:Huntington–Hill method

{{Short description|Proportional electoral system}}

{{Electoral systems}}{{United States House of Representatives}}

The Huntington–Hill method, sometimes called method of equal proportions, is a highest averages method for assigning seats in a legislature to political parties or states.{{cite web |title=Congressional Apportionment |url=http://www.nationalatlas.gov/articles/boundaries/a_conApport.html#six |url-status=dead |archive-url=https://web.archive.org/web/20090228091000/http://www.nationalatlas.gov/articles/boundaries/a_conApport.html#six |archive-date=2009-02-28 |access-date=2009-02-14 |publisher=NationalAtlas.gov}} Since 1941, this method has been used to apportion the 435 seats in the United States House of Representatives following the completion of each decennial census.{{Cite web|title=U.S. Code Title 2, Section 2a: Reapportionment of Representatives.|url=https://www.law.cornell.edu/uscode/text/2/2a}}{{Cite web|title=Computing Apportionment|url=https://www.census.gov/topics/public-sector/congressional-apportionment/about/computing.html|access-date=2021-04-26|publisher=United States Census Bureau|language=EN-US}}

The method minimizes the relative difference in the number of constituents represented by each legislator. In other words, the method selects the allocation such that no transfer of a seat from one state to another can reduce the percent error in representation for both states.

Apportionment method

In this method, as a first step, each of the 50 states is given its one guaranteed seat in the House of Representatives, leaving 385 seats to be assigned. The remaining seats are allocated one at a time, to the state with the highest average district population, to bring its district population down. However, it is not clear if we should calculate the average before or after allocating an additional seat, and the two procedures give different results. Huntington-Hill uses a continuity correction as a compromise, given by taking the geometric mean of both divisors, i.e.:{{Citation |last=Pukelsheim |first=Friedrich |title=Divisor Methods of Apportionment: Divide and Round |date=2017 |work=Proportional Representation: Apportionment Methods and Their Applications |pages=71–93 |editor-last=Pukelsheim |editor-first=Friedrich |url=https://doi.org/10.1007/978-3-319-64707-4_4 |access-date=2021-09-01 |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/978-3-319-64707-4_4 |isbn=978-3-319-64707-4}}

: A_{n} = \frac{P}{\sqrt{n(n+1)}}

where P is the population of the state, and n is the number of seats it currently holds before the possible allocation of the next seat.

Consider the reapportionment following the 2010 U.S. census: after every state is given one seat:

  1. The largest value of A1 corresponds to the largest state, California, which is allocated seat 51.
  2. The 52nd seat goes to Texas, the 2nd largest state, because its A1 priority value is larger than the An of any other state.
  3. The 53rd seat goes back to California because its A2 priority value is larger than the An of any other state.
  4. The 54th seat goes to New York because its A1 priority value is larger than the An of any other state at this point.

This process continues until all remaining seats are assigned. Each time a state is assigned a seat, n is incremented by 1, causing its priority value to be reduced.

Division by zero

Unlike the D'Hondt and Sainte-Laguë systems, which allow the allocation of seats by calculating successive quotients right away, the Huntington–Hill system requires each party or state have at least one seat to avoid a division by zero error.{{Citation |last=Pukelsheim |first=Friedrich |title=Divisor Methods of Apportionment: Divide and Round |date=2017 |work=Proportional Representation: Apportionment Methods and Their Applications |pages=71–93 |editor-last=Pukelsheim |editor-first=Friedrich |url=https://doi.org/10.1007/978-3-319-64707-4_4 |access-date=2021-09-01 |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/978-3-319-64707-4_4 |isbn=978-3-319-64707-4}} In the U.S. House of Representatives, this is ensured by guaranteeing each state at least one seat; in party-list representation, small parties would likely be eliminated using some electoral threshold, or the first divisor can be modified.

Examples

Consider an example to distribute 8 seats between three parties A, B, C having respectively 100,000, 80,000 and 30,000 voices.

Each eligible party is assigned one seat. With all the initial seats assigned, the remaining five seats are distributed by a priority number calculated as follows. Each eligible party's (Parties A, B, and C) total votes is divided by {{math|{{sqrt|2 {{cdot}} 1}} ≈ 1.41}}, then by approximately 2.45, 3.46, 4.47, 5.48, 6.48, 7.48, and 8.49. The 5 highest entries, marked with asterisks, range from 70,711 down to 28,868. For each, the corresponding party gets another seat.

class="wikitable"

! Denominator

{{sqrt|1·2}} ≈
1.41
{{sqrt|2·3}} ≈
2.45
{{sqrt|3·4}} ≈
3.46
{{sqrt|4·5}} ≈
4.47
{{sqrt|5·6}} ≈
5.48
{{sqrt|6·7}} ≈
6.48
{{sqrt|7·8}} ≈
7.48
{{sqrt|8·9}} ≈
8.49
Initial
seats
Seats
won (*)
Total
Seats
Ideal
seats
| Party A70,711*40,825*28,868*22,36118,25715,43013,36311,785

| align="center" | 1

| align="center" | 3

| align="center" | 4

| align="center" | 3.8

| Party B56,569*32,660*23,09417,88914,60612,34410,6909,428

| align="center" | 1

| align="center" | 2

| align="center" | 3

| align="center" | 3.0

| Party C21,21312,2478,6606,7085,4774,6294,0093,536

| align="center" | 1

| align="center" | 0

| align="center" | 1

| align="center" | 1.1

= Knesset example =

The Knesset (Israel's unicameral legislature), are elected by party-list representation with apportionment by the D'Hondt method.{{efn|name=Bader-Ofer|The method used for the 20th Knesset was actually a modified D'Hondt, called the Bader-Ofer method. This modification allows for spare vote agreements between parties.{{cite web | title = With Bader-Ofer method, not every ballot counts | publisher = The Jerusalem Post | url = https://www.jpost.com/israel-elections/with-bader-ofer-method-not-every-ballot-counts-394027 | access-date = 2021-05-04 }}}} Had the Huntington–Hill method, rather than the D'Hondt method, been used to apportion seats following the elections to the 20th Knesset, held in 2015, the 120 seats in the 20th Knesset would have been apportioned as follows:

class=wikitable style="text-align: center;"

!rowspan=3 colspan=2|Party

!rowspan=3|Votes

!colspan=3 style='border-style: solid solid none none;' | Huntington–Hill

!style='border-style: solid solid none none;' | D'Hondt{{efn|name=Bader-Ofer}}

!rowspan=3|+/–

colspan=3 style='border-style: none none solid solid;'| (hypothetical)

!style='border-style: none none solid solid;' | (actual)

Last priority{{efn|This is each party's last priority number which resulted in a seat being gained by the party. Likud gained the last seat (the 120th seat allocated). Each priority number in this column is greater than any priority number in the Next Priority column.}}

!Next priority{{efn|This is each party's next priority number which would result in a seat being gained by the party. Kulanu would have gained the next seat (if there were 121 seats in the Knesset). Each priority number in this column is less than any priority number in the Last Priority column.}}

!style="width: 5em;" | Seats

!style="width: 5em;" | Seats

width=2px bgcolor="{{party color|Likud}}" |

|align=left|Likud

985,408334083231330300
width=2px bgcolor=#642240 |

|align=left|Zionist Union

786,313334683210124240
width=2px bgcolor="{{party color|Joint List}}"|

|align=left|Joint List

446,583357553310313130
bgcolor="{{party color|Yesh Atid}}" |

|align=left|Yesh Atid

371,602354313234411110
bgcolor="{{party color|Kulanu}}" |

|align=left|Kulanu

315,3603716633242910–1
bgcolor="{{party color|The Jewish Home}}" |

|align=left|The Jewish Home

283,910334592992798+1
bgcolor="{{party color|Shas}}" |

|align=left|Shas

241,6133728232287770
bgcolor="{{party color|Yisrael Beiteinu}}" |

|align=left|Yisrael Beiteinu

214,9063923633161660
bgcolor="{{party color|United Torah Judaism}}" |

|align=left|United Torah Judaism

210,1433836732426660
bgcolor="{{party color|Meretz}}" |

|align=left|Meretz

165,5293701330221550
style="text-align:left;" colspan="8"|Source: [https://web.archive.org/web/20150615082949/http://www.votes20.gov.il/ CEC]

Compared with the actual apportionment, Kulanu would have lost one seat, while The Jewish Home would have gained one seat.

See also

Notes

{{notelist}}

References

{{reflist}}

{{Majorities and quotas}}

{{DEFAULTSORT:Huntington-Hill Method}}

Category:Apportionment methods