2023 in paleobotany
{{Short description|none}}
{{TOC right}}
{{Year nav topic20 |2023|paleobotany |paleontology |arthropod paleontology |paleoentomology |paleomalacology |reptile paleontology |archosaur paleontology |mammal paleontology |paleoichthyology }}
This paleobotany list records new fossil plant taxa that were described during the year 2023, as well as notes other significant paleobotany discoveries and events which occurred during 2023.
Algae
=Charophytes=
=Chlorophytes=
=Phycological research=
- Harvey (2023) interprets a well-preserved assemblage of acritarchs from the Cambrian Stage 4 Forteau Formation (Canada) as fossil material of planktic green algae with coenobial colony formation.{{cite journal |last=Harvey |first=T. H. P. |year=2023 |title=Colonial green algae in the Cambrian plankton |journal=Proceedings of the Royal Society B: Biological Sciences |volume=290 |issue=2009 |at=20231882 |doi=10.1098/rspb.2023.1882 |pmid=37876191 |pmc=10598416 }}
- Yang et al. (2023) reinterpret Protomelission as an early dasycladalean green alga;{{Cite journal|last1=Yang |first1=J. |last2=Lan |first2=T. |last3=Zhang |first3=X. |last4=Smith |first4=M. R. |year=2023 |title=Protomelission is an early dasyclad alga and not a Cambrian bryozoan |journal=Nature |volume=615 |issue=7952 |pages=468–471 |doi=10.1038/s41586-023-05775-5 |pmid=36890226 |bibcode=2023Natur.615..468Y |s2cid=257425218 }} however, Xiang et al. (2023) subsequently interpret Protomelission as a scleritome of Cambroclavus, which in turn is considered by the authors to be a probable epitheliozoan-grade eumetazoan like the contemporaneous chancelloriids, unrelated to bryozoans or to dasycladalean algae.{{cite journal |last1=Xiang |first1=K. |last2=Yin |first2=Z. |last3=Liu |first3=W. |last4=Zhao |first4=F. |last5=Zhu |first5=M. |year=2023 |title=Early Cambrian Cambroclavus is a scleritomous eumetazoan unrelated to bryozoan or dasyclad algae |journal=Geology |volume=52 |issue=2 |pages=130–134 |doi=10.1130/G51663.1 }}
Lycophytes
=Lycophyte research=
- A study on the ground-level trunk vasculature of Sigillaria approximata from the Pennsylvanian Calhoun Coal of Illinois (United States) is published by D'Antonio (2023), who finds evidence indicating that wood growth at the base of the trunk was different from the arborescent lycopsid wood growth model of Cichan (1985).{{Cite journal |last=Cichan |first=M. A. |title=Vascular cambium and wood development in Carboniferous plants. I. Lepidodendrales |year=1985 |journal=American Journal of Botany |volume=72 |issue=8 |pages=1163–1176 |doi=10.2307/2443396 |jstor=2443396 }}{{Cite journal |last=D'Antonio |first=M. P. |title=Atypical tracheid organization in proximal wood of late Palaeozoic Sigillaria approximata Fontaine et White (Lycopsida) |year=2023 |journal=Botanical Journal of the Linnean Society |volume=203 |issue=3 |pages=303–314 |doi=10.1093/botlinnean/boad028 }}
- Turner et al. (2023) report diverse phyllotaxis in leaves of the lycopod Asteroxylon mackiei from the Devonian Rhynie chert (United Kingdom), including whorls and spirals, and interpret this finding as suggesting that Fibonacci-style patterning was not ancestral to living land plants, as well as indicative of developmental similarities between lycophyte leaves and reproductive structures.{{Cite journal |last1=Turner |first1=H.-A. |last2=Humpage |first2=M. |last3=Kerp |first3=H. |last4=Hetherington |first4=A. J. |title=Leaves and sporangia developed in rare non-Fibonacci spirals in early leafy plants |year=2023 |journal=Science |volume=380 |issue=6650 |pages=1188–1192 |doi=10.1126/science.adg4014 |pmid=37319203 |s2cid=259166088 |url=https://www.pure.ed.ac.uk/ws/files/352569236/2023_05_15_Turner_et_al_accepted_fin.pdf }}
Ferns and fern allies
=Pteridological research=
- A study on fossils of Pecopteris from the Mazon Creek fossil beds (Illinois, United States), indicative of association of a suite of saturated phytohopanoid and aromatised terpenoid diagenetic biomarker products with true fern fossils, is published by Tripp et al. (2023).{{cite journal|last1=Tripp |first1=M. |last2=Schwark |first2=L. |last3=Brocks |first3=J. J. |last4=Mayer |first4=P. |last5=Whiteside |first5=J. H. |last6=Rickard |first6=W. |last7=Greenwood |first7=P. F. |last8=Grice |first8=K. |title=Rapid encapsulation of true ferns and arborane/fernane compounds fossilised in siderite concretions supports analytical distinction of plant fossils |year=2023 |journal=Scientific Reports |volume=13 |issue=1 |at=19851 |doi=10.1038/s41598-023-47009-8 |pmid=37963973 |pmc=10646143 | doi-access = free }}
- Blanco-Moreno & Buscalioni (2023) identify Sphenopteris wonnacottii as a junior synonym of Coniopteris laciniata, provide whole plant reconstruction of C. laciniata, and interpret the variability of the pinnules of C. laciniata as likely caused by the submersion of the apical part of fronds in water during their development.{{Cite journal|last1=Blanco-Moreno |first1=C. |last2=Buscalioni |first2=Á. D. |year=2023 |title=Revision of the Barremian fern Coniopteris laciniata from Las Hoyas and El Montsec (Spain): Highlighting its importance in the evolution of vegetation during the Early Cretaceous |journal=Taxon |volume=72 |issue=3 |pages=625–637 |doi=10.1002/tax.12888 |s2cid=258044454 |hdl=10486/707335 |hdl-access=free }}
Ginkgophytes
Conifers
=Cheirolepidiaceae=
=Cordaitaceae=
=Cupressaceae=
=Pinaceae=
=Podocarpaceae=
=Voltziales=
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Synonymy !Notes !Images |
---|
Hexicladia{{Cite journal|last1=Wang |first1=X. |last2=Yang |first2=Y. |last3=Hua |first3=Y. |last4=Sun |first4=B. |last5=Miao |first5=Y. |year=2022 |title=Hexicladia, a new genus of the Cisuralian conifer from Hexi Corridor, China |journal=Review of Palaeobotany and Palynology |volume=308 |at=104789 |doi=10.1016/j.revpalbo.2022.104789 |s2cid=253194535 |doi-access=free }}
| Gen. et sp. nov | Valid | Wang et al. | Permian (Cisuralian) | Shanxi Formation | {{Flag|China}} | | A voltzialean conifer. | |
=Other conifers=
=Conifer research=
- Trümper et al. (2023) report the discovery of fossil trees from the Athesian Volcanic Group (Italy) interpreted as remains of a Permian (Kungurian) forest where conifers were the major arborescent plants, substantiating the presence of coniferopsids in wetlands around the Carboniferous/Permian boundary.{{cite journal |last1=Trümper |first1=S. |last2=Rößler |first2=R. |last3=Morelli |first3=C. |last4=Krainer |first4=K. |last5=Karbacher |first5=S. |last6=Vogel |first6=B. |last7=Antonelli |first7=M. |last8=Sacco |first8=E. |last9=Kustatscher |first9=E. |year=2023 |title=A fossil forest from Italy reveals that wetland conifers thrived in Early Permian Peri-Tethyan Pangea |journal=PALAIOS |volume=38 |issue=10 |pages=407–435 |doi=10.2110/palo.2023.015 }}
- Slodownik et al. (2023) describe new fossil material (including the first putative female reproductive remains) of Araucarioides linearis from the Eocene Macquarie Harbour Formation (Australia), interpret Araucarioides sinuosa to be a junior synonym of A. linearis, and consider A. linearis to be a non-Agathis agathioid belonging to an extinct lineage that originated in the Cretaceous, lived in high paleolatitudes and had adaptations to seasonal environments which allowed it to survive the Cretaceous–Paleogene extinction event.{{cite journal |last1=Slodownik |first1=M. A. |last2=Escapa |first2=I. |last3=Mays |first3=C. |last4=Jordan |first4=G. J. |last5=Carpenter |first5=R. J. |last6=Hill |first6=R. S. |year=2023 |title=Araucarioides: A Polar Lineage of Araucariaceae with New Paleogene Fossils from Tasmania, Australia |journal=International Journal of Plant Sciences |volume=184 |issue=8 |pages=640–658 |doi=10.1086/726183 }}
- Andruchow-Colombo et al. (2023) review the fossil record of Podocarpaceae, and argue that the earliest reliable occurrences of members of this family are from the Jurassic of both hemispheres.{{cite journal |last1=Andruchow-Colombo |first1=A. |last2=Escapa |first2=I. H. |last3=Aagesen |first3=L. |last4=Matsunaga |first4=K. K. S. |year=2023 |title=In search of lost time: tracing the fossil diversity of Podocarpaceae through the ages |journal=Botanical Journal of the Linnean Society |volume=203 |issue=4 |pages=315–336 |doi=10.1093/botlinnean/boad027 |hdl=11336/227952 |hdl-access=free }}
Flowering plants
=Monocots=
==Alismatales==
==Arecales==
=Basal eudicots=
==Basal eudicot research==
- Evidence from the palynomorph fossil record, interpreted as indicating that members of the family Proteaceae reached South African Cape in the Late Cretaceous from North-Central Africa rather than from Australia across the Indian Ocean, is presented by Lamont, He & Cowling (2023).{{cite journal|last1=Lamont |first1=B. B. |last2=He |first2=T. |last3=Cowling |first3=R. M. |title=Fossil pollen resolves origin of the South African Proteaceae as transcontinental not transoceanic |year=2023 |journal=Annals of Botany |volume=133 |issue=5–6 |pages=649–658 |doi=10.1093/aob/mcad055 |pmid=37076271 |doi-access=free |pmc=11082520 }}
=Superasterids=
==Apiales==
class="wikitable sortable" align="center" width="100%" |
Name
! Novelty ! Status ! Authors ! Age ! Unit ! Location ! Synonymized taxa ! Notes ! Images |
---|
Plerandreoxylon oskolskii
| Sp. nov | Valid | Wheeler, Manchester & Baas | Eocene | John Day Formation | {{Flag|United States}} | | A member of the family Araliaceae. | |
==Boraginales==
class="wikitable sortable" align="center" width="100%" |
Name
! Novelty ! Status ! Authors ! Age ! Unit ! Location ! Synonymized taxa ! Notes ! Images |
---|
Cordioxylon indicum{{cite journal |last1=Bhatia |first1=H. |last2=Srivastava |first2=G. |last3=Mehrotra |first3=R. C. |year=2023 |title=Cordiaceae wood from the Miocene sediments of northeast India and its phytogeographical significance |journal=IAWA Journal |volume=45 |issue=2 |pages=154–166 |doi=10.1163/22941932-bja10139 }}
| Sp. nov | Valid | Bhatia, Srivastava & Mehrotra | Miocene | Tipam Sandstone | {{Flag|India}} | | Fossil wood of a member of the genus Cordia. Announced in 2023; the final version of the article naming it was published in 2024. | |
==Ericales==
class="wikitable sortable" align="center" width="100%" |
Name
! Novelty ! Status ! Authors ! Age ! Unit ! Location ! Synonymized taxa ! Notes ! Images |
---|
Symplocos kowalewskii{{cite journal|last1=Sadowski |first1=E.-M. |last2=Hofmann |first2=C.-C. |title=The largest amber-preserved flower revisited |year=2023 |journal=Scientific Reports |volume=13 |issue=1 |at=17 |doi=10.1038/s41598-022-24549-z |pmid=36635320 |pmc=9837116 |bibcode=2023NatSR..13...17S | doi-access= free }}
| Comb nov | Valid | (Casp.) Sadowski & Hofmann | | | {{flag|Europe}} | | A Symplocaceous flower species. | |
==Icacinales==
class="wikitable sortable" align="center" width="100%" |
Name
! Novelty ! Status ! Authors ! Age ! Unit ! Location ! Synonymized taxa ! Notes ! Images |
---|
Palaeophytocrene ga{{Cite journal|last1=Poore |first1=C. |last2=Jud |first2=N. A. |last3=Gandolfo |first3=M. A. |year=2023 |title=Fossil fruits from the early Paleocene of Patagonia, Argentina reveal west Gondwanan history of Icacinaceae |journal=Review of Palaeobotany and Palynology |volume=317 |at=104940 |doi=10.1016/j.revpalbo.2023.104940 }}
| Sp. nov | | Poore, Jud & Gandolfo | Paleocene (Danian) | | {{Flag|Argentina}} | | A member of the family Icacinaceae belonging to the tribe Phytocreneae. | |
==Lamiales==
class="wikitable sortable" align="center" width="100%" |
Name
! Novelty ! Status ! Authors ! Age ! Unit ! Location ! Synonymized taxa ! Notes ! Images |
---|
Phillyreoxylon phillyreoides{{Cite journal|last1=Akkemik |first1=Ü. |last2=Toprak |first2=Ö. |last3=Mantzouka |first3=D. |last4=Çelik |first4=H. |year=2023 |title=A Mediterranean woody species composition from Late Miocene-Early Pliocene deposits of northeastern Turkey with newly described fossil-taxa palaeoclimatically evaluated |journal=Review of Palaeobotany and Palynology |volume=316 |at=104916 |doi=10.1016/j.revpalbo.2023.104916 }}
| Sp. nov | | Akkemik & Mantzouka in Akkemik et al. | Neogene | | {{Flag|Turkey}} | | Fossil wood of a member of the genus Phillyrea. | |
==Solanales==
==General Superasterid research==
=Superrosids=
==Cucurbitales==
==Fabales==
==Fagales==
==Malpighiales==
==Malvales==
==Myrtales==
==Oxalidales==
class="wikitable sortable" align="center" width="100%" |
Name
! Novelty ! Status ! Authors ! Age ! Unit ! Location ! Synonymized taxa ! Notes ! Images |
---|
Weinmannioxylon trichospermoides
| Sp. nov | valid | Pujana et al. | Oligocene | San José Formation | {{Flag|Chile}} | | A cunoniaceous wood morphospecies. | |
==Rosales==
==Sapindales==
==Saxifragales==
==Other superrosids==
class="wikitable sortable" align="center" width="100%" |
Name
! Novelty ! Status ! Authors ! Age ! Unit ! Location ! Synonymized taxa ! Notes ! Images |
---|
Friisifructus{{Cite journal|last1=Tang |first1=K. K. |last2=Smith |first2=S. Y. |last3=Atkinson |first3=B. A. |title=Winged Fruits of Friisifructus aligeri gen. et sp. nov. from the Late Cretaceous of Western North America |year=2023 |journal=International Journal of Plant Sciences |volume=184 |issue=4 |pages=271–281 |doi=10.1086/724745 |s2cid=257989759 }}
| Gen. et sp. nov | Valid | Tang, Smith & Atkinson | Late Cretaceous | | {{Flag|United States}} | | Rosid clade fruits of uncertain affinities. | |
==Superrosid research==
- Nishino et al. (2023) study the composition of a fossil forest from the Miocene Nakamura Formation of the Mizunami Group (Japan), including stumps of Wataria parvipora and leaves of Byttneriophyllum tiliifolium, and interpret their finding as suggesting that W. parvipora and B. tiliifolium were parts of the same plant, as well as suggesting that Byttneriophyllum-bearing plants might have belonged to the subfamily Helicteroideae.{{Cite journal|last1=Nishino |first1=M. |last2=Terada |first2=K. |last3=Uemura |first3=K. |last4=Ito |first4=Y. |last5=Yamada |first5=T. |title=An exceptionally well-preserved monodominant fossil forest of Wataria from the lower Miocene of Japan |year=2023 |journal=Scientific Reports |volume=13 |issue=1 |at=10172 |doi=10.1038/s41598-023-37211-z |pmid=37349406 |pmc=10287665 |doi-access=free }}
=Other angiosperms=
- A study on the affinities of Santaniella, based on data from new fossil material from the Lower Cretaceous Crato Formation (Brazil), is published by Pessoa et al. (2023), who don't support the interpretation of Santaniella as a ranuculid, and consider it to be a mesangiosperm of uncertain affinities, possibly a magnoliid.{{Cite journal|last1=Pessoa |first1=E. M. |last2=Ribeiro |first2=A. C. |last3=Christenhuz |first3=M. J. M. |last4=Coan |first4=A. I. |last5=Jud |first5=N. A. |title=Is Santaniella a ranuculid? Re-assessment of this enigmatic fossil angiosperm from the Lower Cretaceous (Aptian, Crato Konservat-Lagerstätte, Brazil) provides a new interpretation. |year=2023 |journal=American Journal of Botany |volume=110 |issue=5 |at=e16163 |doi=10.1002/ajb2.16163 |pmid=37014186 |s2cid=257922833 }}
- Pessoa, Ribeiro & Christenhusz (2023) describe new fossil material of Araripia florifera from the Early Cretaceous of Brazil, interpret its anatomy as indicating that it did not belong to the family Calycanthaceae, and assign it to the new family Araripiaceae in the stem group of Laurales.{{Cite journal|last1=Pessoa |first1=E. M. |last2=Ribeiro |first2=A. C. |last3=Christenhusz |first3=M. J. M. |year=2023 |title=New evidence on the previously unknown gynoecium of Araripia florifera (Araripiaceae, fam. nov.), a magnoliid angiosperm from the Lower Cretaceous (Aptian) of the Crato Konservat-Lagerstätte (Araripe Basin), northeastern Brazil |journal=Cretaceous Research |volume=153 |at=105715 |doi=10.1016/j.cretres.2023.105715 }}
=Angiosperm research=
- A study aiming to determine the affinities of 24 exceptionally preserved fossil flowers is published by López-Martínez et al. (2023).{{Cite journal|last1=López-Martínez |first1=A. M. |last2=Schönenberger |first2=J. |last3=von Balthazar |first3=M. |last4=González-Martínez |first4=C. A. |last5=Ramírez-Barahona |first5=S. |last6=Sauquet |first6=H. |last7=Magallón |first7=S. |title=Integrating Fossil Flowers into the Angiosperm Phylogeny Using Molecular and Morphological Evidence |year=2023 |journal=Systematic Biology |volume=72 |issue=4 |pages=837–855 |doi=10.1093/sysbio/syad017 |pmid=36995161 }}
- A study aiming to determine the phylogenetic relationships of nine putative magnolialean fossils is published by Doyle & Endress (2023).{{cite journal |last1=Doyle |first1=J. |last2=Endress |first2=P. K. |year=2023 |title=Integrating Cretaceous fossils into the phylogeny of living angiosperms: fossil Magnoliales and their evolutionary implications |journal=International Journal of Plant Sciences |volume=185 |issue=1 |pages=42–70 |doi=10.1086/727523 }}
- Chambers & Poinar (2023) reinterpret Endobeuthos paleosum as a member of the family Proteaceae;{{Cite journal|last1=Chambers |first1=K. L. |last2=Poinar |first2=G. O. |year=2023 |title=Reinterpretation of the mid-Cretaceous fossil flower Endobeuthos paleosum as a capitular, unisexual inflorescence of Proteaceae |journal=Journal of the Botanical Research Institute of Texas |volume=17 |issue=2 |pages=449–456 |doi=10.17348/jbrit.v17.i2.1324 |doi-access=free }} this interpretation is subsequently contested by Lamont & Ladd (2024).{{Cite journal|last1=Lamont |first1=B. B. |last2=Ladd |first2=P. G. |year=2024 |title=Endobeuthos paleosum in 99-million-year-old amber does not belong to the Proteaceae |journal=Journal of the Botanical Research Institute of Texas |volume=18 |issue=1 |pages=143–147 |doi=10.17348/jbrit.v18.i1.1343 }}
- A study on the diversification of the flowering plant throughout their evolutionary history is published by Thompson & Ramírez-Barahona (2023), who report evidence of stable extinction rates through time and find no evidence of a significant impact of the Cretaceous–Paleogene extinction event on the extinction rates of major flowering plant lineages.{{Cite journal|last1=Thompson |first1=J. B. |last2=Ramírez-Barahona |first2=S. |title=No phylogenetic evidence for angiosperm mass extinction at the Cretaceous–Palaeogene (K-Pg) boundary |year=2023 |journal=Biology Letters |volume=19 |issue=9 |at=20230314 |doi=10.1098/rsbl.2023.0314 |pmid=37700701 |doi-access=free |pmc=10498348 }}
Other plants
=Other plant research=
- A study on the evolutionary history of Marchantiopsida, as indicated by data from extant and fossil taxa, is published by Flores et al. (2023).{{cite journal |last1=Flores |first1=J. R. |last2=Bippus |first2=A. C. |last3=Fernández de Ullivarri |first3=C. |last4=Suárez |first4=G. M. |last5=Hyvönen |first5=J. |last6=Tomescu |first6=A. M. F. |year=2023 |title=Dating the evolution of the complex thalloid liverworts (Marchantiopsida): total-evidence dating analysis supports a Late Silurian-Early Devonian origin and post-Mesozoic morphological stasis |journal=New Phytologist |volume=240 |issue=5 |pages=2137–2150 |doi=10.1111/nph.19254 |pmid=37697646 }}
- Decombeix et al. (2023) document tyloses in Late Devonian Callixylon wood.{{cite journal |last1=Decombeix |first1=A.-L. |last2=Harper |first2=C. J. |last3=Prestianni |first3=C. |last4=Durieux |first4=T. |last5=Ramel |first5=M. |last6=Krings |first6=M. |year=2023 |title=Fossil evidence of tylosis formation in Late Devonian plants |journal=Nature Plants |volume=9 |issue=5 |pages=695–698 |doi=10.1038/s41477-023-01394-0 |url=https://www.nature.com/articles/s41477-023-01394-0 |pmid=37081291 |s2cid=258257107 }}
- A study on the anatomy and affinities of Tingia unita, based on data from specimens from the Permian Taiyuan Formation (China), is published by Yang, Wang & Wang (2023), who confirm that T. unita was a progymnosperm belonging to the group Noeggerathiales.{{Cite journal|last1=Yang |first1=Y. |last2=Wang |first2=S.-J. |last3=Wang |first3=J. |year=2023 |title=Stem Anatomy Confirms Tingia unita Is a Progymnosperm |journal=Biology |volume=12 |issue=4 |at=494 |doi=10.3390/biology12040494 |pmid=37106695 |pmc=10136042 |doi-access=free }}
- A study on the phylogenetic relationships and evolutionary history of cycads, based on data from extant and fossil taxa, is published by Coiro et al. (2023).{{Cite journal|last1=Coiro |first1=M. |last2=Allio |first2=R. |last3=Mazet |first3=N. |last4=Seyfullah |first4=L. J. |last5=Condamine |first5=F. L. |year=2023 |title=Reconciling fossils with phylogenies reveals the origin and macroevolutionary processes explaining the global cycad biodiversity |journal=New Phytologist |volume=240 |issue=4 |pages=1616–1635 |doi=10.1111/nph.19010 |pmid=37302411 |s2cid=259137975 |doi-access=free |pmc=10953041 }}
- Evidence from nitrogen isotopic measurements from fossilized cycad leaves and ancestral state reconstructions, interpreted as indicating that symbiosis of with N2-fixing cyanobacteria wasn't ancestral within cycads but rather arose independently in the lineages leading to living cycads during or after the Jurassic, is published by Kipp et al. (2023).{{Cite journal|last1=Kipp |first1=M. A. |last2=Stüeken |first2=E. E. |last3=Strömberg |first3=C. A. E. |last4=Brightly |first4=W. H. |last5=Arbour |first5=V. M. |last6=Erdei |first6=B. |last7=Hill |first7=R. S. |last8=Johnson |first8=K. R. |last9=Kvaček |first9=J. |last10=McElwain |first10=J. C. |last11=Miller |first11=I. M. |last12=Slodownik |first12=M. |last13=Vajda |first13=V. |last14=Buick |first14=R. |title=Nitrogen isotopes reveal independent origins of N2-fixing symbiosis in extant cycad lineages |year=2023 |journal=Nature Ecology & Evolution |volume=8 |issue=1 |pages=57–69 |doi=10.1038/s41559-023-02251-1 |pmid=37974002 |hdl=10023/28871 |hdl-access=free }}
- Fu et al. (2023) report the presence of ovules enclosed within the ovaries of specimens of Nanjinganthus dendrostyla, and consider their findings to be consistent with the interpretation of Nanjinganthus as an Early Jurassic angiosperm.{{cite journal|last1=Fu |first1=Q. |last2=Hou |first2=Y. |last3=Yin |first3=P. |last4=Diez |first4=J. B. |last5=Pole |first5=M. |last6=García-Ávila |first6=M. |last7=Wang |first7=X. |title=Micro-CT results exhibit ovules enclosed in the ovaries of Nanjinganthus |year=2023 |journal=Scientific Reports |volume=13 |issue=1 |at=426 |doi=10.1038/s41598-022-27334-0 |pmid=36624144 |pmc=9829905 |bibcode=2023NatSR..13..426F | doi-access = free }}
Palynology
class="wikitable sortable" align="center" width="100%" |
Name
! Novelty ! Status ! Authors ! Age ! Unit ! Location ! Synonymized taxa ! Notes ! Images |
---|
Acanthodiporites{{Cite journal|last1=Parmar |first1=S. |last2=Morley |first2=R. J. |last3=Bansal |first3=M. |last4=Singh |first4=B. P. |last5=Morley |first5=H. |last6=Prasad |first6=V. |year=2023 |title=Evolution of family Arecaceae on the Indian Plate modulated by the Early Palaeogene climate and tectonics |journal=Review of Palaeobotany and Palynology |volume=313 |at=104890 |doi=10.1016/j.revpalbo.2023.104890 |bibcode=2023RPaPa.31304890P |s2cid=257872022 }}
| Gen. et sp. nov | | Parmar et al. | Paleogene | | {{Flag|India}} | | Pollen of a member of the family Arecaceae. Genus includes new species A. spinatus. | |
Acylomurus silviae
| Sp. nov | | Perez Loinaze et al. | Late Cretaceous (Maastrichtian) | Chorrillo Formation | {{Flag|Argentina}} | | A spore of uncertain affinities. | |
Ailanthipites diminutus
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | | {{Flag|Argentina}} | | | |
Ailanthipites feruglioi
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Ailanthipites hexagonalis
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Alisporites libyaensis{{Cite journal|last1=Gutierrez |first1=P. R. |last2=Zavattieri |first2=A. M. |year=2023 |title=Middle Triassic continental palynological assemblages of San Rafael depocenter, central-western Argentina |journal=Ameghiniana |volume=60 |issue=5 |pages=391–417 |doi=10.5710/AMGH.31.03.2023.3549 |url=https://www.ameghiniana.org.ar/index.php/ameghiniana/article/view/3549 |url-access=subscription }}
| Nom. nov | Valid | Gutierrez & Zavattieri | Permian and Triassic | | {{Flag|Libya}} | | A replacement name for Alisporites plicatus Kar, Kieser & Jain (1972). | |
Aratrisporites circularis
| Sp. nov | Valid | Gutierrez & Zavattieri | Middle Triassic | Quebrada de los Fósiles Formation | {{Flag|Argentina}} | | | |
Arecipites botrus
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Baculatisporites magnus
| Sp. nov | Valid | Gutierrez & Zavattieri | Middle Triassic | Quebrada de los Fósiles Formation | {{Flag|Argentina}} | | | |
Brevitriletes decorus
| Comb. nov | Valid | (Ouyang & Norris) | Triassic | | {{Flag|China}} | | Moved from Anapiculatisporites decorus Ouyang & Norris (1999). | |
Brevitriletes pamelae
| Comb. nov | Valid | (Ottone in Ottone et al.) | Triassic | | {{Flag|Argentina}} | | Moved from Anapiculatisporites pamelae Ottone in Ottone et al. (1992). | |
Brevitriletes sandrae
| Comb. nov | Valid | (Ottone in Ottone et al.) | Triassic | | {{Flag|Argentina}} | | Moved from Anapiculatisporites sandrae Ottone in Ottone et al. (1992). | |
Carnisporites microspinous
| Sp. nov | Valid | Gutierrez & Zavattieri | Middle Triassic | Quebrada de los Fósiles Formation | {{Flag|Argentina}} | | | |
Casuarinidites foveolatus{{Cite journal|last1=Mander |first1=L. |last2=Jaramillo |first2=C. |last3=Oboh-Ikuenobe |first3=F. |year=2023 |title=Descriptive systematics of Upper Paleocene–Lower Eocene pollen and spores from the northern Niger Delta, southeastern Nigeria |journal=Palynology |volume=47 |issue=3 |at=2200525 |doi=10.1080/01916122.2023.2200525 |s2cid=258044069 |doi-access=free }}
| Sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | Pollen of a flowering plant. | |
Classopollis patagonicus{{Cite journal|last1=De Benedetti |first1=F. |last2=Zamaloa |first2=M. C. |last3=Gandolfo |first3=M. A. |last4=Cúneo |first4=N. R. |year=2023 |title=Pollen from the K–Pg boundary of the La Colonia Formation, Patagonia, Argentina |journal=Review of Palaeobotany and Palynology |volume=316 |at=104933 |doi=10.1016/j.revpalbo.2023.104933 }}
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Clavapalmaedites clavatus
| Sp. nov | | Parmar et al. | Paleogene | | {{Flag|India}} | | | |
Clavatriporites
| Gen. et 2 sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | Pollen of a flowering plant. Genus includes new species C. dispersiclavatus and C. spicatus. | |
Cuneatisporites cacheutensis
| Comb. nov | Valid | (Jain) | Triassic | Cacheuta Formation | {{Flag|Argentina}} | | Moved from Jansoniuspollenites cacheutensis Jain (1968). | |
Cuneatisporites salujhai
| Comb. nov | Valid | (Jain) | Triassic | Cacheuta Formation | {{Flag|Argentina}} | | Moved from Jansoniuspollenites salujhai Jain (1968). | |
Echitricolpites serratus
| Sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | | |
Ericipites verrucatus
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Flabellisporites zhaotongensis{{Cite journal|last1=Sui |first1=Q. |last2=Zhan |first2=H.-X. |last3=Zhou |first3=D.-C. |last4=Niu |first4=Y.-N. |last5=Chen |first5=J. |last6=McLoughlin |first6=S. |last7=Feng |first7=Z. |year=2023 |title=Morphology and wall ultrastructure of a unique megaspore, Flabellisporites zhaotongensis Sui, McLoughlin et Feng sp. nov., from the upper Permian of Southwest China |journal=Review of Palaeobotany and Palynology |volume=321 |at=105036 |doi=10.1016/j.revpalbo.2023.105036 }}
| Sp. nov | | Sui, McLoughlin & Feng in Sui et al. | Permian (Lopingian) | Xuanwei Formation | {{Flag|China}} | | A spore of a member of Isoetales. | |
Gemmamonocolpites barmerensis
| Sp. nov | | Parmar et al. | Paleogene | | {{Flag|India}} | | | |
Gemmamonocolpites chubutensis
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Grimmipollis{{cite journal |last1=Huang |first1=H. |last2=Morley |first2=R. J. |last3=van der Ham |first3=R. |last4=Mao |first4=L. |last5=Licht |first5=A. |last6=Dupont-Nivet |first6=G.|last7=Win |first7=Z. |last8=Aung |first8=D. |last9=Hoorn |first9=C. |year=2023 |title=Grimmipollis burmanica gen. et sp. nov.: New genus of the soapberry family (Sapindaceae) from the late Eocene of central Myanmar |journal=Review of Palaeobotany and Palynology |volume=309|page=104818 |doi=10.1016/j.revpalbo.2022.104818 |bibcode=2023RPaPa.30904818H |s2cid=254560001 |doi-access=free }}
| Gen et sp nov | | Huang, Morley, & Hoorn | late Eocene | | {{flag|Myanmar}} | | A cupaniean sapindaceous pollen morphotype | |
Henrisporites qujingensis{{Cite journal|last1=Sui |first1=Q. |last2=Sheng |first2=Z.-H. |last3=Yang |first3=J.-Y. |last4=Guo |first4=Y. |last5=McLoughlin |first5=S. |last6=Feng |first6=Z. |year=2023 |title=Two new isoetalean (Lycopsida) megaspore species representing the earliest occurrence of Henrisporites from upper Permian strata of Southwest China |journal=Review of Palaeobotany and Palynology |volume=314 |at=104894 |doi=10.1016/j.revpalbo.2023.104894 |s2cid=258055855 |url=http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-5444 }}
| Sp. nov | | Sui, McLoughlin & Feng in Sui et al. | Permian (Lopingian) | Xuanwei Formation | {{Flag|China}} | | A lycopsid megaspore. | |
Henrisporites yunnanensis
| Sp. nov | | Sui, McLoughlin & Feng in Sui et al. | Permian (Lopingian) | Xuanwei Formation | {{Flag|China}} | | A lycopsid megaspore. | |
Inaperturopollenites fossulatus
| Sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | | |
Krutzschipollis argentinum
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Lagenicula morbelliae{{Cite journal|last1=Quetglas |first1=M. A. |last2=Di Pasquo |first2=M. |last3=Macluf |first3=C. C. |year=2023 |title=Taxonomy of Early Mississippian gulate megaspore assemblage from northern Bolivia |journal=Review of Palaeobotany and Palynology |volume=318 |at=104971 |doi=10.1016/j.revpalbo.2023.104971 }}
| Sp. nov | | Quetglas, Di Pasquo & Macluf | Carboniferous (Tournaisian) | Toregua Formation | {{Flag|Bolivia}} | | | |
Leschikisporis variabilis
| Sp. nov | Valid | Gutierrez & Zavattieri | Middle Triassic | Quebrada de los Fósiles Formation | {{Flag|Argentina}} | | | |
Liliacidites buitrensis
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Liliacidites lacunosus
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Limatulasporites rugulatus
| Sp. nov | Valid | Gutierrez & Zavattieri | Middle Triassic | Quebrada de los Fósiles Formation | {{Flag|Argentina}} | | | |
Longapertites crassireticuloides
| Sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | Pollen of a flowering plant. | |
Luminidites microreticulatus
| Sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | Pollen of a flowering plant. | |
Lusatisporis choiols
| Sp. nov | | Perez Loinaze et al. | Late Cretaceous (Maastrichtian) | Chorrillo Formation | {{Flag|Argentina}} | | A spore of uncertain affinities. | |
Nelumbopollenites patagonicus
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | Pollen of a member of the family Nelumbonaceae. | |
Neoraistrickia stricta
| Sp. nov | Valid | Gutierrez & Zavattieri | Middle Triassic | Quebrada de los Fósiles Formation | {{Flag|Argentina}} | | | |
Nyssapollenites scabratus
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Parviprojectus archangelskyi
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Periporopollenites delicatus
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Pityosporites thoracatus
| Comb. nov | Valid | (Balme) | Triassic | | {{Flag|Pakistan}} | | Moved from Pinuspollenites thoracatus Balme (1970). | |
Podocarpidites rectangularis
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Proteacidites baibianae
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Proteacidites mirasolensis
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Protohaploxypinus bonapartei
| Sp. nov | Valid | Gutierrez & Zavattieri | Middle Triassic | Quebrada de los Fósiles Formation | {{Flag|Argentina}} | | | |
Protohaploxypinus diazii
| Sp. nov | Valid | Gutierrez & Zavattieri | Middle Triassic | Quebrada de los Fósiles Formation | {{Flag|Argentina}} | | | |
Psilabrevitricolporites porolatus
| Sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | Pollen of a flowering plant. | |
Psilatriletes brevilaesuratus
| Sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | A spore. | |
Punctatisporites interfoveolatus
| Sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | A spore. | |
Retimonocolpites perforatus
| Sp. nov | | Parmar et al. | Paleogene | | {{Flag|India}} | | | |
Retimonoporites heterobrochatus
| Sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | Pollen of a flowering plant. | |
Retitrescolpites miriabilis
| Sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | Pollen of a flowering plant. | |
Retitricolporites ganganensis
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Retitricolporites irupensis
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Retitriporites irregularis
| Sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | | |
Rousea robusta
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Rugutricolporites cumulus
| Sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | | |
Slavicekia{{cite journal |last1=Heřmanová |first1=Z. |last2=Kvaček |first2=J. |last3=Čepičková |first3=J. |last4=von Balthazar |first4=M. |last5=Luthardt |first5=L. |last6=Schönenberger |first6=J. |year=2023 |title=Slavicekia gen. nov. - a new member of the Normapolles complex from Late Cretaceous sediments of the Czech Republic |journal=International Journal of Plant Sciences |volume=184 |issue=3 |pages=201–213 |doi=10.1086/724155 |s2cid=256048862 }}
| Gen. et sp. nov | Valid | Heřmanová et al. | Late Cretaceous | | {{Flag|Czech Republic}} | | Pollen from the Normapolles complex, likely produced by angiosperms belonging to the order Fagales. Genus includes new species S. inaequalis. | |
Sparganiaceaepollenites annulatus
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Spinizonocolpites coloniensis
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Spinizonocolpites variabilis
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Symplocoipollenites microechinatus
| Sp. nov | | De Benedetti et al. | Cretaceous-Paleogene boundary | La Colonia Formation | {{Flag|Argentina}} | | | |
Syncolporites angusticolpatus
| Sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | | |
Syncolporites rostro
| Sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | | |
Tetracolporopollenites torus
| Sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | Pollen of a flowering plant. | |
Thomasospora
| Gen. et comb. nov | | Bek et al. | Paleozoic | | {{Flag|France}} | | Spores produced by the lycophyte Thomasites serratus. Genus includes "Lycospora" gigantea Alpern. | |
Tricolpites brevicolpatus
| Sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | | |
Tricolpites multiornamentus
| Sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | | |
Tricolporites densus
| Sp. nov | | Mander, Jaramillo & Oboh-Ikuenobe | Paleogene | | {{Flag|Nigeria}} | | | |
=Palynological research=
- Vajda et al. (2023) interpret Ricciisporites tuberculatus as an aberrant pollen produced by Lepidopteris ottonis plants, and interpret its fossil record as indicative of the competitive success of plants which adopted the asexual reproductive strategy under stressed environmental conditions before and during the Triassic–Jurassic extinction event;{{Cite journal|last1=Vajda |first1=V. |last2=McLoughlin |first2=S. |last3=Slater |first3=S. M. |last4=Gustafsson |first4=O. |last5=Rasmusson |first5=A. G. |year=2023 |title=The 'seed-fern' Lepidopteris mass-produced the abnormal pollen Ricciisporites during the end-Triassic biotic crisis |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=627 |at=111723 |doi=10.1016/j.palaeo.2023.111723 |doi-access=free }} their interpretation of Ricciisporites and Cycadopites as produced by the same plant is subsequently contested by Zavialova (2024){{Cite journal|last=Zavialova |first=N. |year=2024 |title=Comment on "The 'seed-fern' Lepidopteris mass-produced the abnormal pollen Ricciisporites during the end-Triassic biotic crisis" by V. Vajda, S. McLoughlin, S. M. Slater, O. Gustafsson, and A. G. Rasmusson [Palaeogeography, Palaeoclimatology, Palaeoecology, 627 (2023), 111,723] |journal=Review of Palaeobotany and Palynology |volume=322 |at=105065 |doi=10.1016/j.revpalbo.2024.105065 }} and reaffirmed by Vajda et al. (2024).{{Cite journal|last1=Vajda |first1=V. |last2=McLoughlin |first2=S. |last3=Slater |first3=S. M. |last4=Gustafsson |first4=O. |last5=Rasmusson |first5=A. G. |year=2024 |title=Confirmation that Antevsia zeilleri microsporangiate organs associated with latest Triassic Lepidopteris ottonis (Peltaspermales) leaves produced Cycadopites-Monosulcites-Chasmatosporites- and Ricciisporites-type monosulcate pollen |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=640 |at=112111 |doi=10.1016/j.palaeo.2024.112111 |url=http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-5652 }}
- A study on the vegetation in Central Africa from the middle Aptian to early Albian, as indicated by palynomorphs from the Doseo Basin in the Central African Rift system, is published by Dou et al. (2023), who identify two assemblages of spore and pollen fossils, and interpret the differences between the assemblages as indicative of a vegetation change related to change from relatively arid to humid climate.{{Cite journal|last1=Dou |first1=L. |last2=Zhang |first2=X. |last3=Xiao |first3=K. |last4=Xi |first4=D. |last5=Du |first5=Y. |last6=Wang |first6=L. |last7=Hu |first7=J. |last8=Hu |first8=Y. |last9=Zheng |first9=Q. |year=2023 |title=Early Cretaceous (Aptian to Albian) vegetation and climate change in Central Africa: Novel palynological evidence from the Doseo Basin |journal=Geological Journal |volume=59 |issue=2 |pages=441–467 |doi=10.1002/gj.4873 }}
- Malaikanok et al. (2023) describe fossil pollen grains of members of the family Fagaceae from the Oligocene to Miocene Ban Pa Kha Subbasin of the Li Basin (Thailand), and interpret the studied fossils as indicating that, contrary to previous interpretations of the palynological record, tropical Fagaceae-dominated forests existed in northern Thailand at least since the late Paleogene and persisted into the modern vegetation of Thailand.{{Cite journal|last1=Malaikanok |first1=P. |last2=Grímsson |first2=F. |last3=Denk |first3=T. |last4=Phuphumirat |first4=W. |title=Community assembly of tropical Fagaceae-dominated forests in Thailand dates back at least to the Late Palaeogene |year=2023 |journal=Botanical Journal of the Linnean Society |volume=202 |pages=1–22 |doi=10.1093/botlinnean/boac075 |doi-access=free }}
- A study on the environmental changes in the Lake Baikal region during the Marine Isotope Stage 3, as indicated by palynological data, is published by Shichi et al. (2023), who find that the dispersal of Homo sapiens into Baikal Siberia coincided with climate changes resulting in warm and humid conditions and vegetation changes.{{Cite journal|last1=Shichi |first1=K. |last2=Goebel |first2=T. |last3=Izuho |first3=M. |last4=Kashiwaya |first4=K. |year=2023 |title=Climate amelioration, abrupt vegetation recovery, and the dispersal of Homo sapiens in Baikal Siberia |journal=Science Advances |volume=9 |issue=38 |at=eadi0189 |doi=10.1126/sciadv.adi0189 |pmid=37738346 |pmc=10516500 |doi-access=free }}
- Evidence from the study of Last Interglacial pollen records across Europe, interpreted as indicating that European forests before the arrival of Homo sapiens included substantial open and light woodland elements, is presented by Pearce et al. (2023).{{Cite journal|last1=Pearce |first1=E. A. |last2=Mazier |first2=F. |last3=Normand |first3=S. |last4=Fyfe |first4=R. |last5=Andrieu |first5=V. |last6=Bakels |first6=C. |last7=Balwierz |first7=Z. |last8=Bińka |first8=K. |last9=Boreham |first9=S. |last10=Borisova |first10=O. K. |last11=Brostrom |first11=A. |last12=de Beaulieu |first12=J.-L. |last13=Gao |first13=C. |last14=González-Sampériz |first14=P. |last15=Granoszewski |first15=W. |last16=Hrynowiecka |first16=A. |last17=Kołaczek |first17=P. |last18=Kuneš |first18=P. |last19=Magri |first19=D. |last20=Malkiewicz |first20=M. |last21=Mighall |first21=T. |last22=Milner |first22=A. M. |last23=Möller |first23=P. |last24=Nita |first24=M. |last25=Noryśkiewicz |first25=B. |last26=Pidek |first26=I. A. |last27=Reille |first27=M. |last28=Robertsson |first28=A.-M. |last29=Salonen |first29=J. S. |last30=Schläfli |first30=P. |last31=Schokker |first31=J. |last32=Scussolini |first32=P. |last33=Šeirienė |first33=V. |last34=Strahl |first34=J. |last35=Urban |first35=B. |last36=Winter |first36=H. |last37=Svenning |first37=J.-C. |year=2023 |title=Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens |journal=Science Advances |volume=9 |issue=45 |at=eadi9135 |doi=10.1126/sciadv.adi9135 |pmid=37948521 |pmc=10637746 |doi-access=free }}
Research
- A study on the evolution of the phenotypic disparity of plants, based on data from extant and fossil taxa, is published by Clark et al. (2023), who find that the morphological distinctiveness of extant plant group is in part the result of extinction of fossil plants with intermediate morphologies, and report evidence of a pattern of episodic sharp increases of morphological diversity throughout the evolutionary history of plants.{{Cite journal|last1=Clark |first1=J. W. |last2=Hetherington |first2=A. J. |last3=Morris |first3=J. L. |last4=Pressel |first4=S. |last5=Duckett |first5=J. G. |last6=Puttick |first6=M. N. |last7=Schneider |first7=H. |last8=Kenrick |first8=P. |last9=Wellman |first9=C. H. |last10=Donoghue |first10=P. C. J. |title=Evolution of phenotypic disparity in the plant kingdom |year=2023 |journal=Nature Plants |volume=9 |issue=10 |pages=1618–1626 |doi=10.1038/s41477-023-01513-x |pmid=37666963 |pmc=10581900 }}
- A study on the evolution of the complexity of vascular plant reproductive structures, indicating that major reproductive innovations were associated with increased integration through greater interactions among component parts, is published by Leslie & Mander (2023).{{cite journal |last1=Leslie |first1=A. B. |last2=Mander |first2=L. |year=2023 |title=Quantifying the complexity of plant reproductive structures reveals a history of morphological and functional integration |journal=Proceedings of the Royal Society B: Biological Sciences |volume=290 |issue=2010 |at=20231810 |doi=10.1098/rspb.2023.1810 |pmid=37909082 |pmc=10618862 }}
- Evidence from mercury concentration and isotopic signatures of marine sedimentary rock samples spanning from the Cambrian to Permian, interpreted as indicating that vascular plants were already widely distributed on land during the Ordovician-Silurian transition, is presented by Yuan et al. (2023).{{Cite journal|last1=Yuan |first1=W. |last2=Liu |first2=M. |last3=Chen |first3=D. |last4=Xing |first4=Y.-W. |last5=Spicer |first5=R. A. |last6=Chen |first6=J. |last7=Them |first7=T. R. |last8=Wang |first8=X. |last9=Li |first9=S. |last10=Guo |first10=C. |last11=Zhang |first11=G. |last12=Zhang |first12=L. |last13=Zhang |first13=H. |last14=Feng |first14=X. |year=2023 |title=Mercury isotopes show vascular plants had colonized land extensively by the early Silurian |journal=Science Advances |volume=9 |issue=17 |at=eade9510 |doi=10.1126/sciadv.ade9510 |pmid=37115923 |pmc=10146902 |doi-access=free }}
- Evidence indicating that the knowledge of the early plant diversity from the latest Silurian–Early Devonian fossil record is at least partly affected by the variation of the rock record is presented by Capel et al. (2023).{{cite journal |last1=Capel |first1=E. |last2=Monnet |first2=C. |last3=Cleal |first3=C. J. |last4=Xue |first4=J. |last5=Servais |first5=T. |last6=Cascales-Miñana |first6=B. |year=2023 |title=The effect of geological biases on our perception of early land plant radiation |journal=Palaeontology |volume=66 |issue=2 |at=e12644 |doi=10.1111/pala.12644 |bibcode=2023Palgy..6612644C |s2cid=257654230 |doi-access=free }}
- A study on early land plant diversity patterns across known paleogeographical units (Laurussia, Siberia, Kazakhstania, Gondwana) throughout the Silurian and Devonian periods is published by Capel et al. (2023){{cite journal |last1=Capel |first1=E. |last2=Cleal |first2=C. J. |last3=Servais |first3=T. |last4=Cascales-Miñana |first4=B. |year=2023 |title=New insights into Silurian–Devonian palaeophytogeography |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=613 |at=111393 |doi=10.1016/j.palaeo.2023.111393 |bibcode=2023PPP...61311393C |s2cid=255727527 |doi-access=free }}
- A study on the survivorship and migration dynamics of plants from the paleocontinent Angarida during the Frasnian-Tournaisian internal, as indicated by fossil record from the Siberian platform (Russia), is published by Dowding, Akulov & Mashchuk (2023).{{cite journal |last1=Dowding |first1=E. M. |last2=Akulov |first2=N. I. |last3=Mashchuk |first3=I. M. |year=2023 |title=Survivorship dynamics of the flora of Devonian Angarida |journal=Proceedings of the Royal Society B: Biological Sciences |volume=290 |issue=1990 |at=20221079 |doi=10.1098/rspb.2022.1079 |pmid=36629112 |pmc=9832553 }}
- Barrón et al. (2023) study the floral assemblages from the Cretaceous Maestrazgo Basin (Spain), providing evidence of the existence of conifer woodlands and fern/angiosperm communities thriving in the mid-Cretaceous Iberian Desert System, and report that the studied assemblages can generally be related to others from Europe and North America, but also included plants that were typical for northern Gondwana.{{Cite journal|last1=Barrón |first1=E. |last2=Peyrot |first2=D. |last3=Bueno-Cebollada |first3=C. A. |last4=Kvaček |first4=J. |last5=Álvarez-Parra |first5=S. |last6=Altolaguirre |first6=Y. |last7=Meléndez |first7=N. |title=Biodiversity of ecosystems in an arid setting: The late Albian plant communities and associated biota from eastern Iberia |year=2023 |journal=PLOS ONE |volume=18 |issue=3 |at=e0282178 |doi=10.1371/journal.pone.0282178 |pmid=36862709 |pmc=9980801 |bibcode=2023PLoSO..1882178B |doi-access=free }}
- A study on the fossil material of plants from the Cenomanian deposits of the Western Desert (Egypt) is published by El Atfy et al. (2023), who report the presence of five main vegetation types, and interpret the studied fossils as indicative of an overall warm and humid climate, punctuated by repeated phases of drier conditions.{{Cite journal|last1=El Atfy |first1=H. |last2=Coiffard |first2=C. |last3=El Beialy |first3=S. Y. |last4=Uhl |first4=D. |title=Vegetation and climate change at the southern margin of the Neo-Tethys during the Cenomanian (Late Cretaceous): Evidence from Egypt |year=2023 |journal=PLOS ONE |volume=18 |issue=1 |at=e0281008 |doi=10.1371/journal.pone.0281008 |pmid=36716334 |pmc=9886267 |bibcode=2023PLoSO..1881008E |doi-access=free }}
- Moreau & Néraudeau (2023) describe an assemblage of Cenomanian plants from a new paleontological site La Gripperie-Saint-Symphorien (Charente-Maritime, France), which (unlike most of Albian-Cenomanian coastal floras from the Aquitaine Basin) is dominated by angiosperms.{{Cite journal|last1=Moreau |first1=J.-D. |last2=Néraudeau |first2=D. |title=Amber and plants from the Upper Cretaceous of La Gripperie-Saint-Symphorien (Charente-Maritime, Western France) |year=2023 |journal=Comptes Rendus Palevol |volume=22 |issue=20 |pages=455–466 |doi=10.5852/cr-palevol2023v22a20 |doi-access=free }}
- A study on the mid-Eocene vegetation in the southern Central Andes, based on spore-pollen record from the Casa Grande Formation (Jujuy, Argentina), is published by Tapia et al. (2023), who interpret their findings as indicative of a plant community with no close analogue in the modern South American vegetation, as well as indicative of subtropical or tropical conditions and frost-free winters.{{Cite journal|last1=Tapia |first1=M. J. |last2=Farrell |first2=E. E. |last3=Mautino |first3=L. R. |last4=del Papa |first4=C. |last5=Barreda |first5=V. D. |last6=Palazzesi |first6=L. |title=A snapshot of mid Eocene landscapes in the southern Central Andes: Spore-pollen records from the Casa Grande Formation (Jujuy, Argentina) |year=2023 |journal=PLOS ONE |volume=18 |issue=4 |at=e0277389 |doi=10.1371/journal.pone.0277389 |pmid=37018180 |pmc=10075436 |bibcode=2023PLoSO..1877389T |doi-access=free }}
- Description of fossil wood from the Brown Sands and Flat Sands localities in the Pliocene Usno Formation (Lower Omo valley, Ethiopia) is published by Jolly-Saad & Bonnefille (2023), who report that the studied assemblages strongly differ from other Miocene and Pliocene wood assemblages from Ethiopia, and interpret them as indicative of a seasonal climate and more humid climatic conditions compared to the present, but also as indicative of instability of climatic and environmental conditions, with significant changes in the composition of the tree cover during the time of existence of Australopithecus afarensis.{{cite journal |last1=Jolly-Saad |first1=M.-C. |last2=Bonnefille |first2=R. |year=2023 |title=Tropical forests and Combretaceae woodland at Usno in the Lower Omo Valley (Ethiopia), 3.3-3.2 Ma ago |journal=Geobios |volume=76 |pages=1–17 |doi=10.1016/j.geobios.2023.01.003 |bibcode=2023Geobi..76....1J |s2cid=256214841 |doi-access=free }}
- A study on changes in functional diversity of plants from southeast Australia during the last 12,000 years, inferred from long-term pollen records, is published by Adeleye et al. (2023).{{Cite journal |last1=Adeleye |first1=M. A. |last2=Haberle |first2=S. G. |last3=Gallagher |first3=R. |last4=Andrew |first4=S. C. |last5=Herbert |first5=A. |year=2023 |title=Changing plant functional diversity over the last 12,000 years provides perspectives for tracking future changes in vegetation communities |journal=Nature Ecology & Evolution |volume=7 |issue=2 |pages=224–235 |doi=10.1038/s41559-022-01943-4 |pmid=36624175 |s2cid=255569024 }}
- The oldest flower and seed fossils of the wind-pollinated besom heaths, Erica sect. Chlorocodon, were found in Madeira Island within a 1.3 million-year-old fossil deposit.{{Cite journal |last1=Góis-Marques |first1=Carlos A. |last2=de Nascimento |first2=Lea |last3=Fernández-Palacios |first3=José María |last4=Madeira |first4=José |last5=de Sequeira |first5=Miguel Menezes |date=2023-02-15 |title=Description and systematic affinity of flower and seed fossils of Erica sect. Chlorocodon (Ericaceae) from the early Pleistocene of Madeira Island, Portugal |url=https://onlinelibrary.wiley.com/doi/10.1002/tax.12881 |journal=Taxon |language=en |volume=72 |issue=2 |pages=375–392 |doi=10.1002/tax.12881 |s2cid=256975369 |issn=0040-0262|url-access=subscription }}