2022 in paleobotany
{{Short description|none}}
{{ToC Right}}
{{Year nav topic20 |2022|paleobotany |paleontology |arthropod paleontology |paleoentomology |paleomalacology |reptile paleontology |archosaur paleontology |mammal paleontology |paleoichthyology }}
This paleobotany list records new fossil plant taxa that were described during 2022, as well as notes other significant paleobotany discoveries and events which occurred during 2022.
Algae
=Charophytes=
class="wikitable sortable" align="center" width="75%" |
Name
! Novelty ! Status ! Authors ! Age ! Unit ! Location ! Synonymized taxa ! Notes ! Images |
---|
Lamprothamnium elongatum{{Cite journal|last1=Feist |first1=M. |last2=Floquet |first2=M. |title=Charophytes from the Upper Cretaceous Castilian marine ramp and continental basins (central northern Spain): fossil assemblages and depositional environments |year=2022 |journal=Cretaceous Research |volume=140 |pages=Article 105325 |doi=10.1016/j.cretres.2022.105325 |bibcode=2022CrRes.14005325F |s2cid=251681127 |doi-access=free }}
| Sp. nov | In press | Feist & Floquet | Late Cretaceous | | {{Flag|Spain}} | | A charophyte. | |
Lamprothamnium ovoideum
| Sp. nov | In press | Feist & Floquet | Late Cretaceous | | {{Flag|Spain}} | | A charophyte. | |
Pseudoharrisichara sedanoensis
| Sp. nov | In press | Feist & Floquet | Late Cretaceous | | {{Flag|Spain}} | | A charophyte. | |
==Charophyte research==
- A study on the Paleocene charophyte flora from the South Gobi area in the Junggar Basin (China) and on the Paleogene fossil record of charophytes is published by Cao et al. (2022), who interpret their findings as evidence of the dispersal of charophyte lineages from Asia to Europe in the middle to late Eocene, possibly facilitated by waterbirds.{{Cite journal|last1=Cao |first1=W. |last2=Li |first2=S. |last3=Li |first3=Q. |last4=Stidham |first4=T. A. |last5=Wan |first5=X. |last6=Ni |first6=X. |year=2022 |title=Asian Paleocene charophyte records demonstrate Eocene dispersals from Asia to Europe |journal=Journal of Paleontology |volume=96 |issue=3 |pages=706–714 |doi=10.1017/jpa.2021.118 |bibcode=2022JPal...96..706C |s2cid=246456520 }}
=Chlorophytes=
Lycopodiopsida
=Lycopsid research=
- Description of new fossil material of Guangdedendron micrum, providing new information on the morphology of this plant, is published by Gao et al. (2022).{{Cite journal|last1=Gao |first1=X. |last2=Liu |first2=L. |last3=Qin |first3=M. |last4=Zhou |first4=Y. |last5=Mao |first5=L. |last6=Wang |first6=D.-M. |year=2022 |title=Re-study of Guangdedendron micrum from the Late Devonian Xinhang forest |journal=BMC Ecology and Evolution |volume=22 |issue=1 |pages=Article number 69 |doi=10.1186/s12862-022-02021-w |pmid=35606742 |pmc=9128225 |doi-access=free }}
- Xu, Liu & Wang (2022) describe new fossil material of Sublepidodendron grabaui from the Devonian (Famennian) Wutong Formation (China), providing new information on the morphology of the female reproductive organs of this plant.{{Cite journal|last1=Xu |first1=P. |last2=Liu |first2=L. |last3=Wang |first3=D.-M. |title=Reinvestigation of the Late Devonian Lycopsid Sublepidodendron grabaui from Anhui Province, South China |year=2022 |journal=Biology |volume=11 |issue=10 |at=1544 |doi=10.3390/biology11101544 |pmid=36290447 |pmc=9598524 |doi-access=free }}
Marchantiophyta
=Marchantiophyta research=
- New specimens of Radula heinrichsii, providing new information on the morphology of this liverwort, are described from the Cretaceous Burmese amber by Wang et al. (2022).{{Cite journal|last1=Wang |first1=Q. |last2=Li |first2=Y. |last3=Feldberg |first3=K. |last4=Wang |first4=Y.-D. |last5=Yang |first5=X.-J. |year=2022 |title=Radula heinrichsii (Radulaceae, Porellales), a leafy liverwort from the mid-Cretaceous of Myanmar |journal=Palaeoworld |volume=31 |issue=4 |pages=679–687 |doi=10.1016/j.palwor.2022.01.006 |s2cid=246463305 }}
Ferns and fern allies
= Fern and fern ally research =
- Pecopteris lativenosa is interpreted as a member of the late Paleozoic marattialean family Psaroniaceae by Li et al. (2022).{{Cite journal|last1=Li |first1=D. |last2=Zhou |first2=W. |last3=Wan |first3=M. |last4=Wang |first4=S. |last5=Wang |first5=J. |title=Leaf scar and petiole anatomy reveal Pecopteris lativenosa Halle is a marattialean fern |year=2022 |journal=Geobios |volume=72–73 |pages=37–53 |doi=10.1016/j.geobios.2022.07.004 |bibcode=2022Geobi..72...37L |s2cid=250377020 }}
Gnetales
Bennettitales
Ginkgophytes
=Ginkgophyte research=
- Revision of Ginkgo abaniensis, based on data from leaves from the Jurassic Mura Formation (Russia), is published by Frolov & Mashchuk (2022), who emend the diagnosis of this species, and transfer Ginkgo abaniensis, Ginkgo glinkiensis and Ginkgo capillata to the genus Ginkgoites.{{Cite journal|last1=Frolov |first1=A. O. |last2=Mashchuk |first2=I. M. |year=2022 |title=New Discoveries and New Combinations of the Fossil-genus Ginkgoites Seward (Ginkgoales) from the Lower and Middle Jurassic of East Siberia (Russia) |journal=Phytotaxa |volume=567 |issue=1 |pages=49–60 |doi=10.11646/phytotaxa.567.1.4 |s2cid=252650745 }}
Conifers
=Araucariaceae=
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Agathoxylon argentinum{{Cite journal |last1=Bodnar |first1=J. |last2=Sagasti |first2=A. J. |last3=Correa |first3=G. A. |last4=Miranda |first4=V. |last5=Medina |first5=F. |title=Araucariaceous fossil woods from the Upper Triassic Ischigualasto Formation (San Juan Province, Argentina): paleofloristic and paleoclimatic implications |year=2022 |journal=Journal of Paleontology |volume=96 |issue=6 |pages=1354–1378 |doi=10.1017/jpa.2022.45 |bibcode=2022JPal...96.1354B |s2cid=251005726 }}
| Sp. nov | Valid | Bodnar et al. | | | {{Flag|Argentina}} | | |
=Cheirolepidiaceae=
=Cupressaceae=
=Pinaceae=
=Podocarpaceae=
=Sciadopityaceae=
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Zhangoxylon{{Cite journal|last1=Jiang |first1=Z. |last2=Tian |first2=N. |last3=Wang |first3=Y. |last4=Li |first4=Y. |last5=Zheng |first5=S. |last6=Xie |first6=A. |last7=Zhu |first7=Y. |year=2022 |title=A new structurally preserved fossil umbrella pine from the Jurassic of East Asia |journal=Geological Journal |volume=57 |issue=9 |pages=3521–3537 |doi=10.1002/gj.4467 |bibcode=2022GeolJ..57.3521J |s2cid=249799441 }}
| Gen. et sp. nov | In press | Jiang et al. | Middle to Late Jurassic (Callovian to Kimmeridgian) | | {{Flag|China}} | A member of the family Sciadopityaceae. Genus includes new species Z. yanliaoense. | |
=Voltziales=
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Hexicladia{{Cite journal|last1=Wang |first1=X. |last2=Yang |first2=Y. |last3=Hua |first3=Y. |last4=Sun |first4=B. |last5=Miao |first5=Y. |year=2022 |title=Hexicladia, a new genus of the Cisuralian conifer from Hexi Corridor, China |journal=Review of Palaeobotany and Palynology |volume=308 |at=104789 |doi=10.1016/j.revpalbo.2022.104789 |s2cid=253194535 |doi-access=free }}
| Gen. et sp. nov | Announced | Wang et al. | Permian (Cisuralian) | Shanxi Formation | {{Flag|China}} | A voltzialean conifer. | |
=Other conifers=
=Conifer research=
- Bodnar et al. (2022) reassess the anatomy and systematics of the permineralized conifer-like woods from the Triassic strata from Argentina, confirm the assignment of the logs related to the families Cupressaceae and Cheirolepidiaceae, as well as three taxa related to Araucariaceae (Agathoxylon cozzoi, Agathoxylon protoaraucana and Agathoxylon argentinum), and argue that the fossil woods previously assigned to the families Podocarpaceae and Taxaceae do not have enough preserved characters to support such assignment.{{Cite journal|last1=Bodnar |first1=J. |last2=Cuesta |first2=V. |last3=Escapa |first3=I. H. |last4=Nunes |first4=G. C. |title=Exploring the first appearance of the main derived conifer families of Gondwana: evidence provided by the Triassic woods from Argentina |year=2022 |journal=Ameghiniana |volume=60 |issue=1 |pages=18–47 |doi=10.5710/AMGH.16.11.2022.3520 |s2cid=253785182 }}
- A study on the pattern of conifer turnover across the Cretaceous-Paleogene boundary in the Raton and Denver basins (Colorado, United States) is published by Berry (2022).{{Cite journal|last=Berry |first=K. |title=Conifer turnover across the K/Pg boundary in Colorado, U.S.A., parallels South American patterns: New and emerging perspectives |year=2022 |journal=Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen |volume=303 |issue=1 |pages=11–28 |doi=10.1127/njgpa/2022/1035 |s2cid=246455719 }}
- Mantzouka, Akkemik & Güngör (2022) describe fossil woods of Cupressinoxylon matromnense from the middle Miocene Eşelek volcanic deposits (Gökçeada, Turkey), preserved with feeding damage produced by members of the agromyzid genus Protophytobia, and supporting the existence of an eastern Mediterranean Miocene Climatic Optimum hotspot which additionally included Greek islands of Lemnos and Lesbos.{{Cite journal|last1=Mantzouka |first1=D. |last2=Akkemik |first2=Ü. |last3=Güngör |first3=Y. |year=2022 |title=Miocene Cupressinoxylon from Gökçeada (Imbros), Turkey with Protophytobia cambium mining and the study of ecological signals of wood anatomy |journal=PeerJ |volume=10 |at=e14212 |doi=10.7717/peerj.14212 |pmid=36530400 |pmc=9753763 |doi-access=free }}
Flowering plants
=Chloranthales=
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Canrightia foveolata{{Cite journal|last1=Friis |first1=E. M. |last2=Crane |first2=P. R. |last3=Pedersen |first3=K. R. |last4=Mendes |first4=M. M. |last5=Kvaček |first5=J. |title=The Early Cretaceous mesofossil flora of Catefica, Portugal: angiosperms |year=2022 |journal=Fossil Imprint |volume=78 |issue=2 |pages=341–424 |doi=10.37520/fi.2022.016 |s2cid=255039715 |url=http://fi.nm.cz/en/clanek/the-early-cretaceous-mesofossil-flora-of-catefica-portugal-angiosperms-2/ |doi-access=free |hdl=10316/106548 |hdl-access=free }}
| Sp. nov | Valid | Friis et al. | Early Cretaceous (Aptian-Albian) | Almargem Formation | {{Flag|Portugal}} | | |
Proencistemon
| Gen. et sp. nov | Valid | Friis et al. | Early Cretaceous (Aptian-Albian) | Almargem Formation | {{Flag|Portugal}} | Genus includes new species P. portugallicus. | |
=Magnoliids=
==Laurales==
==Magnoliales==
==Piperales==
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Aristospermum{{Cite journal|last1=Friis |first1=E. M. |last2=Crane |first2=P. R. |last3=Pedersen |first3=K. R. |year=2022 |title=Early and Mid-Cretaceous Aristolochiaceous Seeds from Portugal and Eastern North America |journal=International Journal of Plant Sciences |volume=183 |issue=7 |pages=587–603 |doi=10.1086/721259 |s2cid=250592674 |url=http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-4976 }}
| Gen. et sp. nov | Valid | Friis, Crane & Pedersen | Early Cretaceous (Aptian–Albian) | | {{Flag|Portugal}} {{Flag|United States}} | A member of the family Aristolochiaceae. Genus includes new species A. huberi. | |
Siratospermum
| Gen. et sp. nov | Valid | Friis, Crane & Pedersen | Late Cretaceous (Cenomanian) | | {{Flag|United States}} | A member of the family Aristolochiaceae. Genus includes new species S. mauldinense. | |
=Monocots=
==Lilioid monocots==
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Pandanus estellae{{Cite journal|last1=Rozefelds |first1=A. C. |last2=Rudall |first2=P. J. |last3=Herne |first3=M. C. |last4=Milroy |first4=A. K. |last5=Bridgeman |first5=J. |year=2022 |title=A Fossil Syncarpous Fruit from Australia Provides Support for a Gondwanan History for the Screw Pines (Pandanus, Pandanaceae) |journal=International Journal of Plant Sciences |volume=183 |issue=4 |pages=320–329 |doi=10.1086/719431 |s2cid=247378720 }}
| Sp. nov | Valid | Rozefelds et al. | Oligocene | | {{Flag|Australia}} | A species of Pandanus. | |
==Commelinid monocots==
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Sabalites ghughuaensis{{cite journal |last1=Kumar |first1=S. |last2=Hazra |first2=T. |last3=Spicer |first3=R. A. |last4=Hazra |first4=M. |last5=Spicer |first5=T. E. V. |last6=Bera |first6=S. |last7=Khan |first7=M. A. |title=Coryphoid palms from the K-Pg boundary of central India and their biogeographical implications: Evidence from megafossil remains |journal=Plant Diversity |year=2023 |volume=45 |pages=80–97 |issue=1 |doi=10.1016/j.pld.2022.01.001 |pmid=36876312 |pmc=9975480 |s2cid=246084708 }}
| Sp. nov | In press | Kumar, Hazra & Khan in Kumar et al. | Late Cretaceous-Paleocene (Maastrichtian-Danian) | | {{Flag|India}} | A member of the family Arecaceae belonging to the subfamily Coryphoideae. | |
Sabalites umariaensis
| Sp. nov | In press | Kumar, Hazra & Khan in Kumar et al. | Late Cretaceous-Paleocene (Maastrichtian-Danian) | Deccan Intertrappean Beds | {{Flag|India}} | A member of the family Arecaceae belonging to the subfamily Coryphoideae. | |
==Monocot research==
- Leaf fossils of costapalmate-palms belonging to the genus Sabalites are described from the ?Santonian–Campanian Belly River Group, Campanian Foremost Formation (Alberta, Canada) and Maastrichtian Frenchman Formation (Saskatchewan, Canada) by Greenwood, Conran & West (2022), who interpret the studied fossils as constraining climate reconstructions for the Late Cretaceous high mid-latitudes of North America (c. 55° N) to exclude significant freezing episodes; the authors also transfer the Late Cretaceous species "Geonomites" imperialis to the genus Phoenicites, and reassess Sabalites carolinensis as more likely to be Campanian than Coniacian–Santonian in age.{{Cite journal|last1=Greenwood |first1=D. R. |last2=Conran |first2=J. G. |last3=West |first3=C. K. |year=2022 |title=Palm fronds from western Canada are the northernmost palms from the Late Cretaceous of North America and may include the oldest Arecaceae |journal=Review of Palaeobotany and Palynology |volume=301 |pages=Article 104641 |doi=10.1016/j.revpalbo.2022.104641 |bibcode=2022RPaPa.30104641G |s2cid=247343236 |doi-access=free }}
- A study on the impact of the absence of megaherbivores in the aftermath of the Cretaceous–Paleogene extinction event on the evolution of palms is published by Onstein, Kissling & Linder (2022).{{cite journal |last1=Onstein |first1=R. E. |last2=Kissling |first2=W. D. |last3=Linder |first3=H. P. |year=2022 |title=The megaherbivore gap after the non-avian dinosaur extinctions modified trait evolution and diversification of tropical palms |journal=Proceedings of the Royal Society B: Biological Sciences |volume=289 |issue=1972 |pages=Article ID 20212633 |doi=10.1098/rspb.2021.2633 |pmid=35414237 |pmc=9006001 |s2cid=248119885 }}
- A study on the evolutionary history of palms belonging to the group Mauritiinae, as inferred from a phylogenetic analysis incorporating fossil data, is published by Bacon et al. (2022).{{cite journal |last1=Bacon |first1=C. D. |last2=Silvestro |first2=D. |last3=Hoorn |first3=C. |last4=Bogotá-Ángel |first4=G. |last5=Antonelli |first5=A. |last6=Chazot |first6=N. |year=2022 |title=The origin of modern patterns of continental diversity in Mauritiinae palms: the Neotropical museum and the Afrotropical graveyard |journal=Biology Letters |volume=18 |issue=11 |at=20220214 |doi=10.1098/rsbl.2022.0214 |pmid=36382374 |pmc=9667138 }}
=Basal eudicots=
==Proteales==
===Protealean research===
- Redescription of the Okanagan Highlands genus Langeria with description of associated stipules and reproductive structures plus formal reassignment of the genus to Platanaceae by Huegele & Manchester is published.{{cite journal |last1=Huegele |first1=I. B. |last2=Manchester |first2=S. R. |year=2022 |title=Newly Recognized Reproductive Structures Linked with Langeria from the Eocene of Washington, USA, and their Affinities with Platanaceae |journal=International Journal of Plant Sciences |volume=183 |issue=5 |pages=367–379 |doi=10.1086/720138 |s2cid=247907696 }}
==Ranunculales==
=Superasterids=
==Aquifoliales==
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Ilex antiquorum{{Cite journal|last=Doweld |first=A. B. |year=2022 |title=New names of Ilex and Ilexpollenites (Aquifoliaceae), extant and fossil: Addendum Notulae Systematicae ad Palaeofloram Europaeam spectantes II. Aquifoliaceae |journal=Phytotaxa |volume=531 |issue=2 |pages=143–146 |doi=10.11646/phytotaxa.531.2.7 }}
| Nom. nov | Valid | Doweld | Late Cretaceous (Maastrichtian) | | {{Flag|Germany}} | A holly; a replacement name for Ilex antiqua Knobloch & Mai (1986). | |
Ilex myricina
| Nom. nov | Valid | Doweld | Miocene (Messinian) | | {{Flag|Italy}} | A holly; a replacement name for Ilex myricoides Massalongo (1858). | |
==Caryophyllales==
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Podopterus mijangosae{{cite journal |last=Estrada-Ruiz |first=E. |year=2022 |title=A new species of winged fruits of Podopterus (Caryophyllales, Polygonaceae) from the Miocene amber, Chiapas, Mexico |journal=Palaeoworld |volume=32 |pages=188–195 |doi=10.1016/j.palwor.2022.06.005 |s2cid=250204966 |doi-access=free }}
| Sp. nov | In press | Estrada-Ruiz | Miocene | | {{Flag|Mexico}} | A species of Podopterus. | |
==Cornales==
==Dipsacales==
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Sambucus heqingensis{{cite journal |last1=Huang |first1=Y.-J. |last2=Zhu |first2=H. |last3=Hu |first3=J.-J. |last4=Jia |first4=L.-B. |last5=Zhou |first5=Z.-K. |title=New fossil evidence from the late Pliocene of Yunnan, South China, sheds light on the distribution and diversification of Sambucus L. (Adoxaceae) in the northern low latitudes |journal=Palaeobiodiversity and Palaeoenvironments |year=2023 |volume=103 |pages=43–56 |issue=1 |doi=10.1007/s12549-021-00519-7 |bibcode=2023PdPe..103...43H |s2cid=245856680 }}
| Sp. nov | In press | Huang & Zhou in Huang et al. | Late Pliocene | Heqing Basin | {{Flag|China}} | A species of Sambucus. | |
==Ericales==
==Icacinales==
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Palaeophytocrene chicoensis{{cite journal |last=Atkinson |first=B. A. |year=2022 |title=Icacinaceae fossil provides evidence for a Cretaceous origin of the lamiids |journal=Nature Plants |volume=8 |issue=12 |pages=1374–1377 |doi=10.1038/s41477-022-01275-y |pmid=36376504 |s2cid=253521093 }}
| Sp. nov | | Atkinson | Late Cretaceous (Campanian) | | {{Flag|United States}} | A member of the family Icacinaceae. | |
==Metteniusales==
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Calatola verae{{Cite journal|last1=Estrada-Ruiz |first1=E. |last2=Hernández-Urban |first2=H. |last3=Rodríguez-Reyes |first3=O. |last4=Ortega-Flores |first4=B. |year=2022 |title=First report of staminate flowers of Calatola (Metteniusales: Metteniusaceae) from the Miocene Mexican amber |journal=Review of Palaeobotany and Palynology |volume=308 |at=104786 |doi=10.1016/j.revpalbo.2022.104786 |s2cid=252980976 |doi-access=free }}
| Sp. nov | | Estrada-Ruiz et al. | Miocene | | {{Flag|Mexico}} | A species of Calatola. | |
=Superrosids=
==Cucurbitales==
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Libasperma{{Cite journal|last1=Huegele |first1=I. B. |last2=Manchester |first2=S. R. |title=The mid-Paleocene fruit and seed flora from the Fort Union Formation of Newell's Nook, southeastern Montana, USA |year=2022 |journal=Acta Palaeobotanica |volume=62 |issue=2 |pages=123–143 |doi=10.35535/acpa-2022-0009 |s2cid=255366821 |doi-access=free }}
| Gen. et sp. nov | In press | Huegele & Manchester | Paleocene | | {{Flag|United States}} | A member of the family Cucurbitaceae. Genus includes new species L. potamoglossensis. | |
==Fabales==
===Fabalean research===
- New fossil material of members of the genus Bauhinia is described from the Eocene of the Puyang Basin (China) by Jia et al. (2022), who interpret their findings as the earliest reliable fossil records of Bauhinia in Asia.{{Cite journal|last1=Jia |first1=L.-B. |last2=Hu |first2=J.-J. |last3=Zhang |first3=S.-T. |last4=Su |first4=T. |last5=Spicer |first5=R. A. |last6=Liu |first6=J. |last7=Yang |first7=J.-C. |last8=Zou |first8=P. |last9=Huang |first9=Y.-J. |last10=Zhou |first10=Z.-K. |title=Bauhinia (Leguminosae) Fossils from the Paleogene of Southwestern China and Its Species Accumulation in Asia |year=2022 |journal=Diversity |volume=14 |issue=3 |pages=Article 173 |doi=10.3390/d14030173 |doi-access=free }}
- Moya et al. (2022) study the affinities of fossil legumes Entrerrioxylon victoriensis, Gossweilerodendroxylon palmariensis, Paraoxystigma concordiensis and Cylicodiscuxylon paragabunensis from the Cenozoic Paraná, Arroyo Feliciano and El Palmar formations (Argentina) with extant West African legumes, and discuss the possible migration routes by which these plants may have arrived in South America from Africa.{{Cite journal|last1=Moya |first1=E. |last2=Soledad Ramos |first2=R. |last3=Jimena Franco |first3=M. |last4=Brea |first4=M. |year=2022 |title=African legume affinities with the flora from the lower La Plata Basin (upper Cenozoic), South America |journal=Ameghiniana |volume=60 |issue=1 |pages=48–64 |doi=10.5710/AMGH.25.08.2022.3521 |s2cid=251872045 }}
==Fagales==
==Malpighiales==
==Malvales==
===Malvalean research===
- A study on the evolutionary history of Dipterocarpaceae, as indicated by biogeography of pollen fossils from Africa and India, molecular data and fossil amber records, is published by Bansal et al. (2022).{{Cite journal |last1=Bansal |first1=M. |last2=Morley |first2=R. J. |last3=Nagaraju |first3=S. K. |last4=Dutta |first4=S. |last5=Mishra |first5=A. K. |last6=Selveraj |first6=J. |last7=Kumar |first7=S. |last8=Niyolia |first8=D. |last9=Harish |first9=S. M. |last10=Abdelrahim |first10=O. B. |last11=Hasan |first11=S. E. |last12=Ramesh |first12=B. R. |last13=Dayanandan |first13=S. |last14=Morley |first14=H. P. |last15=Ashton |first15=P. S. |last16=Prasad |first16=V. |title=Southeast Asian Dipterocarp origin and diversification driven by Africa-India floristic interchange |year=2022 |journal=Science |volume=375 |issue=6579 |pages=455–460 |doi=10.1126/science.abk2177 |pmid=35084986 |bibcode=2022Sci...375..455B |s2cid=246360938 }}
==Myrtales==
==Oxalidales==
===Oxalidalean research===
Tand, Smith, and Atkinson describe the first North American instance of the previously Paleo-Antarctic Rainforest Lineage Cunoniaceae fruits from Sucia Island. Previously considered solely a Gondwanan family, the new species indicate a complex geographic history for the group.
==Rosales==
==Sapindales==
==Other Eudicots==
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Zlatkovia{{Cite journal|last1=Rothwell |first1=G. W. |last2=Stockey |first2=R. A. |title=Enriching our knowledge of Late Cretaceous wetland plant communities: Zlatkovia crenulata gen. et sp. nov., an amphibious angiosperm from the St. Mary River Formation, Alberta, Canada |year=2022 |journal=Cretaceous Research |volume=140 |pages=Article 105328 |doi=10.1016/j.cretres.2022.105328 |bibcode=2022CrRes.14005328R |s2cid=251481599 |doi-access=free }}
| Gen. et sp. nov | In press | Rothwell & Stockey | Late Cretaceous | St. Mary River Formation | {{Flag|Canada}} | An aquatic eudicot. | |
=Other angiosperms=
=General angiosperm research=
- Surangea mohgaoensis, originally interpreted as fern megaspores, is reinterpreted as angiosperm fruits by Ramteke et al. (2022).{{Cite journal|last1=Ramteke |first1=D. |last2=Smith |first2=S. Y. |last3=Kapgate |first3=D. K. |last4=Stanley |first4=E. L. |last5=Manchester |first5=S. R. |title=Angiosperm affinities of Surangea from the late Cretaceous Deccan Intertrappean Beds of central India |year=2022 |journal=Acta Palaeobotanica |volume=62 |issue=2 |pages=196–204 |doi=10.35535/acpa-2022-0013 |s2cid=255366893 |doi-access=free }}
- Zhang et al. (2022) describe rich assemblages of spiny plant fossils from the Eocene (Bartonian) Niubao Formation (Tibet, China), preserving seven different spine morphologies, and interpret this finding as evidence of the presence of a diversity of spiny plants in Eocene central Tibet, as well as evidence of a rapid diversification of spiny plants in Eurasia around that time.{{Cite journal|last1=Zhang |first1=X. |last2=Gélin |first2=U. |last3=Spicer |first3=R. A. |last4=Wu |first4=F. |last5=Farnsworth |first5=A. |last6=Chen |first6=P. |last7=Del Rio |first7=C. |last8=Li |first8=S. |last9=Liu |first9=J. |last10=Huang |first10=J. |last11=Spicer |first11=T. E. V. |last12=Tomlinson |first12=K. W. |last13=Valdes |first13=P. J. |last14=Xu |first14=X. |last15=Zhang |first15=S. |last16=Deng |first16=T. |last17=Zhou |first17=Z. |last18=Su |first18=T. |title=Rapid Eocene diversification of spiny plants in subtropical woodlands of central Tibet |year=2022 |journal=Nature Communications |volume=13 |issue=1 |pages=Article number 3787 |doi=10.1038/s41467-022-31512-z |pmid=35778378 |pmc=9249787 |bibcode=2022NatCo..13.3787Z |doi-access=free }}
- A preliminary report on a new fossil angiosperm flora of the Lesvos Petrified Forest at Akrocheiras east of Sigri on Lesbos, Greece is given by Kafetzidou et al. Preliminary taxa identifications are given and commentary on the climactic implications are made.{{cite journal |last1=Kafetzidou |first1=A. |last2=Kouli |first2=K. |last3=Zidianakis |first3=G. |last4=Kostopoulos |first4=D. S. |last5=Zouros |first5=N. |year=2022 |title=The early Miocene angiosperm flora of Akrocheiras in Lesvos Petrified Forest (North Aegean, Greece)-Preliminary results |journal=Review of Palaeobotany and Palynology |volume=296 |page=104559 |doi=10.1016/j.revpalbo.2021.104559 |bibcode=2022RPaPa.29604559K |s2cid=240195606}}
- A study aiming to determine the relationship between past atmospheric CO2 and temperature fluctuations and the shifts in diversification rates of Poaceae and Asteraceae is published by Palazzesi et al. (2022).{{Cite journal|last1=Palazzesi |first1=L. |last2=Hidalgo |first2=O. |last3=Barreda |first3=V. D. |last4=Forest |first4=F. |last5=Höhna |first5=S. |title=The rise of grasslands is linked to atmospheric CO2 decline in the late Palaeogene |year=2022 |journal=Nature Communications |volume=13 |issue=1 |pages=Article number 293 |doi=10.1038/s41467-021-27897-y |pmid=35022396 |pmc=8755714 |bibcode=2022NatCo..13..293P |doi-access=free }}
Other plants
=Other plant research=
- A study on the xylem development in Leptocentroxyla, and on its implications for the knowledge of the evolution of pith, is published by Tomescu & McQueen (2022).{{Cite journal|last1=Tomescu |first1=A. M. F. |last2=McQueen |first2=C. R. |year=2022 |title=A protoxylem pathway to evolution of pith? An hypothesis based on the Early Devonian euphyllophyte Leptocentroxyla |journal=Annals of Botany |volume=130 |issue=6 |pages=785–798 |doi=10.1093/aob/mcac083 |pmid=35724420 |pmc=9758301 }}
- Decombeix et al. (2022) report evidence of tylosis formation in permineralized wood of Dameria hueberi from the Tournaisian of Australia.{{Cite journal|last1=Decombeix |first1=A.-L. |last2=Harper |first2=C. J. |last3=Galtier |first3=J. |last4=Meyer-Berthaud |first4=B. |last5=Krings |first5=M. |title=Tyloses in fossil plants: New data from a Mississippian tree, with a review of previous records |year=2022 |journal=Botany Letters |volume=169 |issue=4 |pages=510–526 |doi=10.1080/23818107.2022.2099461 |bibcode=2022BotL..169..510D |s2cid=250593368 |url=https://hal.inrae.fr/hal-03728230/file/Tyloses%20for%20Botany%20Letters%20ACCEPTED.pdf }}
- The first comprehensive crown reconstruction of Medullosa stellata var. typica, based on data from a specimen from the Chemnitz petrified forest (Germany), is presented by Luthardt et al. (2022).{{Cite journal|last1=Luthardt |first1=L. |last2=Merbitz |first2=M. |last3=Fridland |first3=E. |last4=Rößler |first4=R. |title=Upside-down in volcanic ash: crown reconstruction of the early Permian seed fern Medullosa stellata with attached foliated fronds |year=2022 |journal=PeerJ |volume=10 |pages=e13051 |doi=10.7717/peerj.13051 |pmid=35341054 |pmc=8953532 |doi-access=free }}
- Fossil material of Rhabdotaenia is reported from the Permian Umm Irna Formation (Jordan) by Blomenkemper et al. (2022), representing the northernmost occurrence of this Gondwanan leaf type reported to date.{{Cite journal|last1=Blomenkemper |first1=P. |last2=Kerp |first2=H. |last3=Abu Hamad |first3=A. |last4=Bomfleur |first4=B. |title=Rhabdotaenia – a typical Gondwanan leaf from the upper Permian of Jordan |year=2022 |journal=Alcheringa: An Australasian Journal of Palaeontology |volume=46 |issue=1 |pages=85–93 |doi=10.1080/03115518.2022.2028899 |bibcode=2022Alch...46...85B |s2cid=247537936 }}
Palynology
Research
- Review of the studies on the origin of the land flora is published by Bowman (2022).{{cite journal |last=Bowman |first=J. L. |year=2022 |title=The origin of a land flora |journal=Nature Plants |volume=8 |issue=12 |pages=1352–1369 |doi=10.1038/s41477-022-01283-y |pmid=36550365 |s2cid=255042821 }}
- A study on the evolution of body plans of members of Viridiplantae, based on a review of the fossil record, molecular data and developmental biology, is published by Niklas & Tiffney (2022).{{Cite journal|last1=Niklas |first1=K. J. |last2=Tiffney |first2=B. H. |title=Viridiplantae Body Plans Viewed Through the Lens of the Fossil Record and Molecular Biology |year=2022 |journal=Integrative and Comparative Biology |volume=63 |issue=6 |pages=1316–1330 |doi=10.1093/icb/icac150 |pmid=36316013 |doi-access=free |pmc=10755189 }}
- A study on the biodiversity of land plants at the equator during their first major diversification in the Late Silurian–Early Devonian is published by Wellman et al. (2022).{{cite journal |last1=Wellman |first1=C. H. |last2=Berry |first2=C. M. |last3=Davies |first3=N. S. |last4=Lindemann |first4=F.-H. |last5=Marshall |first5=J. E. A. |last6=Wyatt |first6=A. |year=2022 |title=Low tropical diversity during the adaptive radiation of early land plants |journal=Nature Plants |volume=8 |issue=2 |pages=104–109 |doi=10.1038/s41477-021-01067-w |pmid=35115726 |s2cid=246531080 |url=https://eprints.soton.ac.uk/455610/1/Wellmen_Revised_manuscript_2_unmarked_.docx |hdl=10852/101297 |hdl-access=free }}
- A study on the evolution of heterospory during the Devonian is published by Leslie & Bonacorsi (2022).{{Cite journal|last1=Leslie |first1=A. B. |last2=Bonacorsi |first2=N. K. |title=Understanding the appearance of heterospory and derived plant reproductive strategies in the Devonian |year=2022 |journal=Paleobiology |volume=48 |issue=3 |pages=496–512 |doi=10.1017/pab.2021.44 |bibcode=2022Pbio...48..496L |s2cid=246400525 }}
- Seven coniferous nurse logs that have been colonized by conifer and equisetalean roots are reported from four Permian intervals in the Ordos Basin (China) by Feng et al. (2022), indicating that conifer tree stems probably functioned as hosts to both conspecific and interspecific seedlings in the Cathaysian Flora.{{Cite journal|last1=Feng |first1=Z. |last2=Gou |first2=X.-D. |last3=McLoughlin |first3=S. |last4=Wei |first4=H.-B. |last5=Guo |first5=Y. |title=Nurse logs: A common seedling strategy in the Permian Cathaysian Flora |year=2022 |journal=iScience |volume=25 |issue=11 |at=105433 |doi=10.1016/j.isci.2022.105433 |pmid=36388991 |pmc=9641241 |bibcode=2022iSci...25j5433F }}
- A study on the impact of the Intertropical Convergence Zone in the emerging South Atlantic region on Aptian plant communities from eight Brazilian sedimentary basins is published by Carvalho et al. (2022), who report evidence of an overall predominance of xerophytic plants, attesting to more dry conditions, and of a humidification trend towards the end of the late Aptian resulting in the predominance of hydrophytes, hygrophytes, tropical lowland flora and upland flora, indicative of prevalence of lowland and montane rainforests.{{cite journal |last1=Carvalho |first1=M. A. |last2=Lana |first2=C. C. |last3=Sá |first3=N. P. |last4=Santiago |first4=G. |last5=Giannerini |first5=M. C. S. |last6=Bengtson |first6=P. |year=2022 |title=Influence of the Intertropical Convergence Zone on Early Cretaceous plant distribution in the South Atlantic |journal=Scientific Reports |volume=12 |issue=1 |at=12600 |doi=10.1038/s41598-022-16580-x |pmid=35871172 |pmc=9308796 |bibcode=2022NatSR..1212600D |doi-access=free }}
- A study on the distribution and relative abundances of major plant groups from the Albian Gates Formation (Alberta, Canada) is published by Kalyniuk et al. (2022).{{Cite journal|last1=Kalyniuk |first1=J. E. |last2=West |first2=C. K. |last3=Greenwood |first3=D. R. |last4=Basinger |first4=J. F. |last5=Brown |first5=C. M. |title=The Albian vegetation of central Alberta as a food source for the nodosaurid Borealopelta markmitchelli |year=2022 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=611 |at=111356 |doi=10.1016/j.palaeo.2022.111356 |doi-access=free }}
- A study on the relationship between whole-genome duplication, seed traits and the selectivity of the survival of plants during the Cretaceous–Paleogene extinction event is published by Berry & Jaganathan (2022).{{Cite journal|last1=Berry |first1=K. |last2=Jaganathan |first2=G. K. |title=Did selection for seed traits across the Cretaceous/Paleogene boundary sort plants based on ploidy? |year=2022 |journal=Acta Palaeobotanica |volume=62 |issue=2 |pages=182–195 |doi=10.35535/acpa-2022-0012 |s2cid=255363297 |doi-access=free }}
- New Oligocene flora is described from the Dong Ho Formation (Vietnam) by Huang et al. (2022), who interpret the studied fossils as evidence of long-term environmental, floristic and vegetational stability in this region since the Paleogene.{{Cite journal|last1=Huang |first1=J. |last2=Spicer |first2=R. A. |last3=Li |first3=S.-F. |last4=Liu |first4=J. |last5=Do |first5=T. V. |last6=Nguyen |first6=H. B. |last7=Zhou |first7=Z.-K. |last8=Su |first8=T. |title=Long-term floristic and climatic stability of northern Indochina: Evidence from the Oligocene Ha Long flora, Vietnam |year=2022 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=593 |pages=Article 110930 |doi=10.1016/j.palaeo.2022.110930 |bibcode=2022PPP...59310930H |s2cid=247368063 }}
- Gentis et al. (2022) describe fossil wood specimens from the Miocene Natma Formation (Myanmar), representing an assemblage dominated by members of the families Fabaceae and Dipterocarpaceae, interpreted as coming from different types of low altitude forest ecosystems (tropical wet evergreen, tropical dry and deciduous, and tropical littoral), and interpreted as indicative of a monsoonal climate with an alternance of a dry season and a wet season.{{Cite journal |last1=Gentis |first1=N. |last2=Licht |first2=A. |last3=Boura |first3=A. |last4=De Franceschi |first4=D. |author5=Zaw Win |author6=Day Wa Aung |last7=Dupont-Nivet |first7=G. |year=2022 |title=Fossil wood from the lower Miocene of Myanmar (Natma Formation): palaeoenvironmental and biogeographic implications |journal=Geodiversitas |volume=44 |issue=28 |pages=853–909 |doi=10.5252/geodiversitas2022v44a28 |s2cid=252748599 |url=https://sciencepress.mnhn.fr/en/periodiques/geodiversitas/44/28 |doi-access=free }}
- Abundant compression floras dominated by angiosperm leaves are described from two sites of probable Pliocene age in Brunei by Wilf et al. (2022), who interpret these floras as evidence of dipterocarp-dominated lowland rainforests in the Malay Archipelago before the Pleistocene.{{Cite journal|last1=Wilf |first1=P. |last2=Zou |first2=X. |last3=Donovan |first3=M. P. |last4=Kocsis |first4=L. |last5=Briguglio |first5=A. |last6=Shaw |first6=D. |last7=Slik |first7=J. W. F. |last8=Lambiase |first8=J. J. |title=First fossil-leaf floras from Brunei Darussalam show dipterocarp dominance in Borneo by the Pliocene |year=2022 |journal=PeerJ |volume=10 |pages=e12949 |doi=10.7717/peerj.12949 |pmid=35356469 |pmc=8958975 |doi-access=free }}
- A study on the impact of the extinct Neotropical megafauna on the variability in plant functional traits and biome geography in Central and South America is published by Dantas & Pausas (2022).{{Cite journal|last1=Dantas |first1=V. L. |last2=Pausas |first2=J. G. |title=The legacy of the extinct Neotropical megafauna on plants and biomes |year=2022 |journal=Nature Communications |volume=13 |issue=1 |pages=Article number 129 |doi=10.1038/s41467-021-27749-9 |pmid=35013233 |pmc=8748933 |bibcode=2022NatCo..13..129D |doi-access=free }}
- A study on plant material from rock overhangs from mid-late Holocene sites along the Kawarau-Cromwell-Roxburgh Gorges in Central Otago (New Zealand), much of which was likely transported as roosting material or consumed by moa birds, and on its implications for the knowledge of the mid-late Holocene regional vegetation of Central Otago and the knowledge of vegetation changes since mid-late Holocene, is published by Pole (2022).{{cite journal|last=Pole |first=M |title=A vanished ecosystem: Sophora microphylla (Kōwhai) dominated forest recorded in mid-late Holocene rock shelters in Central Otago, New Zealand |year=2022 |journal=Palaeontologia Electronica |volume=25 |issue=1 |pages=Article number 25.1.1A |doi=10.26879/1169 |doi-access=free }}
- A study on the role of hydraulic failure in the evolution of early vascular plants is published by Bouda et al. (2022), suggesting that drought selection played a key role in the diversification of vascular arrangements beginning with the Devonian explosion.{{Cite journal |last1=Bouda |first1=Martin |last2=Huggett |first2=Brett A. |last3=Prats |first3=Kyra A. |last4=Wason |first4=Jay W. |last5=Wilson |first5=Jonathan P. |last6=Brodersen |first6=Craig R. |date=2022-11-11 |title=Hydraulic failure as a primary driver of xylem network evolution in early vascular plants |url=https://www.science.org/doi/10.1126/science.add2910 |journal=Science |language=en |volume=378 |issue=6620 |pages=642–646 |doi=10.1126/science.add2910 |pmid=36356120 |bibcode=2022Sci...378..642B |s2cid=253458196 |issn=0036-8075|url-access=subscription }}