibcode=1995ZK....210..605R |last1=Rau |first1=F. |last2=Klement |first2=U. |last3=Range |first3=K. -J. }}
fac-{{chem2|[PtCl3(H2O)3]+}}style="text-align: center" | 0.5octahedral Pt centers; rare example of non-first row chloride-aquo complex
Copper(II) chloride
{{chem2|CuCl2(H2O)2}}
{{chem2|[CuCl4(H2O)2]2}}{{CNone|none}}tetragonally distorted
two long Cu-Cl distances
Copper(II) bromide
{{chem2|CuBr2(H2O)4}}
{{chem2|[CuBr4(H2O)2]_{n} }}style="text-align:center;" | twotetragonally distorted
two long Cu-Br distances
Zinc(II) chloride
ZnCl2(H2O)1.33{{cite journal |doi=10.1107/S0567740870004715|title=Die Kristallstruktur des ZnCl2.11/3HO|year=1970|last1=Follner|first1=H.|last2=Brehler|first2=B.|journal=Acta Crystallographica Section B |volume=26|issue=11|pages=1679–1682|bibcode=1970AcCrB..26.1679F }}
{{chem2|2 ZnCl2 + ZnCl2(H2O)4}}{{CNone|none}}coordination polymer with both tetrahedral and octahedral Zn centers
Zinc(II) chloride
ZnCl2(H2O)2.5{{cite journal |doi=10.1107/S1600536814024738|title=Crystal Structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O|year=2014|last1=Hennings|first1=Erik|last2=Schmidt|first2=Horst|last3=Voigt|first3=Wolfgang|journal=Acta Crystallographica Section E|volume=70|issue=12|pages=515–518|pmid=25552980|pmc=4257420|bibcode=2014AcCrE..70..515H }}
{{chem2|Cl3Zn(μ\-Cl)Zn(H2O)5}}{{CNone|none}}tetrahedral and octahedral Zn centers
Zinc(II) chloride
{{chem2|ZnCl2(H2O)3}}
{{chem2|[ZnCl4](2-) & [Zn(H2O)6](2+)}}{{CNone|none}}tetrahedral and octahedral Zn centers
Zinc(II) chloride
ZnCl2(H2O)4.5
{{chem2|[ZnCl4](2-) & [Zn(H2O)6](2+)}}style="text-align:center;" |threetetrahedral and octahedral Zn centers
Cadmium chloride
CdCl2·H2O{{cite journal |author1=H. Leligny |author2=J. C. Monier |title=Structure Cristalline de CdCl2.H2O |journal=Acta Crystallographica B |date=1974 |volume=30 |issue=2|pages=305–309 |doi=10.1107/S056774087400272X |bibcode=1974AcCrB..30..305L |trans-title=Crystal structure of CdCl2.H2O |language=fr}}
{{CNone|none}}water of crystallization is rare for heavy metal halides
Cadmium chloride
CdCl2·2.5H2O{{cite journal |doi=10.1107/S056774087500369X |title=Structure de CdCl2.2,5H2O |date=1975 |last1=Leligny |first1=H. |last2=Mornier |first2=J. C. |journal=Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry |volume=31 |issue=3 |pages=728–732 |bibcode=1975AcCrB..31..728L }}
CdCl5(H2O) & CdCl4(H2O)2{{CNone|none}}
Cadmium chloride
CdCl2·4H2O{{cite journal |author1=H. Leligny |author2=J. C. Monier |title=Structure de dichlorure de cadmium tétrahydraté|journal=Acta Crystallographica B |date=1979 |volume=35 |issue=3|pages=569–573 |doi=10.1107/S0567740879004179 |bibcode=1979AcCrB..35..569L |trans-title=Structure of Cadmium Dichloride Tetrahydrate|language=fr}}
{{CNone|none}}octahedral
Cadmium bromide
CdBr2(H2O)4{{cite journal |doi=10.1107/S0567740878002186 |title=Structure Cristalline de CdBr2.4H2O |date=1978 |last1=Leligny |first1=H. |last2=Monier |first2=J. C. |journal=Acta Crystallographica Section B |volume=34 |issue=1 |pages=5–8 |bibcode=1978AcCrB..34....5L }}
{{chem2|[CdBr4(H2O)2}}style="text-align:center;" |twooctahedral Cd centers
Aluminum trichloride
{{chem2|AlCl3(H2O)6}}
{{chem2|[Al(H2O)6](3+)}}{{CNone|none}}isostructural with the Cr(III) compound

Examples are rare for second and third row metals. No entries exist for Mo, W, Tc, Ru, Os, Rh, Ir, Pd, Hg, Au. AuCl3(H2O) has been invoked but its crystal structure has not been reported.

Hydrates of metal sulfates

Transition metal sulfates form a variety of hydrates, each of which crystallizes in only one form. The sulfate group often binds to the metal, especially for those salts with fewer than six aquo ligands. The heptahydrates, which are often the most common salts, crystallize as monoclinic and the less common orthorhombic forms. In the heptahydrates, one water is in the lattice and the other six are coordinated to the ferrous center.{{cite journal|last=Baur |first=W. H. |title=On the crystal chemistry of salt hydrates. III. The determination of the crystal structure of FeSO4(H2O)7 (melanterite) |journal=Acta Crystallographica |year=1964 |volume=17 |issue=9 |pages=1167–1174 |doi=10.1107/S0365110X64003000|doi-access=free |bibcode=1964AcCry..17.1167B }} Many of the metal sulfates occur in nature, being the result of weathering of mineral sulfides.{{cite journal |doi=10.1016/j.jseaes.2012.11.027|title=The stability of sulfate and hydrated sulfate minerals near ambient conditions and their significance in environmental and planetary sciences|year=2013|last1=Chou|first1=I-Ming|last2=Seal|first2=Robert R.|last3=Wang|first3=Alian|journal=Journal of Asian Earth Sciences|volume=62|pages=734–758|bibcode=2013JAESc..62..734C}} Many monohydrates are known.

class="wikitable"

! Formula of
hydrated metal ion sulfate

Coordination
sphere of the metal ion
Equivalents of water of crystallization
that are not bound to M
mineral nameRemarks
MgSO4(H2O){{nowrap|[Mn(μ-H2O)(μ4,-κ1-SO4)4]}}{{cite journal|journal=Neues Jahrbuch für Mineralogie - Monatshefte|year=1991|author=Wildner, M.; Giester, G.|pages=296–306|title=The Crystal Structures of Kieserite-type Compounds. I. Crystal Structures of Me(II)SO4·H2O (Me = Mn, Fe, Co, Ni, Zn) (English translation)}}{{CNone|none}}kieseritesee Mn, Fe, Co, Ni, Zn analogues

File:ICSD CollCode71346.png

MgSO4(H2O)4[Mg(H2O)4(κ′,κ1-SO4)]2{{CNone|none}}sulfate is bridging ligand, 8-membered Mg2O4S2 rings{{cite journal|doi=10.1107/S1600536802002192|title=Zinc(II) Sulfate Tetrahydrate and Magnesium Sulfate Tetrahydrate. Addendum|year=2002|last1=Baur|first1=Werner H.|journal=Acta Crystallographica Section E|volume=58|issue=4|pages=e9–e10|doi-access=free|bibcode=2002AcCrE..58E...9B }}
MgSO4(H2O)6[Mg(H2O)6]{{CNone|none}}hexahydratecommon motif
MgSO4(H2O)7[Mg(H2O)6]style="text-align:center;" | oneepsomitecommon motif
TiOSO4(H2O)[Ti(μ-O)2(H2O)(κ1-SO4)3]{{CNone|none}}further hydration gives gels
VSO4(H2O)6[V(H2O)6]{{CNone|none}}Adopts the hexahydrite motif{{cite journal |doi=10.1021/ic00239a021|title=Synthesis and Characterization of Four Vanadium(II) Compounds, Including Vanadium(II) Sulfate Hexahydrate and Vanadium(II) Saccharinates|year=1986|last1=Cotton|first1=F. Albert|last2=Falvello|first2=Larry R.|last3=Llusar|first3=Rosa|last4=Libby|first4=Eduardo|last5=Murillo|first5=Carlos A.|last6=Schwotzer|first6=Willi|journal=Inorganic Chemistry|volume=25|issue=19|pages=3423–3428}}
VSO4(H2O)7[V(H2O)6]style="text-align:center;" | onehexaaquo{{cite journal |doi=10.1021/ic00102a009 |title=Neutron and X-ray Structural Characterization of the Hexaaquavanadium(II) Compound VSO4.cntdot.7H2O |date=1994 |last1=Cotton |first1=F. Albert |last2=Falvello |first2=Larry R. |last3=Murillo |first3=Carlos A. |last4=Pascual |first4=Isabel |last5=Schultz |first5=Arthur J. |last6=Tomas |first6=Milagros |journal=Inorganic Chemistry |volume=33 |issue=24 |pages=5391–5395 }}
VOSO4(H2O)5[VO(H2O)41-SO4)4]style="text-align:center;" | one
Cr(SO4)(H2O)3[Cr(H2O)31-SO4)]{{CNone|none}}resembles Cu(SO4)(H2O)3{{cite journal|author1=Dahmen, T. |author2=Glaum, R. |author3=Schmidt, G. |author4=Gruehn, R. |title=Zur Darstellung und Kristallstruktur von CrSO4·3H2O|trans-title=Preparation and Crystal Structure of Chromium(2+) Sulfate Trihydrate|journal=Zeitschrift für Anorganische und Allgemeine Chemie|year=1990|volume=586|pages=141–8|doi=10.1002/zaac.19905860119}}
Cr(SO4)(H2O)5[Cr(H2O)41-SO4)2]style="text-align:center;" | oneresembles Cu(SO4)(H2O)5{{cite journal|author1=T. P. Vaalsta|author2=E. N. Maslen|journal=Acta Crystallogr.|year=1987|volume=B43|pages=448–454|doi=10.1107/S0108768187097519|title=Electron density in chromium sulfate pentahydrate|issue=5 |bibcode=1987AcCrB..43..448V }}
Cr2(SO4)3(H2O)18[Cr(H2O)6]style="text-align:center;" | sixOne of several chromium(III) sulfates
MnSO4(H2O)[Mn(μ-H2O)(μ4,-κ1-SO4)4]{{CNone|none}}szmikitesee Fe, Co, Ni, Zn analogues
MnSO4(H2O)4[Mn(μ-SO4)2(H2O)4]{{cite journal |doi=10.1107/S1600536802020962|title=Manganese(II) Sulfate Tetrahydrate (Ilesite) |year=2002 |last1=Held |first1=Peter |last2=Bohatý |first2=Ladislav |journal=Acta Crystallographica Section E |volume=58 |issue=12 |pages=i121–i123 |s2cid=62599961 |doi-access=free |bibcode=2002AcCrE..58I.121H }}{{CNone|none}}Ilesitepentahydrate is called jôkokuite; the hexahydrate, the most rare, is called chvaleticeitewith 8-membered ring Mn2(SO4)2 core
MnSO4(H2O)5{{dunno}}jôkokuite
MnSO4(H2O)6{{dunno}}Chvaleticeite
MnSO4(H2O)7[Mn(H2O)6]style="text-align:center;" | onemallarditesee Mg analogue
FeSO4(H2O)[Fe(μ-H2O)(μ41-SO4)4]{{CNone|none}}see Mn, Co, Ni, Zn analogues
FeSO4(H2O)7[Fe(H2O)6]style="text-align:center;" | onemelanteritesee Mg analogue
FeSO4(H2O)4[Fe(H2O)4(κ′,κ1-SO4)]2{{CNone|none}}sulfate is bridging ligand, 8-membered Fe2O4S2 rings
FeII(FeIII)2(SO4)4(H2O)14{{nowrap|[FeII(H2O)6]2+[FeIII(H2O)41-SO4)2]{{su|p=−|b=2}}}}{{CNone|none}}sulfates are terminal ligands on Fe(III){{cite journal|title=The Crystal Structure of Roemerite |author=L. Fanfani |author2=A. Nunzi |author3=P. F. Zanazzi |journal=American Mineralogist|year=1970|volume=55|pages=78–89}}
CoSO4(H2O)[Co(μ-H2O)(μ41-SO4)4]{{CNone|none}}see Mn, Fe, Ni, Zn analogues
CoSO4(H2O)6[Co(H2O)6]{{CNone|none}}moorhouseitesee Mg analogue
CoSO4(H2O)7[Co(H2O)6]style="text-align:center;" | onebieberitesee Fe, Mg analogues
NiSO4(H2O)[Ni(μ-H2O)(μ41-SO4)4]{{CNone|none}}see Mn, Fe, Co, Zn analogues
NiSO4(H2O)6[Ni(H2O)6]{{CNone|none}}retgersiteOne of several nickel sulfate hydrates{{cite journal | doi=10.1107/S0108768187097787 | title=Structure, absolute configuration and optical activity of α-nickel sulfate hexahydrate | year=1987 | last1=Stadnicka | first1=K. | last2=Glazer | first2=A. M. | last3=Koralewski | first3=M. | journal=Acta Crystallographica Section B | volume=43 | issue=4 | pages=319–325 | bibcode=1987AcCrB..43..319S }}
NiSO4(H2O)7[Ni(H2O)6]style="text-align:center;" |morenosite
(NH4)2[Pt2(SO4)4(H2O)2][Pt2(SO4)4(H2O)2]2−{{CNone|none}}Pt-Pt bonded Chinese lantern structure{{cite journal |doi=10.1002/ejic.200400755|title=Monomers, Chains and Layers of [Pt2(SO4)4] Units in the Crystal Structures of the Platinum(III) Sulfates (NH4)2[Pt2(SO4)4(H2O)2], K4[Pt2(SO4)5] and Cs[Pt2(SO4)3(HSO4)]|year=2005|last1=Pley|first1=Martin|last2=Wickleder|first2=Mathias S.|journal=European Journal of Inorganic Chemistry|volume=2005|issue=3|pages=529–535|doi-access=free}}
CuSO4(H2O)5[Cu(H2O)41-SO4)2]style="text-align:center;" | onechalcantitesulfate is bridging ligandV. P. Ting, P. F. Henry, M. Schmidtmann, C. C. Wilson, M. T. Weller "In situ Neutron Powder Diffraction and Structure Determination in Controlled Humidities" Chem. Commun., 2009, 7527-7529. {{doi|10.1039/B918702B}}
CuSO4(H2O)7[Cu(H2O)6]style="text-align:center;" | oneboothite
ZnSO4(H2O)[Zn(μ-H2O)(μ41-SO4)4]{{CNone|none}}see Mn, Fe, Co, Ni analogues
ZnSO4(H2O)4[Zn(H2O)4(κ′,κ1-SO4)]2{{CNone|none}}sulfate is bridging ligand, 8-membered Zn2O4S2 rings{{cite journal|doi=10.1107/S1600536801017998|title=Zinc(II) sulfate tetrahydrate|year=2001|last1=Blake|first1=Alexander J.|last2=Cooke|first2=Paul A.|last3=Hubberstey|first3=Peter|last4=Sampson|first4=Claire L.|journal=Acta Crystallographica Section E|volume=57|issue=12|pages=i109–i111|bibcode=2001AcCrE..57I.109B }}
ZnSO4(H2O)6[Zn(H2O)6]{{CNone|none}}see Mg analogue{{cite journal|doi=10.1002/zaac.19794560124|title=Beiträge zum thermischen Verhalten von Sulfaten. II. Zur thermischen Dehydratisierung des ZnSO4·7H2O und zum Hochtemperaturverhalten von wasserfreiem ZnSO4|year=1979|last1=Spiess|first1=M.|last2=Gruehn|first2=R.|journal=Zeitschrift für anorganische und allgemeine Chemie|volume=456|pages=222–240}}
ZnSO4(H2O)7[Zn(H2O)6]style="text-align:center;" |onegoslarite{{cite journal |doi=10.2138/am.2007.2229|title=Co2+–Cu2+ Substitution in Bieberite Solid-Solution Series, (Co1−xCuxSO4·7H2O, 0.00 ≤ x ≤ 0.46: Synthesis, Single-Crystal Structure Analysis, and Optical Spectroscopy|year=2007|last1=Redhammer|first1=G. J.|last2=Koll|first2=L.|last3=Bernroider|first3=M.|last4=Tippelt|first4=G.|last5=Amthauer|first5=G.|last6=Roth|first6=G.|journal=American Mineralogist|volume=92|issue=4|pages=532–545|bibcode=2007AmMin..92..532R|s2cid=95885758}}see Mg analogue
CdSO4(H2O)[Cd(μ-H2O)21-SO4)4]{{CNone|none}}bridging water ligand{{cite journal|author=Theppitak, Chatphorn; Chainok, Kittipong|title=Crystal Structure of CdSO4(H2O): A Redetermination|journal=Acta Crystallographica Section E |year=2015|volume=71|issue=10|pages=i8–i9|doi=10.1107/S2056989015016904|pmid=26594423|pmc=4647421|doi-access=free}}

Hydrates of metal nitrates

Transition metal nitrates form a variety of hydrates. The nitrate anion often binds to the metal, especially for those salts with fewer than six aquo ligands. Nitrates are uncommon in nature, so few minerals are represented here. Hydrated ferrous nitrate has not been characterized crystallographically.

class="wikitable"

! Formula of
hydrated metal ion nitrate

Coordination
sphere of the metal ion
Equivalents of water of crystallization
that are not bound to M
Remarks
Cr(NO3)3(H2O)9[Cr(H2O)6]3+style="text-align:center;" |threeoctahedral configuration{{cite journal |doi=10.1107/S0108270190012628|title=Structure of Hexaaquachromium(III) Nitrate Trihydrate|year=1991|last1=Lazar|first1=D.|last2=Ribár|first2=B.|last3=Divjaković|first3=V.|last4=Mészáros|first4=Cs.|journal=Acta Crystallographica Section C |volume=47|issue=5|pages=1060–1062|bibcode=1991AcCrC..47.1060L }} isostructural with Fe(NO3)3(H2O)9
Mn(NO3)2(H2O)4cis-[Mn(H2O)41-ONO2)2]{{CNone|none}}octahedral configuration
Mn(NO3)2(H2O)[Mn(H2O)(μ-ONO2)5]{{CNone|none}}octahedral configuration
Mn(NO3)2(H2O)6[Mn(H2O)6]{{CNone|none}}octahedral configuration{{cite journal |doi=10.1524/zkri.1976.144.16.334| title=The crystal structure of hexaquomanganese nitrate, Mn(OH2)6(NO3)2| year=1976| last1=Petrovič| first1=D.| last2=Ribár| first2=B.| last3=Djurič| first3=S.| last4=Krstanovič| first4=I.| journal=Zeitschrift für Kristallographie - Crystalline Materials| volume=144| issue=1–6| pages=334–340| s2cid=97491858}}
Fe(NO3)3(H2O)9[Fe(H2O)6]3+style="text-align:center;" |threeoctahedral configuration{{cite journal |doi=10.1021/ic50168a006|title=Structure of Hexaaquairon(III) Nitrate Trihydrate. Comparison of Iron(II) and Iron(III) Bond Lengths in High-Spin Octahedral Environments|year=1977|last1=Hair|first1=Neil J.|last2=Beattie|first2=James K.|journal=Inorganic Chemistry|volume=16|issue=2|pages=245–250}} isostructural with Cr(NO3)3(H2O)9
Fe(NO3)3)(H2O)4[Fe(H2O)32-O2NO)2]+style="text-align:center;" |onepentagonal bipyramid{{cite journal|first1=H. |last1=Schmidt |first2=A. |last2=Asztalos |first3=F. |last3=Bok |first4=W. |last4=Voigt |date=2012 |title=New iron(III) nitrate hydrates: Fe(NO3)3·xH2O with x = 4, 5 and 6 |journal=Acta Crystallographica Section C |volume=C68 |issue=6 |pages=i29-33 |doi=10.1107/S0108270112015855|pmid=22669180 }}
Fe(NO3)3(H2O)5[Fe(H2O)51-ONO2)]2+{{CNone|none}}octahedral configuration
Fe(NO3)3(H2O)6[Fe(H2O)6]3+{{CNone|none}}octahedral configuration
Co(NO3)2(H2O)2[Co(H2O)21-ONO2)2]{{CNone|none}}octahedral configuration
Co(NO3)2(H2O)4[Co(H2O)41-ONO2)2{{CNone|none}}octahedral configuration
Co(NO3)2(H2O)6[Co(H2O)6]2+{{CNone|none}}octahedral configuration.{{ cite journal | journal = Cryst. Struct. Commun. | first1 = P. V. | last1 = Prelesnik | first2 = F. | last2 = Gabela | first3 = B. | last3 = Ribar | first4 = I. | last4 = Krstanovic | volume = 2 | issue = 4 | year = 1973| pages = 581–583 | title = Hexaaquacobalt(II) nitrate}}
α-Ni(NO3)2(H2O)4cis-[Ni(H2O)41-ONO2)2]{{CNone|none}}octahedral configuration.{{cite journal |doi=10.1107/S0365110X67001392|title=Structure du Nitrate de Nickel Tétrahydraté|year=1967|last1=Gallezot|first1=P.|last2=Weigel|first2=D.|last3=Prettre|first3=M.|journal=Acta Crystallographica|volume=22|issue=5|pages=699–705|doi-access=free|bibcode=1967AcCry..22..699G }}
β-Ni(NO3)2(H2O)4trans-[Ni(H2O)41-ONO2)2]{{CNone|none}}octahedral configuration.{{cite journal |doi=10.1107/S0567740879010827|title=Crystal Structure of the β Form of Ni(NO3)2·4H2O|year=1979|last1=Morosin|first1=B.|last2=Haseda|first2=T.|journal=Acta Crystallographica Section B |volume=35|issue=12|pages=2856–2858}}
Pd(NO3)2(H2O)2{{nowrap|trans-[Pd(H2O)21-ONO2)2]}}{{CNone|none}}square planar coordination geometry{{cite journal |doi=10.1016/0025-5408(91)90021-D|title=Crystal Structure of Pd(NO3)2(H2O)2|year=1991|last1=Laligant|first1=Y.|last2=Ferey|first2=G.|last3=Le Bail|first3=A.|journal=Materials Research Bulletin|volume=26|issue=4|pages=269–275}}
Cu(NO3)2(H2O)[Cu(H2O)(κ2-ONO2)2]{{CNone|none}}octahedral configuration.
Cu(NO3)2(H2O)1.5{{dunno|uncertain}}{{dunno|uncertain}}{{dunno|uncertain}}{{cite journal | last1 = Dornberger-Schiff | first1 = K. | last2 = Leciejewicz | first2 = J. | year = 1958 | title = Zur Struktur des Kupfernitrates Cu(NO3)2·1.5H2O | journal = Acta Crystallographica | volume = 11 | issue = 11 | pages = 825–826 | doi = 10.1107/S0365110X58002322 | doi-access = free | bibcode = 1958AcCry..11..825D }}
Cu(NO3)2(H2O)2.5[Cu(H2O)21-ONO2)2]style="text-align:center;" |onesquare planar{{cite journal | last1 = Morosin | first1 = B. | year = 1970 | title = The Crystal Structure of Cu(NO3)2·2.5H2O | journal = Acta Crystallographica | volume = B26 | issue = 9 | pages = 1203–1208 | doi = 10.1107/S0567740870003898 | bibcode = 1970AcCrB..26.1203M }}
Cu(NO3)2(H2O)3{{dunno|uncertain}}{{dunno|uncertain}}{{dunno|uncertain}}J. Garaj, Sbornik Prac. Chem.-Technol. Fak. Svst., Cskosl. 1966, pp. 35–39.
Cu(NO3)2(H2O)6[Cu(H2O)6]2+{{CNone|none}}octahedral configuration{{cite journal | last1 = Zibaseresht | first1 = R. | last2 = Hartshorn | first2 = R. M. | year = 2006 | title = Hexaaquacopper(II) dinitrate: absence of Jahn-Teller distortion | journal = Acta Crystallographica | volume = E62 | issue = 1 | pages = i19–i22 | doi = 10.1107/S1600536805041851 | bibcode = 2006AcCrE..62I..19Z }}
Zn(NO3)2(H2O)4cis-[Zn(H2O)41-ONO2)2]{{CNone|none}}octahedral configuration.
{{chem2|link=Mercurous nitrate|Hg2(NO3)2(H2O)2}}[H2O–Hg–Hg–OH2]2+style="text-align:center;" | linear{{cite journal |journal=Journal of the Chemical Society|title=The Crystal Structure of Mercurous Nitrate Dihydrate|author=D. Grdenić|doi= 10.1039/jr9560001312|year=1956|page=1312}}

Photos

File:Copper sulfate.jpg|Hydrated copper(II) sulfate is bright blue.

File:Copper sulfate anhydrous.jpg|Anhydrous copper(II) sulfate has a light turquoise tint.

See also

References