jacobi elliptic functions
{{Short description|Mathematical function}}
In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum, as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation for . The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by {{harvs|txt|first=Carl Gustav Jakob |last=Jacobi|authorlink=Carl Gustav Jakob Jacobi|year=1829}}. Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular,{{Cite book |last1=Armitage |first1=J. V. |last2=Eberlein| first2=W. F. |title=Elliptic Functions |publisher=Cambridge University Press |year=2006 |edition=First |isbn=978-0-521-78078-0}} p. 48 but his work was published much later.
Overview
Image:JacobiFunctionAbstract.png
There are twelve Jacobi elliptic functions denoted by , where and are any of the letters , , , and . (Functions of the form are trivially set to unity for notational completeness.) is the argument, and is the parameter, both of which may be complex. In fact, the Jacobi elliptic functions are meromorphic in both and .{{cite journal |last1=Walker |first1=Peter |date=2003 |title=The Analyticity of Jacobian Functions with Respect to the Parameter k |url=https://www.jstor.org/stable/3560143 |bibcode=2003RSPSA.459.2569W |journal=Proceedings of the Royal Society |volume=459 |issue=2038 |pages=2569–2574|doi=10.1098/rspa.2003.1157 |jstor=3560143 |s2cid=121368966 }} The distribution of the zeros and poles in the -plane is well-known. However, questions of the distribution of the zeros and poles in the -plane remain to be investigated.
In the complex plane of the argument , the twelve functions form a repeating lattice of simple poles and zeroes.{{cite web|url=http://dlmf.nist.gov/22|title=NIST Digital Library of Mathematical Functions (Release 1.0.17)|editor-last=Olver|editor-first=F. W. J.|display-editors=et al |date=2017-12-22|publisher=National Institute of Standards and Technology|access-date=2018-02-26 }} Depending on the function, one repeating parallelogram, or unit cell, will have sides of length or on the real axis, and or on the imaginary axis, where and are known as the quarter periods with being the elliptic integral of the first kind. The nature of the unit cell can be determined by inspecting the "auxiliary rectangle" (generally a parallelogram), which is a rectangle formed by the origin at one corner, and as the diagonally opposite corner. As in the diagram, the four corners of the auxiliary rectangle are named , , , and , going counter-clockwise from the origin. The function will have a zero at the corner and a pole at the corner. The twelve functions correspond to the twelve ways of arranging these poles and zeroes in the corners of the rectangle.
When the argument and parameter are real, with , and will be real and the auxiliary parallelogram will in fact be a rectangle, and the Jacobi elliptic functions will all be real valued on the real line.
Since the Jacobi elliptic functions are doubly periodic in , they factor through a torus – in effect, their domain can be taken to be a torus, just as cosine and sine are in effect defined on a circle. Instead of having only one circle, we now have the product of two circles, one real and the other imaginary. The complex plane can be replaced by a complex torus. The circumference of the first circle is and the second , where and are the quarter periods. Each function has two zeroes and two poles at opposite positions on the torus. Among the points {{nowrap|, , , }} there is one zero and one pole.
The Jacobi elliptic functions are then doubly periodic, meromorphic functions satisfying the following properties:
- There is a simple zero at the corner , and a simple pole at the corner .
- The complex number is equal to half the period of the function ; that is, the function is periodic in the direction , with the period being . The function is also periodic in the other two directions and , with periods such that and are quarter periods.
{{multiple image
|align=center
|footer=Plots of four Jacobi Elliptic Functions in the complex plane of , illustrating their double periodic behavior. Images generated using a version of the domain coloring method.{{Cite web|url=https://github.com/nschloe/cplot|title=cplot, Python package for plotting complex-valued functions|website=GitHub }} All have values of equal to .
| image1 = Ellipj-sn-08.png
| alt1=Elliptic Jacobi function ,
| caption1=Jacobi elliptic function
| image2 = Ellipj-cn08.png
| alt2=Elliptic Jacobi function ,
| caption2=Jacobi elliptic function
| image3 = Ellipj-dn08.png
| alt3=Elliptic Jacobi function ,
| caption3=Jacobi elliptic function
| image4 = Ellipj-sc08.png
| alt4=Elliptic Jacobi function ,
| caption4=Jacobi elliptic function
}}
{{clear}}
Notation
The elliptic functions can be given in a variety of notations, which can make the subject unnecessarily confusing. Elliptic functions are functions of two variables. The first variable might be given in terms of the amplitude , or more commonly, in terms of given below. The second variable might be given in terms of the parameter , or as the elliptic modulus , where , or in terms of the modular angle , where . The complements of and are defined as and . These four terms are used below without comment to simplify various expressions.
The twelve Jacobi elliptic functions are generally written as where and are any of the letters , , , and . Functions of the form are trivially set to unity for notational completeness. The “major” functions are generally taken to be , and from which all other functions can be derived and expressions are often written solely in terms of these three functions, however, various symmetries and generalizations are often most conveniently expressed using the full set. (This notation is due to Gudermann and Glaisher and is not Jacobi's original notation.)
Throughout this article, .
The functions are notationally related to each other by the multiplication rule: (arguments suppressed)
:
from which other commonly used relationships can be derived:
:
:
:
The multiplication rule follows immediately from the identification of the elliptic functions with the Neville theta functions{{cite book |last=Neville |first=Eric Harold |date=1944 |title=Jacobian Elliptic Functions |url=https://archive.org/details/jacobianelliptic00neviuoft |location=Oxford |publisher=Oxford University Press |author-link=Eric Harold Neville}}
:
Also note that:
:
{{anchor|sn|cn|dn|am}}Definition in terms of inverses of elliptic integrals
File:Modell der elliptischen Funktion φ=am (u, k) durch eine Fläche -Schilling V, 1 - 317-.jpg
There is a definition, relating the elliptic functions to the inverse of the incomplete elliptic integral of the first kind . These functions take the parameters and as inputs. The that satisfies
:
is called the Jacobi amplitude:
:
In this framework, the elliptic sine sn u (Latin: sinus amplitudinis) is given by
:
and the elliptic cosine cn u (Latin: cosinus amplitudinis) is given by
:
and the delta amplitude dn u (Latin: delta amplitudinis)If and is restricted to , then can be also written as
:
In the above, the value is a free parameter, usually taken to be real such that (but can be complex in general), and so the elliptic functions can be thought of as being given by two variables, and the parameter . The remaining nine elliptic functions are easily built from the above three (, , ), and are given in a section below. Note that when , that then equals the quarter period .
In the most general setting, is a multivalued function (in ) with infinitely many logarithmic branch points (the branches differ by integer multiples of ), namely the points and where .{{cite journal |last=Sala |first=Kenneth L. |date=November 1989 |title=Transformations of the Jacobian Amplitude Function and Its Calculation via the Arithmetic-Geometric Mean|url=https://epubs.siam.org/doi/abs/10.1137/0520100 |journal=SIAM Journal on Mathematical Analysis|volume=20|issue=6|pages=1514–1528|doi=10.1137/0520100 }} This multivalued function can be made single-valued by cutting the complex plane along the line segments joining these branch points (the cutting can be done in non-equivalent ways, giving non-equivalent single-valued functions), thus making analytic everywhere except on the branch cuts. In contrast, and other elliptic functions have no branch points, give consistent values for every branch of , and are meromorphic in the whole complex plane. Since every elliptic function is meromorphic in the whole complex plane (by definition), (when considered as a single-valued function) is not an elliptic function.
However, a particular cutting for can be made in the -plane by line segments from to with ; then it only remains to define at the branch cuts by continuity from some direction. Then becomes single-valued and singly-periodic in with the minimal period and it has singularities at the logarithmic branch points mentioned above. If and , is continuous in on the real line. When , the branch cuts of in the -plane cross the real line at for ; therefore for , is not continuous in on the real line and jumps by on the discontinuities.
But defining this way gives rise to very complicated branch cuts in the -plane (not the -plane); they have not been fully described as of yet.
Let
:
be the incomplete elliptic integral of the second kind with parameter .
Then the Jacobi epsilon function can be defined as
:
for and
:
:
The Jacobi epsilon function is not an elliptic function, but it appears when differentiating the Jacobi elliptic functions with respect to the parameter.
The Jacobi zn function is defined by
:
It is a singly periodic function which is meromorphic in
Historically, the Jacobi elliptic functions were first defined by using the amplitude. In more modern texts on elliptic functions, the Jacobi elliptic functions are defined by other means, for example by ratios of theta functions (see below), and the amplitude is ignored.
In modern terms, the relation to elliptic integrals would be expressed by
Definition as trigonometry: the Jacobi ellipse
File:Jacobi Elliptic Functions (on Jacobi Ellipse).svg of the first kind (with parameter
:
\begin{align}
& x^2 + \frac{y^2}{b^2} = 1, \quad b > 1, \\
& m = 1 - \frac{1}{b^2}, \quad 0 < m < 1, \\
& x = r \cos \varphi, \quad y = r \sin \varphi
\end{align}
then:
:
For each angle
:
(the incomplete elliptic integral of the first kind) is computed.
On the unit circle (
However, the relation of
Let
Then the familiar relations from the unit circle:
:
read for the ellipse:
:
So the projections of the intersection point
:
For the
:
into:
:
The latter relations for the x- and y-coordinates of points on the unit ellipse may be considered as generalization of the relations
The following table summarizes the expressions for all Jacobi elliptic functions pq(u,m) in the variables (x,y,r) and (φ,dn) with
class="wikitable" style="text-align:center"
|+ Jacobi elliptic functions pq[u,m] as functions of {x,y,r} and {φ,dn} !colspan="2" rowspan="2"| !colspan="4"|q |
c
! s ! n ! d |
---|
rowspan="6"|p |
c
|1 || |
s
| |
n
| |
d
| |
Definition in terms of the Jacobi theta functions
=Using elliptic integrals=
Equivalently, Jacobi's elliptic functions can be defined in terms of the theta functions.{{cite book |last1=Whittaker |first1=Edmund Taylor |authorlink1=Edmund T. Whittaker |last2=Watson |first2=George Neville |authorlink2=George N. Watson |date= 1927 |page=492 |edition=4th |title=A Course of Modern Analysis |title-link=A Course of Modern Analysis |publisher= Cambridge University Press}} With
:
:
:
:
and let
:
\operatorname{cn}(u,m)&=\frac{\theta_4(\tau)\theta_2(\zeta|\tau)}{\theta_2(\tau)\theta_4(\zeta|\tau)},\\
\operatorname{dn}(u,m)&=\frac{\theta_4(\tau)\theta_3(\zeta|\tau)}{\theta_3(\tau)\theta_4(\zeta|\tau)}.\end{align}
The Jacobi zn function can be expressed by theta functions as well:
:
&=\frac{\pi}{2K}\frac{\theta_{2}'(\zeta|\tau)}{\theta_{2}(\zeta|\tau)}+\frac{\operatorname{dn}(u,m)\operatorname{sn}(u,m)}{\operatorname{cn}(u,m)}\\
&=\frac{\pi}{2K}\frac{\theta_{1}'(\zeta|\tau)}{\theta_{1}(\zeta|\tau)}-\frac{\operatorname{cn}(u,m)\operatorname{dn}(u,m)}{\operatorname{sn}(u,m)}\end{align}
where
=Using modular inversion=
In fact, the definition of the Jacobi elliptic functions in Whittaker & Watson is stated a little bit differently than the one given above (but it's equivalent to it) and relies on modular inversion: The function
File:The region F1 for modular inversion.jpg
:
assumes every value in
:
where
:
In this way, each
:
\operatorname{cn}(u,m)&=\frac{\theta_4(\tau)\theta_2(\zeta |\tau)}{\theta_2(\tau)\theta_4(\zeta|\tau)},\\
\operatorname{dn}(u,m)&=\frac{\theta_4(\tau)\theta_3(\zeta |\tau)}{\theta_3(\tau)\theta_4(\zeta|\tau)}\end{align}
where
In the book, they place an additional restriction on
Definition in terms of Neville theta functions
The Jacobi elliptic functions can be defined very simply using the Neville theta functions:
:
Simplifications of complicated products of the Jacobi elliptic functions are often made easier using these identities.
Jacobi transformations
=The Jacobi imaginary transformations=
File:JacobiElliptic.HT.svg of the first kind. The dotted curve is the unit circle. Since these are the Jacobi functions for m = 0 (circular trigonometric functions) but with imaginary arguments, they correspond to the six hyperbolic trigonometric functions.]]
The Jacobi imaginary transformations relate various functions of the imaginary variable i u or, equivalently, relations between various values of the m parameter. In terms of the major functions:{{cite book |last1=Whittaker |first1=E.T. |last2=Watson |first2=G.N.|date=1940 |title=A Course in Modern Analysis |url=https://archive.org/details/courseofmodernan00whit |location=New York, USA |publisher=The MacMillan Co.|isbn=978-0-521-58807-2|author-link=A Course of Modern Analysis}}{{rp|506}}
:
:
:
Using the multiplication rule, all other functions may be expressed in terms of the above three. The transformations may be generally written as
:
class="wikitable" style="text-align:center"
|+ Jacobi Imaginary transformations !colspan="2" rowspan="2"| !colspan="4"|q |
c
! s ! n ! d |
---|
rowspan="6"|p |
c
| 1 || i ns || nc || nd |
s
| −i sn || 1 || −i sc || −i sd |
n
| cn || i cs || 1 || cd |
d
| dn || i ds || dc || 1 |
Since the hyperbolic trigonometric functions are proportional to the circular trigonometric functions with imaginary arguments, it follows that the Jacobi functions will yield the hyperbolic functions for m=1.{{rp|249}} In the figure, the Jacobi curve has degenerated to two vertical lines at x = 1 and x = −1.
= The Jacobi real transformations =
The Jacobi real transformations{{rp|308}} yield expressions for the elliptic functions in terms with alternate values of m. The transformations may be generally written as
:
class="wikitable" style="text-align:center"
|+ Jacobi real transformations !colspan="2" rowspan="2"| !colspan="4"|q |
c
! s ! n ! d |
---|
rowspan="6"|p |
c
| |
s
| |
n
| |
d
| |
= Other Jacobi transformations =
Jacobi's real and imaginary transformations can be combined in various ways to yield three more simple transformations
.{{rp|214}} The real and imaginary transformations are two transformations in a group (D3 or anharmonic group) of six transformations. If
:
is the transformation for the m parameter in the real transformation, and
:
is the transformation of m in the imaginary transformation, then the other transformations can be built up by successive application of these two basic transformations, yielding only three more possibilities:
:
\begin{align}
\mu_{IR}(m)&=&\mu_I(\mu_R(m))&=&-m'/m \\
\mu_{RI}(m)&=&\mu_R(\mu_I(m))&=&1/m' \\
\mu_{RIR}(m)&=&\mu_R(\mu_I(\mu_R(m)))&=&-m/m'
\end{align}
These five transformations, along with the identity transformation (μU(m) = m) yield the six-element group. With regard to the Jacobi elliptic functions, the general transformation can be expressed using just three functions:
:
:
:
where i = U, I, IR, R, RI, or RIR, identifying the transformation, γi is a multiplication factor common to these three functions, and the prime indicates the transformed function. The other nine transformed functions can be built up from the above three. The reason the cs, ns, ds functions were chosen to represent the transformation is that the other functions will be ratios of these three (except for their inverses) and the multiplication factors will cancel.
The following table lists the multiplication factors for the three ps functions, the transformed m{{'}}s, and the transformed function names for each of the six transformations.{{rp|214}} (As usual, k2 = m, 1 − k2 = k12 = m′ and the arguments (
:
class="wikitable" style="text-align:center"
|+ Parameters for the six transformations !Transformation i | cs' | ns' | ds' | ||
U
| 1 || m || cs || ns || ds | |||||
---|---|---|---|---|---|
I
| i || m' || ns || cs || ds | |||||
IR
| i k || −m'/m || ds || cs || ns | |||||
R
| k || 1/m || ds || ns || cs | |||||
RI
|i k1|| 1/m' || ns || ds || cs | |||||
RIR
| k1 || −m/m' || cs || ds || ns |
Thus, for example, we may build the following table for the RIR transformation. The transformation is generally written
:
class="wikitable" style="text-align:center"
|+ The RIR transformation !colspan="2" rowspan="2"| !colspan="4"|q |
c
! s ! n ! d |
---|
rowspan="6"|p |
c
|1|| k' cs || cd || cn |
s
| |
n
| dc || |
d
| nc || |
The value of the Jacobi transformations is that any set of Jacobi elliptic functions with any real-valued parameter m can be converted into another set for which
=Amplitude transformations=
In the following, the second variable is suppressed and is equal to
:
:
where both identities are valid for all
With
:
we have
:
:
:
where all the identities are valid for all
The Jacobi hyperbola
File:Jacobi Elliptic Functions (on Jacobi Hyperbola).svg of the first kind. The dotted curve is the unit circle. For the ds-dc triangle, σ = sin(φ)cos(φ).]]
Introducing complex numbers, our ellipse has an associated hyperbola:
:
from applying Jacobi's imaginary transformation to the elliptic functions in the above equation for x and y.
:
It follows that we can put
{{anchor|ns|nc|nd|sc|sd|dc|ds|cs|cd|pg}}Minor functions
Reversing the order of the two letters of the function name results in the reciprocals of the three functions above:
:
\operatorname{ns}(u) = \frac{1}{\operatorname{sn}(u)}, \qquad \operatorname{nc}(u) = \frac{1}{\operatorname{cn}(u)}, \qquad
\operatorname{nd}(u) = \frac{1}{\operatorname{dn}(u)}.
Similarly, the ratios of the three primary functions correspond to the first letter of the numerator followed by the first letter of the denominator:
:
\begin{align}
\operatorname{sc}(u) = \frac{\operatorname{sn}(u)}{\operatorname{cn}(u)}, \qquad
\operatorname{sd}(u) = \frac{\operatorname{sn}(u)}{\operatorname{dn}(u)}, \qquad \operatorname{dc}(u) = \frac{\operatorname{dn}(u)}{\operatorname{cn}(u)}, \qquad \operatorname{ds}(u) = \frac{\operatorname{dn}(u)}{\operatorname{sn}(u)}, \qquad \operatorname{cs}(u) = \frac{\operatorname{cn}(u)}{\operatorname{sn}(u)}, \qquad
\operatorname{cd}(u) = \frac{\operatorname{cn}(u)}{\operatorname{dn}(u)}.
\end{align}
More compactly, we have
:
where p and q are any of the letters s, c, d.
Periodicity, poles, and residues
File:JacobiEllipticFunctions.svg
In the complex plane of the argument u, the Jacobi elliptic functions form a repeating pattern of poles (and zeroes). The residues of the poles all have the same absolute value, differing only in sign. Each function pq(u,m) has an "inverse function" (in the multiplicative sense) qp(u,m) in which the positions of the poles and zeroes are exchanged. The periods of repetition are generally different in the real and imaginary directions, hence the use of the term "doubly periodic" to describe them.
For the Jacobi amplitude and the Jacobi epsilon function:
:
:
:
:
where
The double periodicity of the Jacobi elliptic functions may be expressed as:
:
where α and β are any pair of integers. K(⋅) is the complete elliptic integral of the first kind, also known as the quarter period. The power of negative unity (γ) is given in the following table:
:
class="wikitable" style="text-align:center"
|+ !colspan="2" rowspan="2"| !colspan="4"|q |
c
! s ! n ! d |
---|
rowspan="6"|p |
c
|0||β || α + β || α |
s
|β || 0 || α || α + β |
n
| α + β || α || 0 || β |
d
| α || α + β || β || 0 |
When the factor (−1)γ is equal to −1, the equation expresses quasi-periodicity. When it is equal to unity, it expresses full periodicity. It can be seen, for example, that for the entries containing only α when α is even, full periodicity is expressed by the above equation, and the function has full periods of 4K(m) and 2iK(1 − m). Likewise, functions with entries containing only β have full periods of 2K(m) and 4iK(1 − m), while those with α + β have full periods of 4K(m) and 4iK(1 − m).
In the diagram on the right, which plots one repeating unit for each function, indicating phase along with the location of poles and zeroes, a number of regularities can be noted: The inverse of each function is opposite the diagonal, and has the same size unit cell, with poles and zeroes exchanged. The pole and zero arrangement in the auxiliary rectangle formed by (0,0), (K,0), (0,K′) and (K,K′) are in accordance with the description of the pole and zero placement described in the introduction above. Also, the size of the white ovals indicating poles are a rough measure of the absolute value of the residue for that pole. The residues of the poles closest to the origin in the figure (i.e. in the auxiliary rectangle) are listed in the following table:
:
class="wikitable" style="text-align:center; width:200px”"
|+ Residues of Jacobi Elliptic Functions !colspan="2" rowspan="2"| !colspan="4"|q |
width="40pt"|c
! width="40pt"|s ! width="40pt"|n ! width="40pt"|d |
---|
rowspan="6"|p |
height="40pt" |c
| ||1|| |
height="40pt" |s
| |
height="40pt" |n
| |
height="40pt" | d
| -1 || 1 || |
When applicable, poles displaced above by 2K or displaced to the right by 2K′ have the same value but with signs reversed, while those diagonally opposite have the same value. Note that poles and zeroes on the left and lower edges are considered part of the unit cell, while those on the upper and right edges are not.
The information about poles can in fact be used to characterize the Jacobi elliptic functions:{{cite book |last1=Whittaker |first1=Edmund Taylor |authorlink1=Edmund T. Whittaker |last2=Watson |first2=George Neville |authorlink2=George N. Watson |date= 1927 |pages=504–505 |edition=4th |title=A Course of Modern Analysis |title-link=A Course of Modern Analysis |publisher= Cambridge University Press}}
The function
The function
The function
Special values
Setting
:
When
class="wikitable" |
Function
! m = 0 ! m = 1 |
---|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
For the Jacobi amplitude,
In general if neither of p,q is d then
Identities
=Half angle formula=
=K formulas=
Half K formula
Third K formula
:
\frac{\sqrt{2\sqrt{x^4-x^2+1}-x^2+2}+\sqrt{x^2+1}-1}{\sqrt{2\sqrt{x^4-x^2+1}-x^2+2}+\sqrt{x^2+1}+1}
To get x3, we take the tangent of twice the arctangent of the modulus.
Also this equation leads to the sn-value of the third of K:
:
:
These equations lead to the other values of the Jacobi-Functions:
:
:
Fifth K formula
Following equation has following solution:
:
:
To get the sn-values, we put the solution x into following expressions:
:
:
= Relations between squares of the functions =
Relations between squares of the functions can be derived from two basic relationships (Arguments (u,m) suppressed):
where m + m' = 1. Multiplying by any function of the form nq yields more general equations:
With q = d, these correspond trigonometrically to the equations for the unit circle (
-\operatorname{dn}^2{}+m'= -m\operatorname{cn}^2 = m\operatorname{sn}^2-m
-m'\operatorname{nd}^2{}+m'= -mm'\operatorname{sd}^2 = m\operatorname{cd}^2-m
m'\operatorname{sc}^2{}+m'= m'\operatorname{nc}^2 = \operatorname{dc}^2-m
\operatorname{cs}^2{}+m'=\operatorname{ds}^2=\operatorname{ns}^2-m
= Addition theorems =
The functions satisfy the two square relations (dependence on m suppressed)
From this we see that (cn, sn, dn) parametrizes an elliptic curve which is the intersection of the two quadrics defined by the above two equations. We now may define a group law for points on this curve by the addition formulas for the Jacobi functions
\begin{align}
\operatorname{cn}(x+y) & =
{\operatorname{cn}(x) \operatorname{cn}(y)
- \operatorname{sn}(x) \operatorname{sn}(y) \operatorname{dn}(x) \operatorname{dn}(y)
\over {1 - m \operatorname{sn}^2 (x) \operatorname{sn}^2 (y)}}, \\[8pt]
\operatorname{sn}(x+y) & =
{\operatorname{sn}(x) \operatorname{cn}(y) \operatorname{dn}(y) +
\operatorname{sn}(y) \operatorname{cn}(x) \operatorname{dn}(x)
\over {1 - m \operatorname{sn}^2 (x) \operatorname{sn}^2 (y)}}, \\[8pt]
\operatorname{dn}(x+y) & =
{\operatorname{dn}(x) \operatorname{dn}(y) - m \operatorname{sn}(x) \operatorname{sn}(y) \operatorname{cn}(x) \operatorname{cn}(y)
\over {1 - m \operatorname{sn}^2 (x) \operatorname{sn}^2 (y)}}.
\end{align}
The Jacobi epsilon and zn functions satisfy a quasi-addition theorem:
\operatorname{zn}(x+y,m)&=\operatorname{zn}(x,m)+\operatorname{zn}(y,m)-m\operatorname{sn}(x,m)\operatorname{sn}(y,m)\operatorname{sn}(x+y,m).\end{align}
Double angle formulae can be easily derived from the above equations by setting x = y. Half angle formulae are all of the form:
where:
Jacobi elliptic functions as solutions of nonlinear ordinary differential equations
=Derivatives with respect to the first variable=
The derivatives of the three basic Jacobi elliptic functions (with respect to the first variable, with
These can be used to derive the derivatives of all other functions as shown in the table below (arguments (u,m) suppressed):
class="wikitable" style="text-align:center"
|+ Derivatives !colspan="2" rowspan="2"| !colspan="4"|q |
c
! s ! n ! d |
---|
rowspan="6"|p |
c
|0 ||−ds ns ||−dn sn || −m' nd sd |
s
|dc nc || 0 ||cn dn || cd nd |
n
|dc sc || −cs ds || 0 || m cd sd |
d
|m' nc sc || −cs ns || −m cn sn ||0 |
Also
:
With the addition theorems above and for a given m with 0 < m < 1 the major functions are therefore solutions to the following nonlinear ordinary differential equations:
\operatorname{am}(x) solves the differential equations\frac{\mathrm d^2y}{\mathrm dx^2}+m\sin (y)\cos (y)=0 and
:
\operatorname{sn}(x) solves the differential equations\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + (1+m) y - 2 m y^3 = 0 and\left(\frac{\mathrm{d} y}{\mathrm{d}x}\right)^2 = (1-y^2) (1-m y^2) \operatorname{cn}(x) solves the differential equations\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + (1-2m) y + 2 m y^3 = 0 and\left(\frac{\mathrm{d} y}{\mathrm{d}x}\right)^2 = (1-y^2) (1-m + my^2) \operatorname{dn}(x) solves the differential equations\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - (2 - m) y + 2 y^3 = 0 and\left(\frac{\mathrm{d} y}{\mathrm{d}x}\right)^2 = (y^2 - 1) (1 - m - y^2)
The function which exactly solves the pendulum differential equation,
:
with initial angle
:
&=2\operatorname{am}\left(\frac{1+\sqrt{m}}{2}(\sqrt{c}t+K),\frac{4\sqrt{m}}{(1+\sqrt{m})^2}\right)-2\operatorname{am}\left(\frac{1+\sqrt{m}}{2}(\sqrt{c}t-K),\frac{4\sqrt{m}}{(1+\sqrt{m})^2}\right)-\pi\end{align}
where
=Derivatives with respect to the second variable=
With the first argument
:
\frac{\mathrm d}{\mathrm dm}\operatorname{cn}(z)&=\frac{\operatorname{sn}(z)\operatorname{dn}(z)((m-1)z+\mathcal{E}(z)-m\operatorname{sn}(z)\operatorname{cd}(z))}{2m(1-m)},\\
\frac{\mathrm d}{\mathrm dm}\operatorname{dn}(z)&=\frac{\operatorname{sn}(z)\operatorname{cn}(z)((m-1)z+\mathcal{E}(z)-\operatorname{dn}(z)\operatorname{sc}(z))}{2(1-m)},\\
\frac{\mathrm d}{\mathrm dm}\mathcal{E}(z)&=\frac{\operatorname{cn}(z)(\operatorname{sn}(z)\operatorname{dn}(z)-\operatorname{cn}(z)\mathcal{E}(z))}{2(1-m)}-\frac{z}{2}\operatorname{sn}(z)^2.\end{align}
Expansion in terms of the nome
Let the nome be
:
:
\sum_{n=0}^\infty \frac{q^{n+1/2}}{1-q^{2n+1}} \sin ((2n+1)v),
:
\sum_{n=0}^\infty \frac{q^{n+1/2}}{1+q^{2n+1}} \cos ((2n+1)v),
:
\sum_{n=1}^\infty \frac{q^{n}}{1+q^{2n}} \cos (2nv),
:
when
Bivariate power series expansions have been published by Schett.{{cite journal|first1=Alois|last1=Schett |title=Properties of the Taylor series expansion coefficients of the Jacobian Elliptic Functions|year=1976|journal=Math. Comp.|volume=30|number=133|pages=143–147|doi=10.1090/S0025-5718-1976-0391477-3| mr=0391477|s2cid=120666361 }}
Fast computation
The theta function ratios provide an efficient way of computing the Jacobi elliptic functions. There is an alternative method, based on the arithmetic-geometric mean and Landen's transformations:
Initialize
:
where
Define
:
where
Then define
:
for
:
for
:
as
In conjunction with the addition theorems for elliptic functions (which hold for complex numbers in general) and the Jacobi transformations, the method of computation described above can be used to compute all Jacobi elliptic functions in the whole complex plane.
Another method of fast computation of the Jacobi elliptic functions via the arithmetic–geometric mean, avoiding the computation of the Jacobi amplitude, is due to Herbert E. Salzer:{{cite journal |last=Salzer |first=Herbert E. |date=July 1962 |title=Quick calculation of Jacobian elliptic functions|journal=Communications of the ACM|volume=5|issue=7|pages=399|doi=10.1145/368273.368573 |s2cid=44953400 |doi-access=free }}
Let
:
:
Set
:
y_{N-1}&=y_N+\frac{a_Nc_N}{y_N}\\
y_{N-2}&=y_{N-1}+\frac{a_{N-1}c_{N-1}}{y_{N-1}}\\
\vdots&=\vdots\\
y_0&=y_1+\frac{m}{4y_1}.\end{align}
Then
:
\operatorname{cn}(u,m)&=\sqrt{1-\frac{1}{y_0^2}}\\
\operatorname{dn}(u,m)&=\sqrt{1-\frac{m}{y_0^2}}\end{align}
as
Yet, another method for a rapidly converging fast computation of the Jacobi elliptic sine function found in the literature is shown below.{{Cite journal |last=Smith |first=John I. |date=May 5, 1971 |title=The Even- and Odd-Mode Capacitance Parameters for Coupled Lines in Suspended Substrate |url=https://ieeexplore.ieee.org/document/1127543 |journal=IEEE Transactions on Microwave Theory and Techniques |volume=MTT-19 |issue=5 |pages=430 |doi=10.1109/TMTT.1971.1127543 |bibcode=1971ITMTT..19..424S |via=IEEE Xplore}}
Let:
:
&a_0 = u &b_0 = \frac{1-\sqrt{1-m}}{1+\sqrt{1-m}} \\
&a_1 = \frac{a_0}{1+b_0} &b_1 = \frac{1-\sqrt{1-b^2_0 }}{1+\sqrt{1-b^2_0}}\\
&\vdots = \vdots &\vdots = \vdots \\
&a_n = \frac{a_{n-1}}{1+b_{n-1}} &b_n = \frac{1-\sqrt{1-b^2_{n-1}}}{1+\sqrt{1-b^2_{n-1}}}\\
\end{align}
Then set:
:
y_{n+1} &= \sin(a_n) \\
y_{n} &= \frac{y_{n+1}(1+b_n)}{1+y^2_{n+1}b_n} \\
\vdots &= \vdots\\
y_0 &= \frac{y_1(1+b_0)}{1+y^2_1b_0} \\
\end{align}
Then:
:
Approximation in terms of hyperbolic functions
The Jacobi elliptic functions can be expanded in terms of the hyperbolic functions. When
- sn(u):
\operatorname{sn} (u,m)\approx \tanh (u)+\frac{1}{4}m'(\sinh (u)\cosh (u) -u)\operatorname{sech}^2 (u). - cn(u):
\operatorname{cn} (u,m)\approx \operatorname{sech} (u)-\frac{1}{4} m'(\sinh (u)\cosh (u) -u)\tanh (u) \operatorname{sech} (u). - dn(u):
\operatorname{dn} (u,m) \approx \operatorname{sech} (u)+\frac{1}{4} m'(\sinh (u)\cosh(u) +u)\tanh (u) \operatorname{sech} (u) .
For the Jacobi amplitude,
Continued fractions
Assuming real numbers
:
\begin{align}
&\frac{\textrm{dn}\left((p/2-a)\tau K\left[\frac{p\tau}{2}\right];k\left(\frac{p\tau}{2}\right)\right)}{\sqrt{k'\left(\frac{p\tau}{2}\right)}} = \frac{\sum^\infty_{n=-\infty}q^{p/2 n^2+(p/2-a)n}}{\sum^\infty_{n=-\infty}(-1)^nq^{p/2 n^2+(p/2-a)n}}\\[4pt]
={}&-1+\frac{2}{1-{}} \, \frac{q^a+q^{p-a}}{1-q^p+{}} \, \frac{(q^a+q^{2p-a})(q^{a+p}+q^{p-a})}{1-q^{3p}+{}} \, \frac{q^p(q^a+q^{3p-a})(q^{a+2p}+q^{p-a})}{1-q^{5p}+{}} \, \frac{q^{2p}(q^a+q^{4p-a})(q^{a+3p}+q^{p-a})}{1-q^{7p}+{}}\cdots
\end{align}
Known continued fractions involving
For
:
For
:
For
:
For
:
For
:
{{anchor|arcsn|arccn|arcdn}}Inverse functions
The inverses of the Jacobi elliptic functions can be defined similarly to the inverse trigonometric functions; if
\operatorname{arcsn}(x,m) = \int_0^x \frac{\mathrm{d}t}{\sqrt{(1-t^2)(1-mt^2)}} \operatorname{arccn}(x,m) =\int_x^1 \frac{\mathrm{d}t}{\sqrt{(1-t^2)(1-m+mt^2)}} \operatorname{arcdn}(x,m) = \int_x^1 \frac{\mathrm{d}t}{\sqrt{(1-t^2)(t^2+m-1)}}
Map projection
The Peirce quincuncial projection is a map projection based on Jacobian elliptic functions.
See also
Notes
{{reflist|group=note}}
Citations
{{Reflist}}
References
- {{AS ref|16|569}}
- N. I. Akhiezer, Elements of the Theory of Elliptic Functions (1970) Moscow, translated into English as AMS Translations of Mathematical Monographs Volume 79 (1990) AMS, Rhode Island {{ISBN|0-8218-4532-2}}
- A. C. Dixon [https://archive.org/details/117736039 The elementary properties of the elliptic functions, with examples] (Macmillan, 1894)
- Alfred George Greenhill [https://archive.org/details/applicationselli00greerich The applications of elliptic functions] (London, New York, Macmillan, 1892)
- Edmund T. Whittaker, George Neville Watson: A Course in Modern Analysis. 4th ed. Cambridge, England: Cambridge University Press, 1990. S. 469–470.
- H. Hancock [https://archive.org/details/lecturestheorell00hancrich Lectures on the theory of elliptic functions] (New York, J. Wiley & sons, 1910)
- {{Citation | last1=Jacobi | first1=C. G. J. | title=Fundamenta nova theoriae functionum ellipticarum | url=https://archive.org/details/fundamentanovat00jacogoog | publisher=Königsberg | language=la | isbn=978-1-108-05200-9 | id=Reprinted by Cambridge University Press 2012 | year=1829}}
- {{dlmf|first=William P. |last=Reinhardt|first2=Peter L. |last2=Walker|id=22|title=Jacobian Elliptic Functions}}
- {{in lang|fr}} P. Appell and E. Lacour [https://archive.org/details/principestheorie00apperich Principes de la théorie des fonctions elliptiques et applications] (Paris, Gauthier Villars, 1897)
- {{in lang|fr}} G. H. Halphen [https://archive.org/details/traitedesfonctio01halprich Traité des fonctions elliptiques et de leurs applications (vol. 1)] (Paris, Gauthier-Villars, 1886–1891)
- {{in lang|fr}} G. H. Halphen [https://archive.org/details/traitedesfonctio02halprich Traité des fonctions elliptiques et de leurs applications (vol. 2)] (Paris, Gauthier-Villars, 1886–1891)
- {{in lang|fr}} G. H. Halphen [https://archive.org/details/traitedesfonctio03halprich Traité des fonctions elliptiques et de leurs applications (vol. 3)] (Paris, Gauthier-Villars, 1886–1891)
- {{in lang|fr}} J. Tannery and J. Molk [http://gallica.bnf.fr/notice?N=FRBNF37258233 Eléments de la théorie des fonctions elliptiques. Tome I, Introduction. Calcul différentiel. Ire partie] (Paris : Gauthier-Villars et fils, 1893)
- {{in lang|fr}} J. Tannery and J. Molk [http://gallica.bnf.fr/notice?N=FRBNF37258241 Eléments de la théorie des fonctions elliptiques. Tome II, Calcul différentiel. IIe partie] (Paris : Gauthier-Villars et fils, 1893)
- {{in lang|fr}} J. Tannery and J. Molk [http://gallica.bnf.fr/notice?N=FRBNF37258245 Eléments de la théorie des fonctions elliptiques. Tome III, Calcul intégral. Ire partie, Théorèmes généraux. Inversion] (Paris : Gauthier-Villars et fils, 1893)
- {{in lang|fr}} J. Tannery and J. Molk [http://gallica.bnf.fr/notice?N=FRBNF37258246 Eléments de la théorie des fonctions elliptiques. Tome IV, Calcul intégral. IIe partie, Applications] (Paris : Gauthier-Villars et fils, 1893)
- {{in lang|fr}} C. Briot and J. C. Bouquet [http://gallica.bnf.fr/notice?N=FRBNF30162167 Théorie des fonctions elliptiques] ( Paris : Gauthier-Villars, 1875)
- Toshio Fukushima: Fast Computation of Complete Elliptic Integrals and Jacobian Elliptic Functions. 2012, National Astronomical Observatory of Japan (国立天文台)
- Lowan, Blanch und Horenstein: On the Inversion of the q-Series Associated with Jacobian Elliptic Functions. Bull. Amer. Math. Soc. 48, 1942
- H. Ferguson, D. E. Nielsen, G. Cook: A partition formula for the integer coefficients of the theta function nome. Mathematics of computation, Volume 29, Nummer 131, Juli 1975
- J. D. Fenton and R. S. Gardiner-Garden: Rapidly-convergent methods for evaluating elliptic integrals and theta and elliptic functions. J. Austral. Math. Soc. (Series B) 24, 1982, S. 57
- Adolf Kneser: Neue Untersuchung einer Reihe aus der Theorie der elliptischen Funktionen. J. reine u. angew. Math. 157, 1927. pages 209 – 218
External links
- {{springer|title=Jacobi elliptic functions|id=p/j054050}}
- {{MathWorld|JacobiEllipticFunctions|Jacobi Elliptic Functions}}
{{DEFAULTSORT:Jacobi Elliptic Functions}}