mixed Poisson distribution

{{Infobox probability distribution

| name = mixed Poisson distribution

| type = mass

| pdf_image =

| pdf_caption =

| cdf_image =

| cdf_caption =

| notation = \operatorname{Pois}(\lambda) \, \underset{\lambda}\wedge \, \pi(\lambda)

| parameters = \lambda\in (0, \infty)

| support = k \in \mathbb{N}_0

| pdf = \int_0^\infty \frac{\lambda^k}{k!}e^{-\lambda} \,\,\pi(\lambda)\, d\lambda

| cdf =

| mean = \int_0^\infty \lambda \,\,\pi(\lambda)\,d\lambda

| median =

| mode =

| variance = \int_0^\infty (\lambda+(\lambda-\mu_\pi)^2) \,\,\pi(\lambda) \, d\lambda

| skewness = \left(\mu_\pi+\sigma_\pi^2\right)^{-3/2} \,\left[\int_0^\infty \left[{\left(\lambda-\mu_\pi\right)}^3 + 3{\left(\lambda-\mu_\pi\right)}^2\right] \pi(\lambda) \, d\lambda + \mu_\pi\right]

| kurtosis =

| entropy =

| pgf = M_\pi(z-1)

| mgf = M_\pi(e^t-1), with M_\pi the MGF of {{pi}}

| char = M_\pi(e^{it}-1)

| fisher =

}}

A mixed Poisson distribution is a univariate discrete probability distribution in stochastics. It results from assuming that the conditional distribution of a random variable, given the value of the rate parameter, is a Poisson distribution, and that the rate parameter itself is considered as a random variable. Hence it is a special case of a compound probability distribution. Mixed Poisson distributions can be found in actuarial mathematics as a general approach for the distribution of the number of claims and is also examined as an epidemiological model.{{Citation |last1=Willmot |first1=Gordon E. |title=Mixed Poisson distributions |date=2001 |url=http://link.springer.com/10.1007/978-1-4613-0111-0_3 |work=Lundberg Approximations for Compound Distributions with Insurance Applications |volume=156 |pages=37–49 |place=New York, NY |publisher=Springer New York |doi=10.1007/978-1-4613-0111-0_3 |isbn=978-0-387-95135-5 |access-date=2022-07-08 |last2=Lin |first2=X. Sheldon|series=Lecture Notes in Statistics }} It should not be confused with compound Poisson distribution or compound Poisson process.{{Cite journal |last=Willmot |first=Gord |date=1986 |title=Mixed Compound Poisson Distributions |journal=ASTIN Bulletin |language=en |volume=16 |issue=S1 |pages=S59–S79 |doi=10.1017/S051503610001165X |issn=0515-0361|doi-access=free }}

Definition

A random variable X satisfies the mixed Poisson distribution with density {{pi}}(λ) if it has the probability distribution{{Cite journal |last=Willmot |first=Gord |date=2014-08-29 |title=Mixed Compound Poisson Distributions |journal=Astin Bulletin |volume=16 |pages=5–7 |doi=10.1017/S051503610001165X|s2cid=17737506 |doi-access=free }}

\operatorname{P}(X=k) = \int_0^\infty \frac{\lambda^k}{k!}e^{-\lambda} \,\,\pi(\lambda)\, d\lambda.

If we denote the probabilities of the Poisson distribution by {{math|qλ(k)}}, then

\operatorname{P}(X=k) = \int_0^\infty q_\lambda(k) \,\,\pi(\lambda)\, d\lambda.

Properties

In the following let \mu_\pi=\int_0^\infty \lambda \,\,\pi(\lambda) \, d\lambda\, be the expected value of the density \pi(\lambda)\, and \sigma_\pi^2 = \int_0^\infty (\lambda-\mu_\pi)^2 \,\,\pi(\lambda) \, d\lambda\, be the variance of the density.

= Expected value =

The expected value of the mixed Poisson distribution is

\operatorname{E}(X) = \mu_\pi.

= Variance =

For the variance one gets

\operatorname{Var}(X) = \mu_\pi+\sigma_\pi^2.

= Skewness =

The skewness can be represented as

\operatorname{v}(X) = \Bigl(\mu_\pi+\sigma_\pi^2\Bigr)^{-3/2} \,\Biggl[\int_0^\infty(\lambda-\mu_\pi)^3\,\pi(\lambda)\,d{\lambda}+\mu_\pi\Biggr].

= Characteristic function =

The characteristic function has the form

\varphi_X(s) = M_\pi(e^{is}-1).\,

Where M_\pi is the moment generating function of the density.

= Probability generating function =

For the probability generating function, one obtains

m_X(s) = M_\pi(s-1).\,

= Moment-generating function =

The moment-generating function of the mixed Poisson distribution is

M_X(s) = M_\pi(e^s-1).\,

Examples

{{Math theorem|Compounding a Poisson distribution with rate parameter distributed according to a gamma distribution yields a negative binomial distribution.}}

{{Math proof|Let \pi(\lambda)=\frac{(\frac{p}{1-p})^r}{\Gamma(r)} \lambda^{r-1} e^{-\frac{p}{1-p}\lambda} be a density of a \operatorname{\Gamma}\left(r,\frac{p}{1-p}\right) distributed random variable.

\begin{align}

\operatorname{P}(X=k)&= \frac{1}{k!} \int_0^\infty \lambda^k e^{-\lambda} \frac{(\frac{p}{1-p})^r}{\Gamma(r)} \lambda^{r-1} e^{-\frac{p}{1-p}\lambda} \, d \lambda \\

& = \frac{p^r(1-p)^{-r}}{\Gamma(r) k!} \int_0^\infty \lambda^{k+r-1} e^{-\lambda \frac{1}{1-p}} \, d \lambda \\

& = \frac{p^r(1-p)^{-r}}{\Gamma(r) k!} (1-p)^{k+r} \underbrace{\int_0^\infty \lambda^{k+r-1} e^{-\lambda} \, d \lambda}_{= \Gamma(r+k)} \\

& = \frac{\Gamma(r+k)}{\Gamma(r) k!} (1-p)^k p^r

\end{align}

Therefore we get X\sim\operatorname{NegB}(r,p).}}

{{Math theorem|Compounding a Poisson distribution with rate parameter distributed according to an exponential distribution yields a geometric distribution.}}

{{Math proof|Let \pi(\lambda)=\frac1\beta e^{-\frac \lambda\beta} be a density of a \operatorname{Exp}\left(\frac1\beta\right) distributed random variable. Using integration by parts {{mvar|n}} times yields:

\begin{align}

\operatorname{P}(X=k)&=\frac{1}{k!}\int_0^\infty \lambda^k e^{-\lambda} \frac1\beta e^{-\frac \lambda\beta} \, d\lambda\\

&=\frac{1}{k!\beta}\int_0^\infty \lambda^k e^{-\lambda\left(\frac{1+\beta}{\beta}\right)}\, d \lambda\\

&=\frac{1}{k!\beta}\cdot k!\left(\frac{\beta}{1+\beta}\right)^k\int_0^\infty e^{-\lambda\left(\frac{1+\beta}{\beta}\right)}\, d \lambda\\

&=\left(\frac{\beta}{1+\beta}\right)^k\left(\frac{1}{1+\beta}\right)

\end{align}

Therefore we get X\sim\operatorname{Geo\left(\frac{1}{1+\beta}\right)}.}}

Table of mixed Poisson distributions

class="wikitable"

!mixing distribution

!mixed Poisson distribution{{Cite journal |last1=Karlis |first1=Dimitris |last2=Xekalaki |first2=Evdokia |date=2005 |title=Mixed Poisson Distributions |url=https://www.jstor.org/stable/25472639 |journal=International Statistical Review |volume=73 |issue=1 |pages=35–58 |doi=10.1111/j.1751-5823.2005.tb00250.x |jstor=25472639 |s2cid=53637483 |issn=0306-7734}}

Dirac

|Poisson

gamma, Erlang

|negative binomial

exponential

|geometric

inverse Gaussian

|Sichel

Poisson

|Neyman

generalized inverse Gaussian

|Poisson-generalized inverse Gaussian

generalized gamma

|Poisson-generalized gamma

generalized Pareto

|Poisson-generalized Pareto

inverse-gamma

|Poisson-inverse gamma

log-normal

|Poisson-log-normal

Lomax

|Poisson–Lomax

Pareto

|Poisson–Pareto

Pearson’s family of distributions

|Poisson–Pearson family

truncated normal

|Poisson-truncated normal

uniform

|Poisson-uniform

shifted gamma

|Delaporte

beta with specific parameter values

|Yule

References

{{reflist}}

Further reading

  • {{cite book |first=Jan |last=Grandell |title=Mixed Poisson Processes |publisher=Chapman & Hall |location=London |year=1997 |isbn=0-412-78700-8 }}
  • {{cite book |first=Tom |last=Britton |title=Stochastic Epidemic Models with Inference |publisher=Springer |year=2019 |isbn= |doi=10.1007/978-3-030-30900-8 }}

{{Probability distributions}}

Category:Discrete distributions

Category:Types of probability distributions