Comparison of ARM processors#ARMv8-A

{{Short description|none}}

{{More citations needed|talk=References and intro|date=June 2014}}

{{Use dmy dates|date=April 2023}}

This is a comparison of ARM instruction set architecture application processor cores designed by Arm Holdings (ARM Cortex-A) and 3rd parties. It does not include ARM Cortex-R, ARM Cortex-M, or legacy ARM cores.

ARMv7-A

This is a table comparing 32-bit central processing units that implement the ARMv7-A (A means Application{{Cite web|url=http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka16827.html|website=infocenter.arm.com|publisher=ARM Information Center|access-date=1 June 2016|title=ARM V7 Differences}}) instruction set architecture and mandatory or optional extensions of it, the last AArch32.

{{Incomplete list|date=February 2014}}

class="wikitable sortable" style="text-align:center; font-size:94%"

!Core!!Decode
width!!Execution
ports!!Pipeline
depth!!Out-of-order execution!!FPU!!Pipelined
VFP!!FPU
registers!!NEON
(SIMD)!!big.LITTLE
role!!Virtualization!!Process
technology
!!L0
cache!!L1
cache!!L2
cache!!Core
configurations!!Speed
per
core
(DMIPS
/ MHz
)!!ARM part number
(in the main ID register)

ARM Cortex-A5

|{{No|1}}|| ||8||{{No}}

|{{Optional|VFPv4 (optional)}}|| ||{{maybe|16 × 64-bit}}||{{Maybe|64-bit wide (optional)}}

|{{no}}

|{{No}}

|40/28 nm

| ||4–64 KiB / core||

|1, 2, 4

|1.57

|0xC05

ARM Cortex-A7

|{{Maybe|2}}||5||8||{{No}}

|{{Yes|VFPv4}}||{{Yes}}||{{maybe|16 × 64-bit}}||{{Maybe|64-bit wide}}

|{{Yes|LITTLE}}

|{{Yes|Yes}}

|40/28 nm

| ||8–64 KiB / core||up to 1 MiB (optional)

|1, 2, 4, 8

|1.9

|0xC07

ARM Cortex-A8

|{{Maybe|2}}||2||13||{{No}}

|{{Partial|VFPv3}}||{{No}}||{{good|32 × 64-bit}}||{{Maybe|64-bit wide}}

|{{No}}

|{{No}}

|65/55/45 nm

| ||32 KiB + 32 KiB||256 or 512 (typical) KiB

|1

|2.0

|0xC08

ARM Cortex-A9

|{{Maybe|2}}||3||8–11||{{Yes}}

|{{Partial|VFPv3 (optional)}}||{{Yes}}||{{depends|(16 or 32) × 64-bit}}||{{Maybe|64-bit wide (optional)}}

|{{Partial|Companion Core}}

|{{No}}

|65/45/40/32/28 nm

| ||32 KiB + 32 KiB||1 MiB

|1, 2, 4

|2.5

|0xC09

ARM Cortex-A12

|{{Maybe|2}}|| ||11||{{Yes}}

|{{Yes|VFPv4}}||{{Yes}}||{{good|32 × 64-bit}}||{{Good|128-bit wide}}

|{{No}}{{Cite web|url=http://community.arm.com/groups/processors/blog/2014/09/30/arm-cortex-a17-cortex-a12-processor-update|title = ARM Cortex-A17 / Cortex-A12 processor update – Architectures and Processors blog – Arm Community blogs – Arm Community}}

|{{Yes}}

|28 nm

| ||32–64 KiB + 32 KiB||256 KiB, to 8 MiB

|1, 2, 4

|3.0

|0xC0D

ARM Cortex-A15

|{{Good|3}}||8||15/17-25||{{Yes}}

|{{Yes|VFPv4}}||{{Yes}}||{{good|32 × 64-bit}}||{{Good|128-bit wide}}

|{{Yes|big}}

|{{Yes|Yes}}

|32/28/20 nm

| ||32 KiB + 32 KiB per core||up to 4 MiB per cluster, up to 8 MiB per chip

|2, 4, 8 (4×2)

|3.5 to 4.01

|0xC0F

ARM Cortex-A17

|{{Maybe|2}}|| ||11+||{{Yes}}

|{{Yes|VFPv4}}||{{Yes}}||{{good|32 × 64-bit}}||{{Good|128-bit wide}}

|{{Yes|big}}

|{{Yes}}

|28 nm

| ||32 KiB + 32 KiB per core||256 KiB, up to 8 MiB

|up to 4

|4.0

|0xC0E

Qualcomm Scorpion

|{{Maybe|2}}||3||10||{{Partial|Yes (FXU&LSU only){{Cite web |url=http://rtcgroup.com/arm/2007/presentations/253%20-%20ARM_DevCon_2007_Snapdragon_FINAL_20071004.pdf |title=Qualcomm High Performance Processor Core and Platform for Mobile Applications |first=Lou |last=Mallia |date=2007 |access-date=8 May 2014 |archive-date=26 April 2017 |archive-url=https://web.archive.org/web/20170426061946/http://rtcgroup.com/arm/2007/presentations/253%20-%20ARM_DevCon_2007_Snapdragon_FINAL_20071004.pdf |url-status=dead }}}}

|{{Partial|VFPv3}}||{{Yes}}|| ||{{Good|128-bit wide}}

|{{No}}

|

|65/45 nm

| ||32 KiB + 32 KiB||256 KiB (single-core)
512 KiB (dual-core)

|1, 2

|2.1

|0x00F

Qualcomm Krait{{Cite web|url=http://www.anandtech.com/show/4940/qualcomm-new-snapdragon-s4-msm8960-krait-architecture|title = Qualcomm's New Snapdragon S4: MSM8960 & Krait Architecture Explored}}

|{{Good|3}}||7||11||{{Yes}}

|{{Yes|VFPv4{{Cite web|url=http://www.anandtech.com/show/5559/qualcomm-snapdragon-s4-krait-performance-preview-msm8960-adreno-225-benchmarks/2|title = Qualcomm Snapdragon S4 (Krait) Performance Preview – 1.5 GHZ MSM8960 MDP and Adreno 225 Benchmarks}}}}||{{Yes}}|| ||{{Good|128-bit wide}}

|{{No}}

|

|28 nm

|4 KiB + 4 KiB direct mapped||16 KiB + 16 KiB 4-way set associative||1 MiB 8-way set associative (dual-core) / 2 MiB (quad-core)

|2, 4

|3.3 (Krait 200)
3.39 (Krait 300)
3.39 (Krait 400)
3.51 (Krait 450)

|0x04D

0x06F

Swift

|{{Good|3}}||5||12||{{Yes}}

|{{Yes|VFPv4}}||{{Yes}}||{{good|32 × 64-bit}}||{{Good|128-bit wide}}

|{{No}}

|

|32 nm

| ||32 KiB + 32 KiB||1 MiB

|2

|3.5

|?

Core

!Decode
width

!Execution
ports

!Pipeline
depth

!Out-of-order execution

!FPU

!Pipelined
VFP

!FPU
registers

!NEON
(SIMD)

!big.LITTLE
role

!Virtualization

!Process
technology

!L0
cache

!L1
cache

!L2
cache

!Core
configurations

!Speed
per
core
(DMIPS
/ MHz
)

!ARM part number
(in the main ID register)

ARMv8-A

This is a table of 64/32-bit central processing units that implement the ARMv8-A instruction set architecture and mandatory or optional extensions of it. Most chips support the 32-bit ARMv7-A for legacy applications. All chips of this type have a floating-point unit (FPU) that is better than the one in older ARMv7-A and NEON (SIMD) chips. Some of these chips have coprocessors also include cores from the older 32-bit architecture (ARMv7). Some of the chips are SoCs and can combine both ARM Cortex-A53 and ARM Cortex-A57, such as the Samsung Exynos 7 Octa.

{{incomplete list|date=May 2014}}

class="wikitable sortable" style="text-align:center"
rowspan="2" | Company

! rowspan="2" | Core

! rowspan="2" | Released

! rowspan="2" | Revision

! rowspan="2" | Decode

! rowspan="2" | Pipeline
depth

! colspan="2" | Out-of-order
execution

! rowspan="2" | Branch
prediction

! rowspan="2" | big.LITTLE role

! rowspan="2" | Exec.
ports

! rowspan="2" | SIMD

! rowspan="2" | Fab
(in nm)

! rowspan="2" | Simult. MT

! rowspan="2" | L0 cache

! rowspan="2" | L1 cache
Instr + Data
(in KiB)

! rowspan="2" | L2 cache

! rowspan="2" | L3 cache

! rowspan="2" | Core
configu-
rations

! rowspan="2" | Speed per core (DMIPS/
MHz
{{refn|group=note|name=first|As Dhrystone (implied in "DMIPS") is a synthetic benchmark developed in 1980s, it is no longer representative of prevailing workloads{{snd}} use with caution.}})

! rowspan="2" | Clock rate

! rowspan="2" | ARM part number (in the main ID register)

Have it

!Entries

rowspan="16" | ARM

! Cortex-A32 (32-bit){{cite news|last1=Frumusanu|first1=Andrei|title=ARM Announces Cortex-A32 IoT and Embedded Processor|url=http://www.anandtech.com/show/10061/arm-announces-cortex-a32|access-date=13 June 2016|publisher=Anandtech.com|date=22 February 2016}}

| 2017

| ARMv8.0-A
(only 32-bit) || 2-wide || 8 || {{No}} || 0 || {{dunno}} || {{Yes|LITTLE}} || {{dunno}} || {{dunno}}

| 28{{Cite web|url=https://www.arm.com/about/newsroom/new-ultra-efficient-arm-cortex-a32-processor-expands-embedded-and-iot-portfolio.php|title=New Ultra-efficient ARM Cortex-A32 Processor Expands… – ARM|website=arm.com|access-date=2016-10-01}}

| {{No}} || {{No}} || 8–64 + 8–64 || 0–1 MiB || {{No}} || 1–4+ || 2.3 || {{dunno}} || 0xD01

Cortex-A34 (64-bit){{Cite web|url=https://developer.arm.com/ip-products/processors/cortex-a/cortex-a34|title=Cortex-A34|last=Ltd|first=Arm|website=ARM Developer|language=en|access-date=2019-10-10}}

| 2019

|ARMv8.0-A
(only 64-bit)|| 2-wide || 8 || {{No}} || 0 || {{dunno}} || {{Yes|LITTLE}} || {{dunno}} || {{dunno}}

| {{dunno}} || {{No}} || {{No}} ||8–64 + 8–64 || 0–1 MiB || {{No}} || 1–4+ || {{dunno}} || {{dunno}} || 0xD02

Cortex-A35{{cite web|title=Cortex-A35 Processor|url=https://www.arm.com/products/processors/cortex-a/cortex-a35-processor.php|website=ARM|publisher=ARM Ltd}}

| 2017

| ARMv8.0-A || 2-wide{{cite web|url=http://anandtech.com/show/9769/arm-announces-cortex-a35|title=ARM Announces New Cortex-A35 CPU – Ultra-High Efficiency For Wearables & More|first=Andrei|last=Frumusanu}}|| 8 || {{No}} || 0 || {{Yes}} || {{Yes|LITTLE}} || {{dunno}} || {{dunno}}

| 28 / 16 /
14 / 10 || {{No}} || {{No}} || 8–64 + 8–64 || 0 / 128 KiB–1 MiB || {{No}} || 1–4+ || 1.7-1.85 || {{dunno}} || 0xD04

Cortex-A53{{cite web|title=Cortex-A53 Processor|url=http://www.arm.com/products/processors/cortex-a/cortex-a53-processor.php|website=ARM|publisher=ARM Ltd}}

| 2014

| ARMv8.0-A || 2-wide || 8 || {{No}} || 0 || rowspan="2" | Conditional+
Indirect branch
prediction || {{Yes|big/LITTLE}} || 2 || {{dunno}}

| 28 / 20 /
16 / 14 / 10 || {{No}} || {{No}} || 8–64 + 8–64 || 128 KiB–2 MiB || {{No}} || 1–4+ || 2.24{{cite web|title=Processing In Xilinx Devices|url=https://digilent.com/reference/_media/programmable-logic/arty-z7/processing_in_xilinx_devices.pdf|website=Digilent documents|access-date=24 January 2024}} || {{dunno}} || 0xD03

Cortex-A55{{cite news|last1=Matt|first1=Humrick |title=Exploring DynamIQ and ARM's New CPUs: Cortex-A75, Cortex-A55|url=http://www.anandtech.com/show/11441/dynamiq-and-arms-new-cpus-cortex-a75-a55|access-date=29 May 2017|publisher=Anandtech.com|date=29 May 2017}}

| 2017

| ARMv8.2-A || 2-wide || 8 || {{No}} || 0 || {{Yes|big/LITTLE}} || 2 || {{dunno}}

| 28 / 20 /
16 / 14 / 12 / 10 / 5{{cite web|title=Qualcomm Snapdragon 888 5G Mobile Platform |url=https://www.qualcomm.com/products/snapdragon-888-5g-mobile-platform|access-date=6 January 2021}}

| {{No}} || {{No}} || 16–64 + 16–64 || 0–256 KiB/core || {{Yes|0–4 MiB}} || 1–8+ || 2.65Based on 18% perf. increment over Cortex-A53 {{cite web|title=Arm Cortex-A55: Efficient performance from edge to cloud|url=https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-cortex-a55-efficient-performance-from-edge-to-cloud|website=ARM|publisher=ARM Ltd}} || {{dunno}}

|0xD05

Cortex-A57{{Cite web|url=https://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review|title=ARM A53/A57/T760 investigated – Samsung Galaxy Note 4 Exynos Review|last=Smith|first=Andrei Frumusanu, Ryan|website=anandtech.com|access-date=2019-06-17}}

| 2013

| ARMv8.0-A || 3-wide || 15 || {{Yes}}
3-wide dispatch || {{dunno}} || {{dunno}} || {{Yes|big}} || 8 || {{dunno}}

| 28 / 20 /
16 / 14 || {{No}} || {{No}} || 48 + 32 || 0.5–2 MiB || {{No}} || 1–4+ || 4.1{{cite web|title=High Performance Processors, Other Interesting Talks|url=https://www.phoronix.com/forums/forum/hardware/processors-memory/1295407-risc-v-summit-2021-high-performance-processors-other-interesting-talks?p=1299818#post1299818|website=Phoronix comments|access-date=24 January 2024}}-4.8 || {{dunno}} ||0xD07

Cortex-A65{{cite web|title=Cortex-A65 – Arm Developer|url=https://developer.arm.com/ip-products/processors/cortex-a/cortex-a65|website=ARM Ltd.|access-date=14 July 2020}}

|2019

| ARMv8.2-A
(only 64-bit)|| 2-wide || 10-12 || {{Yes}}
4-wide dispatch

| || {{Yes|Two-level}} || {{dunno}} || 9

| || {{dunno}}

|SMT2

|No|| 32–64 + 32–64 KiB || 0, 64–256 KiB || 0, 0.5–4 MiB || 1-8 || {{dunno}} || {{dunno}}

|0xD06

Cortex-A65AE{{cite web|title=Cortex-A65AE – Arm Developer|url=https://developer.arm.com/ip-products/processors/cortex-a/cortex-a65ae|website=ARM Ltd.|access-date=26 April 2019}}

|2019

| ARMv8.2-A || {{dunno}} || {{dunno}} || {{Yes}}

| || {{Yes|Two-level}} || {{dunno}} || 2

| || {{dunno}}

|SMT2

|No|| 32–64 + 32–64 KiB || 64–256 KiB || 0, 0.5–4 MiB || 1–8 || {{dunno}} || {{dunno}}

|0xD43

Cortex-A72{{cite web|last1=Frumusanu|first1=Andrei|title=ARM Reveals Cortex-A72 Architecture Details|url=http://www.anandtech.com/show/9184/arm-reveals-cortex-a72-architecture-details|website=Anandtech|access-date=25 April 2015}}

| 2015

| ARMv8.0-A || 3-wide || 15

|{{Yes}}
5-wide dispatch

| || {{Yes|Two-level}} || {{Yes|big}} || 8

| || 28 / 16

|No

|No|| 48 + 32 || 0.5–4 MiB || No || 1–4+ ||4.7-6.3 || {{dunno}}

|0xD08

Cortex-A73{{cite news|last1=Frumusanu|first1=Andrei|title=The ARM Cortex A73 – Artemis Unveiled|url=http://www.anandtech.com/show/10347/arm-cortex-a73-artemis-unveiled|access-date=31 May 2016|publisher=Anandtech.com|date=29 May 2016}}

| 2016

| ARMv8.0-A || 2-wide || 11–12

|{{Yes}}
4-wide dispatch

| || {{Yes|Two-level}} || {{Yes|big}} || 7

| || 28 / 16 / 10

|No

|No|| 64 + 32/64 || 1–8 MiB || No || 1–4+ || 4.8–8.5 || {{dunno}}

|0xD09

Cortex-A75

|2017

|ARMv8.2-A

|3-wide

|11–13

|{{Yes}}
6-wide dispatch

|

|{{Yes|Two-level}}

|{{Yes|big}}

|8?

|2*128b

|28 / 16 / 10

|No

|No

|64 + 64

|256–512 KiB/core

|0–4 MiB

|1–8+

|6.1–9.5{{Cite web |date=November 2018 |title=ARM’s processor lines |url=http://users.nik.uni-obuda.hu/sima/letoltes/Processor_families_Knowledge_Base_2019/ARM_processors_lecture_2018_12_02.pdf |access-date=October 24, 2023 |website=users.nik.uni-obuda.hu}}

|{{dunno}}

|0xD0A

Cortex-A76{{cite news |last1=Frumusanu |first1=Andrei |title=ARM Cortex-A76 CPU Unveiled |url=https://www.anandtech.com/show/12785/arm-cortex-a76-cpu-unveiled-7nm-powerhouse |access-date=1 June 2018 |publisher=Anandtech |date=31 May 2018}}

|2018

|ARMv8.2-A

|4-wide

|11–13

|{{Yes}}
8-wide dispatch

|128|| {{Yes|Two-level}} || {{Yes|big}} || 8

|2*128b

|10 / 7

|No

|No

|64 + 64

|256–512 KiB/core

|1–4 MiB

|1–4

|6.4

|{{dunno}}

|0xD0B

Cortex-A76AE{{cite web|title=Cortex-A76AE – Arm Developer|url=https://developer.arm.com/ip-products/processors/cortex-a/cortex-a76ae|website=ARM Ltd.|access-date=14 July 2020}}

|2018

|ARMv8.2-A

|{{dunno}}

|{{dunno}}

|{{Yes}}

|128

|{{Yes|Two-level}}

|{{Yes|big}}

|{{dunno}}

|

|{{dunno}}

|No

|No

|{{dunno}}

|{{dunno}}

|{{dunno}}

|{{dunno}}

|{{dunno}}

|{{dunno}}

|0xD0E

Cortex-A77{{Cite web|url=https://fuse.wikichip.org/news/2339/arm-unveils-cortex-a77-emphasizes-single-thread-performance/|title=Arm Unveils Cortex-A77, Emphasizes Single-Thread Performance|last=Schor|first=David|date=2019-05-26|website=WikiChip Fuse|language=en-US|access-date=2019-06-17}}

|2019

|ARMv8.2-A

|4-wide

|11–13

|{{Yes}}
10-wide dispatch

|160|| {{Yes|Two-level}} || {{Yes|big}}

|12

|2*128b

|7

|No

|1.5K entries

|64 + 64

|256–512 KiB/core

|1–4 MiB

|1–4

|7.3According to ARM, the Cortex-A77 has a 20% IPC single-thread performance improvement over its predecessor in Geekbench 4, 23% in SPECint2006, 35% in SPECfp2006, 20% in SPECint2017, and 25% in SPECfp2017

|{{dunno}}

|0xD0D

Cortex-A78{{Cite web|title=Arm Unveils the Cortex-A78: When Less Is More|url=https://fuse.wikichip.org/news/3536/arm-unveils-the-cortex-a78-when-less-is-more/|date=2020-05-26|website=WikiChip Fuse|language=en-US|access-date=2020-05-28}}{{Cite web|title=Cortex-A78|url=https://developer.arm.com/ip-products/processors/cortex-a/cortex-a78|last=Ltd|first=Arm|website=ARM Developer|language=en|access-date=2020-05-28}}

|2020

|ARMv8.2-A

|4-wide

|

|{{Yes}}

|160

|Yes

|{{Yes|big}}

|13

|2*128b

|

|No

|1.5K entries

|32/64 + 32/64

|256–512 KiB/core

|1–4 MiB

|1–4

|7.6-8.2

|{{dunno}}

|0xD41

Cortex-X1{{Cite web|title=Introducing the Arm Cortex-X Custom program|url=https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-cortex-x-custom-program|website=community.arm.com|language=en|access-date=2020-05-28}}

|2020

|ARMv8.2-A

|5-wide

|{{dunno}}

|{{yes}}

|224

|Yes

|{{Yes|big}}

|15

|4*128b

|

|No

|3K entries

|64 + 64

|up to 1 MiB

|up to 8 MiB

|custom

|10-11

|{{dunno}}

|0xD44

rowspan="17" |Apple

!Cyclone

| 2013

| ARMv8.0-A || 6-wide|| 16|| {{Yes}}

|192|| {{Yes}} || {{No}} || 9

| || 28

|No

|No|| 64 + 64|| 1 MiB|| 4 MiB|| 2 || {{dunno}} || 1.3–1.4 GHz

|

Typhoon

| 2014

| ARMv8.0‑A || 6-wide|| 16|| {{Yes}}

| || {{Yes}} || {{No}} || 9

| || 20

|No

|No|| 64 + 64|| 1 MiB|| 4 MiB|| 2, 3 (A8X) || {{dunno}} || 1.1–1.5 GHz

|

Twister

| 2015

| ARMv8.0‑A || 6-wide|| 16|| {{Yes}}

| || {{Yes}} || {{No}} || 9

| || 16 / 14

|No

|No|| 64 + 64|| 3 MiB|| 4 MiB
No (A9X)|| 2 || {{dunno}} || 1.85–2.26 GHz

|

Hurricane

|rowspan="2"|2016

|ARMv8.0‑A

|6-wide{{cite web|url=https://www.anandtech.com/show/13392/the-iphone-xs-xs-max-review-unveiling-the-silicon-secrets/3|title=Apple had shifted the microarchitecture in Hurricane (A10) from a 6-wide decode from to a 7-wide decode|publisher=AnandTech|date=5 October 2018}}

|16

|{{Yes}}

|

|

|{{Yes|"big" (In A10/A10X paired with "LITTLE" Zephyr
cores)
}}

|9

|3*128b

|16 (A10)
10 (A10X)

|No

|No

|64 + 64{{Cite web|url=http://system-on-a-chip.specout.com/l/1223/Apple-A10-Fusion|title=Apple A10 Fusion|website=system-on-a-chip.specout.com|access-date=2016-10-01}}{{Dead link|date=July 2019 |bot=InternetArchiveBot |fix-attempted=yes }}

|3 MiB (A10)
8 MiB (A10X)

|4 MiB (A10)
No (A10X)

|2x Hurricane (A10)
3x Hurricane (A10X)

|{{dunno}}

|2.34–2.36 GHz

|

Zephyr

|ARMv8.0‑A

|3-wide

|12

|{{Yes}}

|

|

|{{Yes|LITTLE}}

|5

|

|16 (A10)
10 (A10X)

|No

|No

|32 + 32

|1 MiB

|4 MiB (A10)
No (A10X)

|2x Zephyr (A10)
3x Zephyr (A10X)

|{{dunno}}

|1.09–1.3 GHz

|

Monsoon

|rowspan="2"|2017

|ARMv8.2‑A{{cite web|url=https://devstreaming-cdn.apple.com/videos/wwdc/2018/409t8zw7rumablsh/409/409_whats_new_in_llvm.pdf|title=Apple A11 New Instruction Set Extensions|publisher=Apple Inc.|date=8 June 2018}}

|7-wide

|16

|{{Yes}}

|

|

|{{Yes|"big" (In Apple A11 paired with "LITTLE" Mistral
cores)
}}

|11

|3*128b

|10

|No

|No

|64 + 64{{cite web|url=https://www.anandtech.com/show/13392/the-iphone-xs-xs-max-review-unveiling-the-silicon-secrets/2|title=Measured and Estimated Cache Sizes|publisher=AnandTech|date=5 October 2018}}

|8 MiB

|No

|2x Monsoon

|{{dunno}}

|2.39 GHz

|

Mistral

|ARMv8.2‑A

|3-wide

|12

|{{Yes}}

|

|

|{{Yes|LITTLE}}

|5

|

|10

|No

|No

|32 + 32

|1 MiB

|No

|4× Mistral

|{{dunno}}

|1.19 GHz

|

Vortex

|rowspan="2"|2018

|ARMv8.3‑A{{cite web|url=http://newosxbook.com/forum/viewtopic.php?f=11&t=19557|title=Apple A12 Pointer Authentication Codes|date=12 September 2018|publisher=Jonathan Levin, @Morpheus|access-date=8 October 2018|archive-date=10 October 2018|archive-url=https://web.archive.org/web/20181010011352/http://newosxbook.com/forum/viewtopic.php?f=11&t=19557|url-status=dead}}

|7-wide

|16

|{{Yes}}

|

|

|{{Yes|"big" (In Apple A12/Apple A12X/Apple A12Z paired with "LITTLE" Tempest
cores)
}}

|11

|3*128b

|7

|No

|No

|128 + 128

|8 MiB

|No

|2x Vortex (A12)
4x Vortex (A12X/A12Z)

|{{dunno}}

|2.49 GHz

|

Tempest

|ARMv8.3‑A

|3-wide

|12

|{{Yes}}

|

|

|{{Yes|LITTLE}}

|5

|

|7

|No

|No

|32 + 32

|2 MiB

|No

|4x Tempest

|{{dunno}}

|1.59 GHz

|

Lightning

|rowspan="2"|2019

|ARMv8.4‑A{{cite web|url=http://newosxbook.com/ChangeLog.html#v2|title=A13 has ARMv8.4, apparently (LLVM project sources, thanks, @Longhorn)|publisher=Jonathan Levin, @Morpheus|date=13 March 2020}}

|8-wide

|16

|{{Yes}}

|560

|

|{{Yes|"big" (In Apple A13 paired with "LITTLE" Thunder
cores)
}}

|11

|3*128b

|7

|No

|No

|128 + 128{{cite web|url=https://www.anandtech.com/show/14892/the-apple-iphone-11-pro-and-max-review/2|title=The Apple A13 SoC: Lightning & Thunder|publisher=AnandTech|date=16 October 2019}}

|8 MiB

|No

|2x Lightning

|{{dunno}}

|2.65 GHz

|

Thunder

|ARMv8.4‑A

|3-wide

|12

|{{Yes}}

|

|

|{{Yes|LITTLE}}

|5

|

|7

|No

|No

|96 + 48{{cite web|url=https://www.anandtech.com/show/14892/the-apple-iphone-11-pro-and-max-review/3|title=The A13's Memory Subsystem: Faster L2, More SLC BW|publisher=AnandTech|date=16 October 2019}}

|4 MiB

|No

|4x Thunder

|{{dunno}}

|1.8 GHz

|

Firestorm

|rowspan="2"|2020

|ARMv8.4-A{{Cite web |title=llvm-project/llvm/lib/Target/AArch64/AArch64.td at main - llvm/llvm-project - GitHub |url=https://github.com/llvm/llvm-project/blob/main/llvm/lib/Target/AArch64/AArch64.td |access-date=2023-07-03 |website=github.com |language=en}}

|8-wide{{cite web|url=https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2|title=Apple Announces The Apple Silicon M1: Ditching x86 – What to Expect, Based on A14|publisher=AnandTech|date=10 November 2020}}

|

|{{Yes}}

|630{{Cite web|last=Frumusanu|first=Andrei|title=Apple Announces The Apple Silicon M1: Ditching x86 – What to Expect, Based on A14|url=https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive|access-date=2020-11-25|website=anandtech.com}}

|

|{{Yes|"big" (In Apple A14 and Apple M1/M1 Pro/M1 Max/M1 Ultra paired with "LITTLE" Icestorm
cores)
}}

|14

|4*128b

|5

|No

|

|192 + 128

|8 MiB (A14)
12 MiB (M1)
24 MiB (M1 Pro/M1 Max)
48 MiB (M1 Ultra)

|No

|2x Firestorm (A14)
4x Firestorm (M1)

6x or 8x Firestorm (M1 Pro)

8x Firestorm (M1 Max)

16x Firestorm (M1 Ultra)

|{{dunno}}

|3.0–3.23 GHz

|

Icestorm

|ARMv8.4-A

|4-wide

|

|{{Yes}}

|110

|

|{{Yes|LITTLE}}

|7

|2*128b

|5

|No

|

|128 + 64

|4 MiB
8 MiB (M1 Ultra)

|No

|4x Icestorm (A14/M1)
2x Icestorm (M1 Pro/Max)
4x Icestorm (M1 Ultra)

|{{dunno}}

|1.82–2.06 GHz

|

Avalanche

|rowspan="2"|2021

|ARMv8.6‑A

|8-wide

|

|{{Yes}}

|

|

|{{Yes|"big" (In Apple A15 and Apple M2/M2 Pro/M2 Max/M2 Ultra paired with "LITTLE" Blizzard
cores)
}}

|14

|4*128b

|5

|No

|

|192 + 128

|12 MiB (A15)
16 MiB (M2)
32 MiB (M2 Pro/M2 Max)
64 MiB (M2 Ultra)

|No

|2x Avalanche (A15)
4x Avalanche (M2)
6x or 8x Avalanche (M2 Pro)

8x Avalanche (M2 Max)
16x Avalanche (M2 Ultra)

|{{dunno}}

|2.93–3.49 GHz

|

Blizzard

|ARMv8.6‑A

|4-wide

|

|{{Yes}}

|

|

|{{Yes|LITTLE}}

|8

|2*128b

|5

|No

|

|128 + 64

|4 MiB
8 MiB (M2 Ultra)

|No

|4x Blizzard

|{{dunno}}

|2.02–2.42 GHz

|

Everest

|rowspan="2"|2022

|ARMv8.6‑A

|8-wide

|

|{{Yes}}

|

|

|{{Yes|"big" (In Apple A16 paired with "LITTLE" Sawtooth
cores)
}}

|14

|4*128b

|5

|No

|

|192 + 128

|16 MiB

|No

|2x Everest

|{{dunno}}

|3.46 GHz

|

Sawtooth

|ARMv8.6‑A

|4-wide

|

|{{Yes}}

|

|

|{{Yes|LITTLE}}

|8

|2*128b

|5

|No

|

|128 + 64

|4 MiB

|No

|4x Sawtooth

|{{dunno}}

|2.02 GHz

|

rowspan="3" |Nvidia

!Denver{{cite web|url=http://www.linleygroup.com/mpr/article.php?id=11262|title=Denver Uses Dynamic Translation to Outperform Mobile Rivals|last1=Gwennap|first1=Linley|website=The Linley Group|access-date=24 April 2015}}

|2014

|ARMv8‑A

| 2-wide hardware
decoder, up to
7-wide variable-
length VLIW
micro-ops

| 13

| {{Maybe|Not if the hardware
decoder is in use.
Can be provided
by dynamic software
translation into VLIW.}}

|

| Direct+
Indirect branch
prediction

| No

| 7

|

| 28

|No

|No

| 128 + 64

| 2 MiB

| No

| 2

|{{dunno}}

| {{dunno}}

|

Denver 2{{cite news|url=http://www.anandtech.com/show/10596/hot-chips-2016-nvidia-discloses-tegra-parker-details|title=Hot Chips 2016: NVIDIA Discloses Tegra Parker Details|last1=Ho|first1=Joshua|date=25 August 2016|access-date=25 August 2016|publisher=Anandtech}}

|2016

| ARMv8‑A

| {{dunno}}

| 13

| {{Maybe|Not if the hardware
decoder is in use.
Can be provided
by dynamic software
translation into VLIW.}}

|

| Direct+
Indirect branch
prediction

| "Super" Nvidia's own implementation

| {{dunno}}

|

| 16

|No

|No

| 128 + 64

| 2 MiB

| No

| 2|| {{dunno}}

|{{dunno}}

|

Carmel

|2018

| ARMv8.2‑A

| {{dunno}}

|

|

|

| Direct+
Indirect branch
prediction

|

| {{dunno}}

|

| 12

|No

|No

| 128 + 64

| 2 MiB

| (4 MiB @ 8 cores)

| 2 (+ 8)

| 6.5-7.4

| {{dunno}}

|

rowspan="2" |Cavium

!ThunderX{{cite news|last1=De Gelas|first1=Johan|title=ARM Challenging Intel in the Server Market|url=http://www.anandtech.com/show/8776/arm-challinging-intel-in-the-server-market-an-overview|access-date=8 March 2017|publisher=Anandtech|date=16 December 2014}}{{cite news|last1=De Gelas|first1=Johan|title=Investigating the Cavium ThunderX|url=http://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-arm-cores|access-date=8 March 2017|publisher=Anandtech|date=15 June 2016}}

| 2014

| ARMv8-A || 2-wide || 9 || {{Yes}}

| || {{Yes|Two-level}} || || {{dunno}}

| || 28

|No

|No|| 78 + 32|| 16 MiB|| No || 8–16, 24–48 || {{dunno}} || {{dunno}}

|

ThunderX2
{{Cite web|url=https://fuse.wikichip.org/news/1316/a-look-at-caviums-new-high-performance-arm-microprocessors-and-the-isambard-supercomputer/|title=A Look at Cavium's New High-Performance ARM Microprocessors and the Isambard Supercomputer|date=2018-06-03|website=WikiChip Fuse|language=en-US|access-date=2019-06-17}}(ex. Broadcom Vulcan{{cite web|url=https://reviews.llvm.org/D30510|title=⚙ D30510 Vulcan is now ThunderX2T99|website=reviews.llvm.org}})

| 2018{{cite news|last1=Kennedy|first1=Patrick|title=Cavium ThunderX2 256 Thread Arm Platforms Hit General Availability|url=https://www.servethehome.com/cavium-thunderx2-hits-general-availability/|access-date=10 May 2018|date=7 May 2018}}

| ARMv8.1-A
{{cite web|url=https://reviews.llvm.org/D21500|title=⚙ D21500 [AARCH64] Add support for Broadcom Vulcan|website=reviews.llvm.org}}|| 4-wide
"4 μops"{{Cite web |last=Hayes |first=Eric |date=April 7, 2014 |title=IDC HPC USER FORUM |url=https://hpcuserforum.com/presentations/santafe2014/Broadcom%20Monday%20night.pdf |website=hpcuserforum.com}}{{cite web|url=http://www.linleygroup.com/events/agenda.php?num=24&day=1|title=The Linley Group – Processor Conference 2013|website=linleygroup.com}}|| {{dunno}} || {{Yes}}{{cite web|url=http://www.cavium.com/ThunderX2_ARM_Processors.html|title=ThunderX2 ARM Processors- A Game Changing Family of Workload Optimized Processors for Data Center and Cloud Applications – Cavium|website=cavium.com}}

| || {{Yes|Multi-level}} || {{dunno}} || {{dunno}}

| || 16

|SMT4

|No|| 32 + 32
(data 8-way) || 256 KiB
per core{{cite news|last1=Kennedy|first1=Patrick|title=Cavium ThunderX2 Review and Benchmarks a Real Arm Server Option|url=https://www.servethehome.com/cavium-thunderx2-review-benchmarks-real-arm-server-option/|access-date=10 May 2018|publisher=Serve the Home|date=9 May 2018}}|| 1 MiB
per core|| 16–32|| {{dunno}} || {{dunno}}

|

rowspan="1" | Marvell

! ThunderX3

| 2020{{cite news|last1=Frumusanu|first1=Andrei|title=Marvell Announces ThunderX3: 96 Cores & 384 Thread 3rd Gen Arm Server Processor|url=https://www.anandtech.com/show/15621/marvell-announces-thunderx3-96-cores-384-thread-3rd-gen-arm-server-processor|date=16 March 2020}}

| ARMv8.3+|| 8-wide || {{dunno}} || {{Yes}}
4-wide dispatch

| || {{Yes|Multi-level}} || {{dunno}} || 7

| || 7

|SMT4

|{{dunno}} || 64 + 32 || 512 KiB
per core || 90 MiB || 60 || {{dunno}} || {{dunno}}

|

rowspan="4" | Applied

Micro

!Helix

| 2014 || {{dunno}} || {{dunno}} || {{dunno}} || {{dunno}}

| || {{dunno}} || {{dunno}} || {{dunno}}

| || 40 / 28

|No

|No|| rowspan="3" | 32 + 32 (per core;
write-through
w/parity){{cite news |url=http://anandtech.com/show/8588/armv8-goes-embedded-with-applied-micros-helix-socs |title=ARMv8 Goes Embedded with Applied Micro's HeliX SoCs |author=Ganesh T S |publisher=AnandTech|date=3 October 2014 |access-date=9 October 2014}}|| rowspan="3" | 256 KiB shared
per core pair (with ECC) || 1 MiB/core || 2, 4, 8 || {{dunno}} || {{dunno}}

|

X-Gene

| 2013

| {{dunno}} || 4-wide || 15 || {{Yes}}

| || {{dunno}} || {{dunno}} || {{dunno}}

| || 40{{cite news |url=http://www.enterprisetech.com/2014/08/12/applied-micro-plots-x-gene-arm-server-future/ |title=Applied Micro Plots Out X-Gene ARM Server Future |first=Timothy Prickett |last=Morgan |publisher=Enterprisetech |date=12 August 2014 |access-date=9 October 2014}}

|No

|No|| 8 MiB || 8 || 4.2 || {{dunno}}

|

X-Gene 2

| 2015

| {{dunno}} || 4-wide || 15 || {{Yes}}

| || {{dunno}} || {{dunno}} || {{dunno}}

| || 28{{cite news|last1=De Gelas|first1=Johan|title=AppliedMicro's X-Gene 3 SoC Begins Sampling|url=http://www.anandtech.com/show/11189/appliedmicro-x-gene-3-soc-starts-sampling|access-date=15 March 2017|publisher=Anandtech|date=15 March 2017}}

|No

|No|| 8 MiB || 8 || 4.2 || {{dunno}}

|

X-Gene 3

| 2017

| {{dunno}} || {{dunno}} || {{dunno}} || {{dunno}}

| || {{dunno}} || {{dunno}} || {{dunno}}

| || 16

|No

|No|| {{dunno}} || {{dunno}} || 32 MiB || 32 || {{dunno}} || {{dunno}}

|

rowspan="12" |Qualcomm

!Kryo

| 2015

| ARMv8-A || {{dunno}} || {{dunno}} || {{Yes}}

| || {{Yes|Two-level?}} || {{Yes|"big" or "LITTLE"
Qualcomm's own similar implementation
}} || {{dunno}}

| || 14{{cite web|url=https://www.qualcomm.com/news/snapdragon/2015/09/02/snapdragon-820-and-kryo-cpu-heterogeneous-computing-and-role-custom |title=Snapdragon 820 and Kryo CPU: heterogeneous computing and the role of custom compute |publisher=Qualcomm |date=2 September 2015 |access-date=6 September 2015}}

|No

|No|| 32+24{{cite web|url=http://www.anandtech.com/show/9837/snapdragon-820-preview/|title=The Qualcomm Snapdragon 820 Performance Preview: Meet Kryo|first=Ryan Smith, Andrei|last=Frumusanu}}|| 0.5–1 MiB || || 2+2 || 6.3 || {{dunno}}

|

rowspan="2" |Kryo 200

| rowspan="2" | 2016

| rowspan="2" |ARMv8-A

|2-wide

|11–12|| {{Yes}}
7-wide dispatch

| || {{Yes|Two-level}} || {{Yes|big}}

|| 7

|

| rowspan="2" |14 / 11 / 10 / 6{{Cite news|url=https://www.anandtech.com/show/12420/snapdragon-845-performance-preview|title=The Snapdragon 845 Performance Preview: Setting the Stage for Flagship Android 2018|last=Smith|first=Andrei Frumusanu, Ryan|access-date=2018-06-11}}

| rowspan="2" |No

| rowspan="2" |No

|64 + 32/64?

|512 KiB/Gold Core

| rowspan="2" |No

|4||{{dunno}}||1.8–2.45 GHz

|

2-wide

|8

{{No}}

|0

| Conditional+
Indirect branch
prediction | Conditional+
Indirect branch
prediction

|{{yes|LITTLE}}

|2

|

|8–64? + 8–64?

|256 KiB/Silver Core

|4

{{dunno}}1.8–1.9 GHz

|

rowspan="2" |Kryo 300

| rowspan="2" |2017

| rowspan="2" |ARMv8.2-A

|3-wide

|11–13|| {{Yes}}
8-wide dispatch

| || {{Yes|Two-level}} || {{Yes|big}}

||8

|

| rowspan="2" |10

| rowspan="2" |No

| rowspan="2" |No

|64+64

|256 KiB/Gold Core

| rowspan="2" |2 MiB

|2, 4||{{dunno}}||2.0–2.95 GHz

|

2-wide

|8

{{No}}

|0

| Conditional+
Indirect branch
prediction | Conditional+
Indirect branch
prediction

| {{yes|LITTLE}}

|28

|

|16–64? + 16–64?

|128 KiB/Silver

|4, 6

{{dunno}}1.7–1.8 GHz

|

rowspan="2" |Kryo 400

| rowspan="2" |2018

| rowspan="2" |ARMv8.2-A

|4-wide

|11–13|| {{Yes}}
8-wide dispatch

| || {{Yes}} || {{Yes|big}}

|8

|

| rowspan="2" |11 / 8 / 7

| rowspan="2" |No

| rowspan="2" |No

|64 + 64

|512 KiB/Gold Prime

256 KiB/Gold

| rowspan="2" |2 MiB

|2, 1+1, 4, 1+3 || {{dunno}} || 2.0–2.96 GHz

|

2-wide

|8

{{No}}

|0

| Conditional+
Indirect branch
prediction | Conditional+
Indirect branch
prediction

| {{yes|LITTLE}}

|2

|

|16–64? + 16–64?

|128 KiB/Silver

|4, 6

|{{dunno}}

|1.7–1.8 GHz

|

rowspan="2" |Kryo 500

| rowspan="2" |2019

| rowspan="2" |ARMv8.2-A

|4-wide

|11–13|| {{Yes}}
8-wide dispatch

| || {{Yes}} || {{Yes|big}}

|

|

| rowspan="2" |8 / 7

| rowspan="2" |No

|?

|

|512 KiB/Gold Prime

256 KiB/Gold

| rowspan="2" |3 MiB

|2, 1+3

|{{dunno}}

|2.0–3.2 GHz

|

2-wide

|8

{{No}}

|0

| Conditional+
Indirect branch
prediction | Conditional+
Indirect branch
prediction

|{{yes|LITTLE}}

|2

|

|?

|

|128 KiB/Silver

|4, 6

|{{dunno}}

|1.7–1.8 GHz

|

|

rowspan="2" |Kryo 600

| rowspan="2" |2020

| rowspan="2" |ARMv8.4-A

|4-wide

|11–13|| {{Yes}}
8-wide dispatch

| || {{Yes}} || {{Yes|big}}

|

|

| rowspan="2" |6 / 5

| rowspan="2" |No

|?

|64 + 64

|1024 KiB/Gold Prime

512 KiB/Gold

| rowspan="2" |4 MiB

|2, 1+3

|{{dunno}}

|2.2–3.0 GHz

|

2-wide

|8

{{No}}

|0

| Conditional+
Indirect branch
prediction | Conditional+
Indirect branch
prediction

|{{yes|LITTLE}}

|2

|

|?

|

|128 KiB/Silver

|4, 6

|{{dunno}}

|1.7–1.8 GHz

|

|

Falkor{{cite news|last1=Shilov|first1=Anton|title=Qualcomm Demos 48-Core Centriq 2400 SoC in Action, Begins Sampling|url=http://www.anandtech.com/show/10918/qualcomm-demos-48core-centriq-2400-server-soc-in-action-begins-sampling|quote=In 2015, Qualcomm teamed up with Xilinx and Mellanox to ensure that its server SoCs are compatible with FPGA-based accelerators and data-center connectivity solutions (the fruits of this partnership will likely emerge in 2018 at best).|access-date=8 March 2017|publisher=Anandtech|date=16 December 2016}}{{cite news|last1=Cutress|first1=Ian|title=Analyzing Falkor's Microarchitecture|url=http://www.anandtech.com/show/11737/analyzing-falkors-microarchitecture-a-deep-dive-into-qualcomms-centriq-2400-for-windows-server-and-linux |quote=The CPU cores, code named Falkor, will be ARMv8.0 compliant although with ARMv8.1 features, allowing software to potentially seamlessly transition from other ARM environments (or need a recompile). The Centriq 2400 family is set to be AArch64 only, without support for AArch32: Qualcomm states that this saves some power and die area, but that they primarily chose this route because the ecosystems they are targeting have already migrated to 64-bit. Qualcomm’s Chris Bergen, Senior Director of Product Management for the Centriq 2400, stated that the majority of new and upcoming companies have started off with 64-bit as their base in the data center, and not even considering 32-bit, which is a reason for the AArch64-only choice here. [..] Micro-op cache / L0 I-cache with Way prediction [..] The L1 I-cache is 64KB, which is similar to other ARM architecture core designs, and also uses 64-byte lines but with an 8-way associativity. To software, as the L0 is transparent, the L1 I-cache will show as an 88KB cache.|access-date=21 August 2017|publisher=Anandtech|date=20 August 2017}}

| 2017{{cite news|last1=Shrout|first1=Ryan|title=Qualcomm Centriq 2400 Arm-based Server Processor Begins Commercial Shipment|url=https://www.pcper.com/news/Processors/Qualcomm-Centriq-2400-Arm-based-Server-Processor-Begins-Commercial-Shipment|access-date=8 November 2017|publisher=PC Per|date=8 November 2017}}

| "ARMv8.1-A features"; AArch64 only (not 32-bit)|| 4-wide || 10–15 || {{yes|Yes
8-wide dispatch}}

| || {{Yes|Yes}} || {{dunno}} || 8

| || 10

|No

|24 KiB|| 88 + 32 || 500KiB || 1.25MiB || 40–48 || {{dunno}} || {{dunno}}

|

rowspan="5" |Samsung

! M1{{cite web|url=http://www.anandtech.com/show/10590/hot-chips-2016-exynos-m1-architecture-disclosed|title=Hot Chips 2016: Exynos M1 Architecture Disclosed|first=Joshua|last=Ho}}{{cite web|url=http://www.anandtech.com/show/9781/samsung-announces-exynos-8890-with-cat1213-modem-and-custom-cpu|title=Samsung Announces Exynos 8890 with Cat.12/13 Modem and Custom CPU|first=Andrei|last=Frumusanu}}

| 2016

| ARMv8-A || 4-wide || 13{{cite news|last1=Frumusanu|first1=Andrei|title=The Samsung Exynos M3 – 6-wide Decode with 50%+ IPC Increase|url=https://www.anandtech.com/show/12361/samsung-exynos-m3-architecture|access-date=25 January 2018|publisher=Anandtech|date=23 January 2018}}|| {{Yes}}
9-wide dispatch{{cite web|last1=Frumusanu|first1=Andrei|title=Hot Chips 2016: Exynos M1 Architecture Disclosed|url=http://www.anandtech.com/show/10590/hot-chips-2016-exynos-m1-architecture-disclosed|website=Anandtech|access-date=29 May 2017}}

|96

|| || {{Yes|big}} || 8

| || 14

|No

|No|| 64 + 32 || 2 MiB{{cite web|url=https://www.theregister.co.uk/2016/08/22/samsung_m1_core/|title='Neural network' spotted deep inside Samsung's Galaxy S7 silicon brain|website=The Register }}|| No || 4 || {{dunno}} || 2.6 GHz

|

M2

|2017

|ARMv8-A

|4-wide

|

|

|100|| {{Yes|Two-level}} || {{Yes|big}}

|

|

|10

|No

|No

|64 + 64

|2 MiB

|No

|4

|{{dunno}}

|2.3 GHz

|

M3{{Cite web|url=https://www.anandtech.com/show/13199/hot-chips-2018-samsungs-exynosm3-cpu-architecture-deep-dive|title=Hot Chips 2018: Samsung's Exynos-M3 CPU Architecture Deep Dive|last=Frumusanu|first=Andrei|website=anandtech.com|access-date=2019-06-17}}

| 2018

| ARMv8.2-A || 6-wide || 15 || {{Yes}}
12-wide dispatch

|228|| {{Yes|Two-level}} || {{Yes|big}} || 12

| || 10

|No

|No|| 64 + 64 || 512 KiB per core || 4096KB || 4 || {{dunno}} || 2.7 GHz

|

M4{{Cite web|url=https://fuse.wikichip.org/news/2051/samsung-discloses-exynos-m4-changes-upgrades-support-for-armv8-2-rearranges-the-back-end/|title=Samsung Discloses Exynos M4 Changes, Upgrades Support for ARMv8.2, Rearranges The Back-End|last=Schor|first=David|date=2019-01-14|website=WikiChip Fuse|language=en-US|access-date=2019-06-17}}

|2019

|ARMv8.2-A

|6-wide

|15|| {{Yes}}
12-wide dispatch

|228|| {{Yes|Two-level}} || {{Yes|big}}

|12

|

|8 / 7

|No

|No

|64 + 64

|512 KiB per core

|3072KB

|2

|{{dunno}}

|2.73 GHz

|

M5{{Cite web|last=Frumusanu|first=Andrei|title=ISCA 2020: Evolution of the Samsung Exynos CPU Microarchitecture|url=https://www.anandtech.com/show/15826/isca-2020-evolution-of-the-samsung-exynos-cpu-microarchitecture|access-date=2021-01-24|website=anandtech.com}}

|2020

|ARMv8.2-A

|6-wide

| || {{Yes}}
12-wide dispatch

|228|| {{Yes|Two-level}} || {{Yes|big}}

|

|

|7

|No

|No

|64 + 64

|512 KiB per core

|3072KB

|2

|{{dunno}}

|2.73 GHz

|

Fujitsu

! A64FX{{citation|title=Fujitsu High Performance CPU for the Post-K Computer|url=https://www.fujitsu.com/global/documents/solutions/business-technology/tc/catalog/20180821hotchips30.pdf|access-date=16 September 2019|date=2018-07-21}}{{citation|title=Arm A64fx and Post-K: Game Changing CPU & Supercomputer for HPC and its Convergence of with Big Data / AI|url=https://www.hpcuserforum.com/presentations/april2019/Rikenmatsuoka.pdf|access-date=16 September 2019|date=2019-04-03}}

|2019

|ARMv8.2-A

|4/2-wide

|7+ || {{Yes}}
5-way?

| || {{Yes}} || n/a

|8+

|2*512b{{Cite web|title=Fujitsu Successfully Triples the Power Output of Gallium-Nitride Transistors – Fujitsu Global|url=https://www.fujitsu.com/global/about/resources/news/press-releases/2018/0822-02.html|access-date=2020-11-23|website=fujitsu.com}}

|7

|No

|No

|64 + 64

|8MiB per 12+1 cores

|No

|48+4

|{{dunno}}

|1.9 GHz+

|

HiSilicon

! TaiShan V110{{Cite web|url=https://fuse.wikichip.org/news/2274/huawei-expands-kunpeng-server-cpus-plans-smt-sve-for-next-gen/|title=Huawei Expands Kunpeng Server CPUs, Plans SMT, SVE For Next Gen|last=Schor|first=David|date=2019-05-03|website=WikiChip Fuse|language=en-US|access-date=2019-12-13}}

|2019

|ARMv8.2-A

|4-wide

|?

|{{Yes}}

|

|

|n/a

|8

|7

|

|No

|No

|64 + 64

|512 KiB per core

|1 MiB per core

|{{dunno}}

|{{dunno}}

|{{dunno}}

|

Company

! Core

! Released

! Revision

! Decode

!Pipeline
depth

! colspan="2" |Out-of-order
execution

!Branch
prediction

!big.LITTLE role

! Exec. ports

!SIMD

!Fab
(in nm)

!Simult. MT

!L0 cache

!L1 cache
Instr + Data
(in KiB)

! L2 cache

! L3 cache

! Core
configu-
rations

! Speed per core (DMIPS/
MHz
{{refn|group=note|name=first|As Dhrystone (implied in "DMIPS") is a synthetic benchmark developed in 1980s, it is no longer representative of prevailing workloads{{snd}} use with caution.}})

!Clock rate

!ARM part number (in the main ID register)

ARMv9-A

class="wikitable sortable" style="text-align:center"

|+

! rowspan="2" |Company

! rowspan="2" |Core

! rowspan="2" |Released

! rowspan="2" |Revision

! rowspan="2" |Decode

! rowspan="2" |Pipeline depth

! colspan="2" |Out-of-order execution

! rowspan="2" |Branch
prediction

! rowspan="2" |big.LITTLE role

! rowspan="2" |Exec. ports

! rowspan="2" |SIMD

! rowspan="2" |Fab
(in nm)

! rowspan="2" |Simult. MT

! rowspan="2" |L0 cache

! rowspan="2" |L1 cache
Instr + Data
(in KiB)

! rowspan="2" |L2 cache

! rowspan="2" |L3 cache

! rowspan="2" |Core
configu-
rations

! rowspan="2" |Speed per core (DMIPS/
MHz
{{refn|group=note|name=first|As Dhrystone (implied in "DMIPS") is a synthetic benchmark developed in 1980s, it is no longer representative of prevailing workloads{{snd}} use with caution.}})

! rowspan="2" |Clock rate

! rowspan="2" |ARM part number (in the main ID register)

Have it

!Entries

rowspan="5" | ARM

|Cortex-A510

|May 2021

|ARMv9-A

|3-wide

|8 stages

|No

|N/A (does not support out-of-order execution)

|Advanced techniques similar to larger cores, specifics not disclosed

|LITTLE

|2 execution ports

|Yes

|5nm

|No

|N/A

|32 or 64 KB each

|Configurable, typically 128 KB to 512 KB

|N/A

|Typically paired with Cortex-A710 in configurations (e.g., 1+3)

|Not explicitly stated, but performance uplift of 35% over A55

|Up to 2.85 GHz (varies by implementation)

|Not specified in search results

Cortex-A710

|May 2021

|ARMv9-A

|4-wide

|10 stages

|Yes

|160 entries

|Enhanced with larger structures and better accuracy

|big

|13 execution ports

|Yes

|5nm

|Yes

|Not specified

|64/128 KiB each

|256/512 KiB

|Optional, up to 16 MiB

|Typically 1+3+4 (big.LITTLE)

|Not specified in results

|Up to 3.0 GHz (approx.)

|Not specified in results

Cortex-A715

|June 2022

|ARMv9-A

|5-wide

|10 stages

|Yes

|160 entries

|Advanced branch prediction capabilities

|big

|13 execution ports

|Yes

|4nm

|Yes

|Not specified

|64 KiB each

|1 MiB

|16 MiB (in certain configurations)

|1+3+4 or similar setups

|Not specified, but designed for high efficiency

|Up to 2.8 GHz

|Not specified

Cortex-X2

|May 2021

|ARMv9-A

|5-wide

|10 stages

|Yes

|288 entries

|Advanced, with improved accuracy

|big

|15 execution ports

|Yes

|5nm

|Yes

|Not specified

|64 KiB each

|1 MiB

|8 MiB

|1+3+4 (X2+A710+A510)

|Not specified

|Up to 3.2 GHz

|Not specified

Cortex-X3

|June 2022

|ARMv9-A

|6-wide

|9 stages

|Yes

|320 entries

|Advanced branch prediction capabilities

|big

|15 execution ports

|Yes

|4nm

|Yes

|Not specified

|64 KiB each

|1 MiB

|16 MiB

|1+3+4 or up to 8+4

|Not specified

|Up to 3.6 GHz

|Not specified

See also

Notes

{{reflist|group=note}}

References

{{Reflist|32em|refs=

{{Cite web|url=http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf|title=big.LITTLE processing with ARM Cortex-A15 & Cortex-A7|website=arm.com|publisher=ARM Holdings|access-date=6 August 2014|archive-url=https://web.archive.org/web/20131017064722/http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf|archive-date=17 October 2013|url-status=dead}}

{{Cite web|url=http://processors.wiki.ti.com/index.php/Cortex-A8_Architecture|title=Cortex-A8 architecture|website=processors.wiki.TI.com|publisher=Texas Instruments|access-date=6 August 2014|archive-url=https://web.archive.org/web/20140808144144/http://processors.wiki.ti.com/index.php/Cortex-A8_Architecture#Cortex-A8_Pipeline_Diagram|archive-date=8 August 2014|url-status=dead}}

{{Cite web|url=http://www.arm.com/files/pdf/armcortexa-9processors.pdf|title=The ARM Cortex-A9 processors|website=arm.com|publisher=ARM Holdings|access-date=6 August 2014|archive-url=https://web.archive.org/web/20141117060156/http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf|archive-date=17 November 2014|url-status=dead}}

{{Cite web|first=Brian|last=Klug|url=http://www.anandtech.com/show/4940/qualcomm-new-snapdragon-s4-msm8960-krait-architecture|title=Qualcomm's new Snapdragon S4: MSM8960 & Krait architecture explored|website=anandtech.com|publisher=Anandtech|date=7 October 2011|access-date=6 August 2014}}

{{Cite web|url=http://www.arm.com/products/processors/cortex-a/cortex-a9.php|title=Cortex-A9 processor|website=arm.com|publisher=ARM Holdings|access-date=15 September 2014}}

{{Cite web|url=http://www.arm.com/products/processors/cortex-a/cortex-a7.php|title=Cortex-A7 processor|website=arm.com|publisher=ARM Holdings|access-date=1 June 2016}}

{{Cite web|url=https://www.arm.com/products/processors/technologies/virtualization-extensions.php|title=ARM processor hardware virtualization support|website=arm.com|publisher=ARM Holdings|access-date=1 June 2016}}

{{Cite web|url=http://www.arm.com/products/processors/cortex-a/cortex-a15.php|title=Cortex-A15 processor|website=arm.com|publisher=ARM Holdings|access-date=9 August 2016}}

{{Cite web|url=http://infocenter.arm.com/help/topic/com.arm.doc.ddi0535c/DDI0535C_cortex_a17_r1p1_trm.pdf|title=ARM Cortex-A17 MPCore processor technical reference manual|website=infocenter.arm.com|publisher=ARM Holdings|access-date=18 September 2014}}

{{cite web

|first=Anand

|last=Lal Shimpi

|url=http://anandtech.com/show/7335/the-iphone-5s-review/2

|title=The iPhone 5s Review: A7 SoC Explained

|publisher=AnandTech

|date=17 September 2013

|access-date=3 July 2014}}

{{cite web

|first=Anand

|last=Lal Shimpi

|url=http://anandtech.com/show/7335/the-iphone-5s-review/4

|title=The iPhone 5s Review: The Move to 64-bit

|date=17 September 2013

|publisher=AnandTech

|access-date=3 July 2014}}

{{cite web

|first=Anand

|last=Lal Shimpi

|url=http://www.anandtech.com/show/7910/apples-cyclone-microarchitecture-detailed

|title=Apple's Cyclone Microarchitecture Detailed

|publisher=AnandTech

|date=31 March 2014

|access-date=3 July 2014}}

{{cite web

|first=Sinjin

|last=Dixon-Warren

|url=http://www.chipworks.com/en/technical-competitive-analysis/resources/blog/samsung-28-nm-apple-a7/

|title=Samsung 28nm HKMG Inside the Apple A7

|publisher=Chipworks

|date=20 January 2014

|access-date=3 July 2014

|archive-url=https://web.archive.org/web/20140406213924/http://www.chipworks.com/en/technical-competitive-analysis/resources/blog/samsung-28-nm-apple-a7/

|archive-date=6 April 2014

|url-status=dead

}}

{{cite web

|first=Nick

|last=Stam

|url=http://blogs.nvidia.com/blog/2014/08/11/tegra-k1-denver-64-bit-for-android/

|title=Mile High Milestone: Tegra K1 "Denver" Will Be First 64-bit ARM Processor for Android

|publisher=NVidia

|date=11 August 2014

|access-date=11 August 2014

|archive-url=https://web.archive.org/web/20140812090907/http://blogs.nvidia.com/blog/2014/08/11/tegra-k1-denver-64-bit-for-android/

|archive-date=12 August 2014

|url-status=dead}}

{{cite web

|url=http://www.broadcom.com/press/release.php?id=s797235

|title=Broadcom Announces Server-Class ARMv8-A Multi-Core Processor Architecture

|publisher=Broadcom

|date=15 October 2013

|access-date=11 August 2014}}

{{cite web

|url=http://electronicdesign.com/microprocessors/64-bit-cortex-platform-take-x86-servers-cloud

|title=64-bit Cortex Platform To Take on x86 Servers in the Cloud

|publisher=electronic design

|date=5 June 2014

|access-date=7 February 2015}}

{{cite web

|url=http://www.cavium.com/pdfFiles/ThunderX_CP_PB_Rev1.pdf

|title=ThunderX_CP™ Family of Workload Optimized Compute Processors

|publisher=Cavium

|date=2014

|access-date=7 February 2015}}

{{cite press release

|url=http://www.tsmc.com/tsmcdotcom/PRListingNewsAction.do?action=detail&newsid=8821&language=E

|title=TSMC Delivers First Fully Functional 16FinFET Networking Processor

|publisher=TSMC

|date=25 September 2014

|access-date=19 February 2015

|archive-url=https://web.archive.org/web/20150220005437/http://www.tsmc.com/tsmcdotcom/PRListingNewsAction.do?action=detail&newsid=8821&language=E

|archive-date=20 February 2015

|url-status=dead}}

{{cite web

|first1= Joshua

|last1=Ho

|first2=Ryan

|last2=Smith

|url=http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/4

|title=The Apple iPhone 6s and iPhone 6s Plus Review

|publisher=AnandTech

|date=2 November 2015

|access-date= 13 February 2016}}

}}

{{ARM-based chips}}