Uniform 5-polytope#F4 × A1

{{Short description|Five-dimensional geometric shape}}

{{-}}

class="wikitable" width="300" align="right" style="margin-left:1em;"

|+Graphs of regular and uniform 5-polytopes.

valign="top" align="center"

| colspan="4" |100px
5-simplex
{{CDD|node_1|3|node|3|node|3|node|3|node}}

| colspan="4" |100px
Rectified 5-simplex
{{CDD|node|3|node_1|3|node|3|node|3|node}}

| colspan="4" |100px
Truncated 5-simplex
{{CDD|node_1|3|node_1|3|node|3|node|3|node}}

valign="top" align="center"

| colspan="4" |100px
Cantellated 5-simplex
{{CDD|node_1|3|node|3|node_1|3|node|3|node}}

| colspan="4" |100px
Runcinated 5-simplex
{{CDD|node_1|3|node|3|node|3|node_1|3|node}}

| colspan="4" |100px
Stericated 5-simplex
{{CDD|node_1|3|node|3|node|3|node|3|node_1}}

valign="top" align="center"

| colspan="4" |100px
5-orthoplex
{{CDD|node_1|3|node|3|node|3|node|4|node}}

| colspan="4" |100px
Truncated 5-orthoplex
{{CDD|node_1|3|node_1|3|node|3|node|4|node}}

| colspan="4" |100px
Rectified 5-orthoplex
{{CDD|node|3|node_1|3|node|3|node|4|node}}

valign="top" align="center"

| colspan="6" |150px
Cantellated 5-orthoplex
{{CDD|node_1|3|node|3|node_1|3|node|4|node}}

| colspan="6" |150px
Runcinated 5-orthoplex
{{CDD|node_1|3|node|3|node|3|node_1|4|node}}

valign="top" align="center"

| colspan="4" |100px
Cantellated 5-cube
{{CDD|node_1|4|node|3|node_1|3|node|3|node}}

| colspan="4" |100px
Runcinated 5-cube
{{CDD|node_1|4|node|3|node|3|node_1|3|node}}

| colspan="4" |100px
Stericated 5-cube
{{CDD|node_1|4|node|3|node|3|node|3|node_1}}

valign="top" align="center"

| colspan="4" |100px
5-cube
{{CDD|node_1|4|node|3|node|3|node|3|node}}

| colspan="4" |100px
Truncated 5-cube
{{CDD|node_1|4|node_1|3|node|3|node|3|node}}

| colspan="4" |100px
Rectified 5-cube
{{CDD|node|4|node_1|3|node|3|node|3|node}}

valign="top" align="center"

| colspan="6" |150px
5-demicube
{{CDD|nodes_10ru|split2|node|3|node|3|node}}

| colspan="6" |150px
Truncated 5-demicube
{{CDD|nodes_10ru|split2|node_1|3|node|3|node}}

valign="top" align="center"

| colspan="6" |150px
Cantellated 5-demicube
{{CDD|nodes_10ru|split2|node|3|node_1|3|node}}

| colspan="6" |150px
Runcinated 5-demicube
{{CDD|nodes_10ru|split2|node|3|node|3|node_1}}

In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.

The complete set of convex uniform 5-polytopes has not been determined, but many can be made as Wythoff constructions from a small set of symmetry groups. These construction operations are represented by the permutations of rings of the Coxeter diagrams.

History of discovery

  • Regular polytopes: (convex faces)
  • 1852: Ludwig Schläfli proved in his manuscript Theorie der vielfachen Kontinuität that there are exactly 3 regular polytopes in 5 or more dimensions.
  • Convex semiregular polytopes: (Various definitions before Coxeter's uniform category)
  • 1900: Thorold Gosset enumerated the list of nonprismatic semiregular convex polytopes with regular facets (convex regular 4-polytopes) in his publication On the Regular and Semi-Regular Figures in Space of n Dimensions.T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • Convex uniform polytopes:
  • 1940-1988: The search was expanded systematically by H.S.M. Coxeter in his publication Regular and Semi-Regular Polytopes I, II, and III.
  • 1966: Norman W. Johnson completed his Ph.D. Dissertation under Coxeter, The Theory of Uniform Polytopes and Honeycombs, University of Toronto
  • Non-convex uniform polytopes:
  • 1966: Johnson describes two non-convex uniform antiprisms in 5-space in his dissertation.[https://web.archive.org/web/20070207021813/http://members.aol.com/Polycell/glossary.html Multidimensional Glossary], George Olshevsky
  • 2000-2024: Jonathan Bowers and other researchers search for other non-convex uniform 5-polytopes,{{cite conference |url=https://archive.bridgesmathart.org/2000/bridges2000-239.pdf |title=Uniform Polychora |last1=Bowers |first1=Jonathan |author-link1= |last2= |first2= |author-link2= |date=2000 |publisher= |editor=Reza Sarhagi |book-title=Bridges 2000 |pages=239–246 |location= |conference=Bridges Conference |id=}} with a current count of 1348 known uniform 5-polytopes outside infinite families (convex and non-convex), excluding the prisms of the uniform 4-polytopes. The list is not proven complete.[http://www.polytope.net/hedrondude/polytera.htm Uniform Polytera], Jonathan Bowers[https://polytope.miraheze.org/wiki/Uniform_polytope Uniform polytope]

Regular 5-polytopes

{{Main|List of regular polytopes#Five Dimensions}}

Regular 5-polytopes can be represented by the Schläfli symbol {p,q,r,s}, with s {p,q,r} 4-polytope facets around each face. There are exactly three such regular polytopes, all convex:

There are no nonconvex regular polytopes in 5 dimensions or above.

Convex uniform 5-polytopes

{{unsolved|mathematics|What is the complete set of convex uniform 5-polytopes?{{citation|url=http://www.openproblemgarden.org/op/convex_uniform_5_polytopes|work=Open Problem Garden|title=Convex uniform 5-polytopes|access-date=2016-10-04|date=May 24, 2012|author=ACW|archive-url=https://web.archive.org/web/20161005164840/http://www.openproblemgarden.org/op/convex_uniform_5_polytopes|archive-date=October 5, 2016|url-status=live}}}}

There are 104 known convex uniform 5-polytopes, plus a number of infinite families of duoprism prisms, and polygon-polyhedron duoprisms. All except the grand antiprism prism are based on Wythoff constructions, reflection symmetry generated with Coxeter groups.{{fact|date=February 2015|reason=all these need sourcing}}

= Symmetry of uniform 5-polytopes in four dimensions=

The 5-simplex is the regular form in the A5 family. The 5-cube and 5-orthoplex are the regular forms in the B5 family. The bifurcating graph of the D5 family contains the 5-orthoplex, as well as a 5-demicube which is an alternated 5-cube.

Each reflective uniform 5-polytope can be constructed in one or more reflective point group in 5 dimensions by a Wythoff construction, represented by rings around permutations of nodes in a Coxeter diagram. Mirror hyperplanes can be grouped, as seen by colored nodes, separated by even-branches. Symmetry groups of the form [a,b,b,a], have an extended symmetry, a,b,b,a, like [3,3,3,3], doubling the symmetry order. Uniform polytopes in these group with symmetric rings contain this extended symmetry.

If all mirrors of a given color are unringed (inactive) in a given uniform polytope, it will have a lower symmetry construction by removing all of the inactive mirrors. If all the nodes of a given color are ringed (active), an alternation operation can generate a new 5-polytope with chiral symmetry, shown as "empty" circled nodes", but the geometry is not generally adjustable to create uniform solutions.File:Coxeter diagram finite rank5 correspondence.png

;Fundamental familiesRegular and semi-regular polytopes III, p.315 Three finite groups of 5-dimensions

class="wikitable sortable"

!Group
symbol

data-sort-type="number" |Ordercolspan="2" |Coxeter
graph
Bracket
notation
Commutator
subgroup
data-sort-type="number" |Coxeter
number

(h)
colspan="2" data-sort-type="number" |Reflections
m=5/2 hCoxeter, Regular polytopes, §12.6 The number of reflections, equation 12.61
align="center"

!A5

720{{CDD|node|3|node|3|node|3|node|3|node}}{{CDD|node_c1|3|node_c1|3|node_c1|3|node_c1|3|node_c1}}[3,3,3,3][3,3,3,3]+615 {{CDD|node_c1}}
align="center"

!D5

1920{{CDD|nodes|split2|node|3|node|3|node}}{{CDD|nodeab_c1|split2|node_c1|3|node_c1|3|node_c1}}[3,3,31,1]rowspan="2" |[3,3,31,1]+820 {{CDD|node_c1}}
align="center"

!B5

3840{{CDD|node|4|node|3|node|3|node|3|node}}{{CDD|node_c2|4|node_c1|3|node_c1|3|node_c1|3|node_c1}}[4,3,3,3]105 {{CDD|node_c2}}20 {{CDD|node_c1}}

;Uniform prisms

There are 5 finite categorical uniform prismatic families of polytopes based on the nonprismatic uniform 4-polytopes. There is one infinite family of 5-polytopes based on prisms of the uniform duoprisms {p}×{q}×{ }.

class=wikitable
valign=top

!Coxeter
group

!Order

!colspan=2|Coxeter
diagram

!Coxeter
notation

!Commutator
subgroup

!colspan=5|Reflections

align=center

!A4A1

120{{CDD|node|3|node|3|node|3|node|2|node}}{{CDD|node_c1|3|node_c1|3|node_c1|3|node_c1|2|node_c5}}[3,3,3,2] = [3,3,3]×[ ][3,3,3]+10 {{CDD|node_c1}}1 {{CDD|node_c5}}
align=center

!D4A1

384{{CDD|nodes|split2|node|3|node|2|node}}{{CDD|nodeab_c1|split2|node_c1|3|node_c1|2|node_c5}}[31,1,1,2] = [31,1,1]×[ ]rowspan=2| [31,1,1]+12 {{CDD|node_c1}}1 {{CDD|node_c5}}
align=center

!B4A1

768{{CDD|node|4|node|3|node|3|node|2|node}}{{CDD|node_c2|4|node_c1|3|node_c1|3|node_c1|2|node_c5}}[4,3,3,2] = [4,3,3]×[ ]4 {{CDD|node_c2}}12 {{CDD|node_c1}}1 {{CDD|node_c5}}
align=center

!F4A1

2304{{CDD|node|3|node|4|node|3|node|2|node}}{{CDD|node_c2|3|node_c2|4|node_c1|3|node_c1|2|node_c5}}[3,4,3,2] = [3,4,3]×[ ][3+,4,3+]12 {{CDD|node_c2}}12 {{CDD|node_c1}}1 {{CDD|node_c5}}
align=center

!H4A1

28800{{CDD|node|5|node|3|node|3|node|2|node}}{{CDD|node_c1|5|node_c1|3|node_c1|3|node_c1|2|node_c5}}[5,3,3,2] = [3,4,3]×[ ][5,3,3]+60 {{CDD|node_c1}}1 {{CDD|node_c5}}
colspan=12|Duoprismatic prisms (use 2p and 2q for evens)
align=center

!I2(p)I2(q)A1

8pq{{CDD|node|p|node|2|node|q|node|2|node}}{{CDD|node_c2|p|node_c2|2|node_c1|q|node_c1|2|node_c5}}[p,2,q,2] = [p]×[q]×[ ]rowspan=3|[p+,2,q+]p {{CDD|node_c2}}q {{CDD|node_c1}}1 {{CDD|node_c5}}
align=center

!I2(2p)I2(q)A1

16pq{{CDD|node|2x|p|node|2|node|q|node|2|node}}{{CDD|node_c3|2x|p|node_c2|2|node_c1|q|node_c1|2|node_c5}}[2p,2,q,2] = [2p]×[q]×[ ]p {{CDD|node_c3}}p {{CDD|node_c2}}q {{CDD|node_c1}}1 {{CDD|node_c5}}
align=center

!I2(2p)I2(2q)A1

32pq{{CDD|node|2x|p|node|2|node|2x|q|node|2|node}}{{CDD|node_c3|2x|p|node_c2|2|node_c1|2x|q|node_c4|2|node_c5}}[2p,2,2q,2] = [2p]×[2q]×[ ]p {{CDD|node_c3}}p {{CDD|node_c2}}q {{CDD|node_c1}}q {{CDD|node_c4}}1 {{CDD|node_c5}}

;Uniform duoprisms

There are 3 categorical uniform duoprismatic families of polytopes based on Cartesian products of the uniform polyhedra and regular polygons: {q,r}×{p}.

class=wikitable
valign=top

!Coxeter
group

!Order

!colspan=2|Coxeter
diagram

!Coxeter
notation

!Commutator
subgroup

!colspan=4|Reflections

colspan=12|Prismatic groups (use 2p for even)
align=center

!A3I2(p)

48p{{CDD|node|3|node|3|node|2|node|p|node}}{{CDD|node_c1|3|node_c1|3|node_c1|2|node_c3|p|node_c3}}[3,3,2,p] = [3,3]×[p]rowspan=4|[(3,3)+,2,p+]6 {{CDD|node_c1}}p {{CDD|node_c3}}
align=center

!A3I2(2p)

96p{{CDD|node|3|node|3|node|2|node|2x|p|node}}{{CDD|node_c1|3|node_c1|3|node_c1|2|node_c3|2x|p|node_c4}}[3,3,2,2p] = [3,3]×[2p]6 {{CDD|node_c1}}p {{CDD|node_c3}}p {{CDD|node_c4}}
align=center

!B3I2(p)

96p{{CDD|node|4|node|3|node|2|node|p|node}}{{CDD|node_c2|4|node_c1|3|node_c1|2|node_c3|p|node_c3}}[4,3,2,p] = [4,3]×[p]3 {{CDD|node_c2}}6{{CDD|node_c1}}p {{CDD|node_c3}}
align=center

!B3I2(2p)

192p{{CDD|node|4|node|3|node|2|node|2x|p|node}}{{CDD|node_c2|4|node_c1|3|node_c1|2|node_c3|2x|p|node_c4}}[4,3,2,2p] = [4,3]×[2p]3 {{CDD|node_c2}}6 {{CDD|node_c1}}p {{CDD|node_c3}}p {{CDD|node_c4}}
align=center

!H3I2(p)

240p{{CDD|node|5|node|3|node|2|node|p|node}}{{CDD|node_c1|5|node_c1|3|node_c1|2|node_c3|p|node_c3}}[5,3,2,p] = [5,3]×[p]rowspan=2|[(5,3)+,2,p+]15 {{CDD|node_c1}}p {{CDD|node_c3}}
align=center

!H3I2(2p)

480p{{CDD|node|5|node|3|node|2|node|2x|p|node}}{{CDD|node_c1|5|node_c1|3|node_c1|2|node_c3|2x|p|node_c4}}[5,3,2,2p] = [5,3]×[2p]15 {{CDD|node_c1}}p {{CDD|node_c3}}p {{CDD|node_c4}}

= Enumerating the convex uniform 5-polytopes =

  • Simplex family: A5 [34]
  • 19 uniform 5-polytopes
  • Hypercube/Orthoplex family: B5 [4,33]
  • 31 uniform 5-polytopes
  • Demihypercube D5/E5 family: [32,1,1]
  • 23 uniform 5-polytopes (8 unique)
  • Polychoral prisms:
  • 56 uniform 5-polytope (45 unique) constructions based on prismatic families: [3,3,3]×[ ], [4,3,3]×[ ], [5,3,3]×[ ], [31,1,1]×[ ].
  • One non-Wythoffian - The grand antiprism prism is the only known non-Wythoffian convex uniform 5-polytope, constructed from two grand antiprisms connected by polyhedral prisms.

That brings the tally to: 19+31+8+45+1=104

In addition there are:

  • Infinitely many uniform 5-polytope constructions based on duoprism prismatic families: [p]×[q]×[ ].
  • Infinitely many uniform 5-polytope constructions based on duoprismatic families: [3,3]×[p], [4,3]×[p], [5,3]×[p].

= The A<sub>5</sub> family =

{{See|A5 polytope}}

There are 19 forms based on all permutations of the Coxeter diagrams with one or more rings. (16+4-1 cases)

They are named by Norman Johnson from the Wythoff construction operations upon regular 5-simplex (hexateron).

The A5 family has symmetry of order 720 (6 factorial). 7 of the 19 figures, with symmetrically ringed Coxeter diagrams have doubled symmetry, order 1440.

The coordinates of uniform 5-polytopes with 5-simplex symmetry can be generated as permutations of simple integers in 6-space, all in hyperplanes with normal vector (1,1,1,1,1,1).

class="wikitable"

!rowspan=2|#

!rowspan=2|Base point

!rowspan=2|Johnson naming system
Bowers name and (acronym)
Coxeter diagram

!colspan=5|k-face element counts

!rowspan=2|Vertex
figure

!colspan=6 |Facet counts by location: [3,3,3,3]

4

! 3

! 2

! 1

! 0

! {{CDD|node|3|node|3|node|3|node}}
[3,3,3]
(6)

! {{CDD|node|3|node|3|node|2|node}}
[3,3,2]
(15)

! {{CDD|node|3|node|2|node|3|node}}
[3,2,3]
(20)

! {{CDD|node|2|node|3|node|3|node}}
[2,3,3]
(15)

! {{CDD|node|3|node|3|node|3|node}}
[3,3,3]
(6)

! Alt

1

|(0,0,0,0,0,1) or (0,1,1,1,1,1)

|5-simplex
hexateron (hix)
{{CDD|node|3|node|3|node|3|node|3|node_1}}

| 6

| 15

| 20

| 15

| 6

| 60px
{3,3,3}

|60px
{3,3,3}

| -

| -

| -

| -

|

2

|(0,0,0,0,1,1) or (0,0,1,1,1,1)

|Rectified 5-simplex
rectified hexateron (rix)
{{CDD|node|3|node|3|node|3|node_1|3|node}}

| 12

| 45

| 80

| 60

| 15

| 60px
t{3,3}×{ }

|60px
r{3,3,3}

| -

| -

| -

|60px
{3,3,3}

3

|(0,0,0,0,1,2) or (0,1,2,2,2,2)

|Truncated 5-simplex
truncated hexateron (tix)
{{CDD|node|3|node|3|node|3|node_1|3|node_1}}

| 12

| 45

| 80

| 75

| 30

| 60px
Tetrah.pyr

|60px
t{3,3,3}

| -

| -

| -

|60px
{3,3,3}

|

4

|(0,0,0,1,1,2) or (0,1,1,2,2,2)

|Cantellated 5-simplex
small rhombated hexateron (sarx)
{{CDD|node|3|node|3|node_1|3|node|3|node_1}}

| 27

| 135

| 290

| 240

| 60

|60px
prism-wedge

|60px
rr{3,3,3}

| -

| -

|60px
{ }×{3,3}

|60px
r{3,3,3}

|

5

|(0,0,0,1,2,2) or (0,0,1,2,2,2)

|Bitruncated 5-simplex
bitruncated hexateron (bittix)
{{CDD|node|3|node|3|node_1|3|node_1|3|node}}

| 12

| 60

| 140

| 150

| 60

| 60px

|60px
2t{3,3,3}

| -

| -

| -

|60px
t{3,3,3}

|

6

|(0,0,0,1,2,3) or (0,1,2,3,3,3)

|Cantitruncated 5-simplex
great rhombated hexateron (garx)
{{CDD|node|3|node|3|node_1|3|node_1|3|node_1}}

| 27

| 135

| 290

| 300

| 120

|60px

| 60px
tr{3,3,3}

| -

| -

| 60px
{ }×{3,3}

| 60px
t{3,3,3}

|

7

|(0,0,1,1,1,2) or (0,1,1,1,2,2)

|Runcinated 5-simplex
small prismated hexateron (spix)
{{CDD|node|3|node_1|3|node|3|node|3|node_1}}

| 47

| 255

| 420

| 270

| 60

| 60px

|60px
t0,3{3,3,3}

| -

|60px
{3}×{3}

|60px
{ }×r{3,3}

|60px
r{3,3,3}

|

8

|(0,0,1,1,2,3) or (0,1,2,2,3,3)

|Runcitruncated 5-simplex
prismatotruncated hexateron (pattix)
{{CDD|node|3|node_1|3|node|3|node_1|3|node_1}}

| 47

| 315

| 720

| 630

| 180

|60px

| 60px
t0,1,3{3,3,3}

| -

| 60px
{6}×{3}

| 60px
{ }×r{3,3}

| 60px
rr{3,3,3}

|

9

|(0,0,1,2,2,3) or (0,1,1,2,3,3)

|Runcicantellated 5-simplex
prismatorhombated hexateron (pirx)
{{CDD|node|3|node_1|3|node_1|3|node|3|node_1}}

| 47

| 255

| 570

| 540

| 180

|60px

| 60px
t0,1,3{3,3,3}

| -

| 60px
{3}×{3}

| 60px
{ }×t{3,3}

| 60px
2t{3,3,3}

|

10

|(0,0,1,2,3,4) or (0,1,2,3,4,4)

|Runcicantitruncated 5-simplex
great prismated hexateron (gippix)
{{CDD|node|3|node_1|3|node_1|3|node_1|3|node_1}}

| 47

| 315

| 810

| 900

| 360

|60px
Irr.5-cell

| 60px
t0,1,2,3{3,3,3}

| -

| 60px
{3}×{6}

| 60px
{ }×t{3,3}

| 60px
tr{3,3,3}

|

11

|(0,1,1,1,2,3) or (0,1,2,2,2,3)

|Steritruncated 5-simplex
celliprismated hexateron (cappix)
{{CDD|node_1|3|node|3|node|3|node_1|3|node_1}}

| 62

| 330

| 570

| 420

| 120

|60px

| 60px
t{3,3,3}

| 60px
{ }×t{3,3}

| 60px
{3}×{6}

| 60px
{ }×{3,3}

| 60px
t0,3{3,3,3}

|

12

|(0,1,1,2,3,4) or (0,1,2,3,3,4)

|Stericantitruncated 5-simplex
celligreatorhombated hexateron (cograx)
{{CDD|node_1|3|node|3|node_1|3|node_1|3|node_1}}

| 62

| 480

| 1140

| 1080

| 360

|60px

| 60px
tr{3,3,3}

| 60px
{ }×tr{3,3}

| 60px
{3}×{6}

| 60px
{ }×rr{3,3}

| 60px
t0,1,3{3,3,3}

|

BGCOLOR="#e0f0e0"

!13

|(0,0,0,1,1,1)

|Birectified 5-simplex
dodecateron (dot)
{{CDD|node|3|node|3|node_1|3|node|3|node}}

| 12

| 60

| 120

| 90

| 20

| 60px
{3}×{3}

|60px
r{3,3,3}

| -

| -

| -

|60px
r{3,3,3}

|

BGCOLOR="#e0f0e0"

!14

|(0,0,1,1,2,2)

|Bicantellated 5-simplex
small birhombated dodecateron (sibrid)
{{CDD|node|3|node_1|3|node|3|node_1|3|node}}

| 32

| 180

| 420

| 360

| 90

|60px

|60px
rr{3,3,3}

| -

|60px
{3}×{3}

| -

|60px
rr{3,3,3}

|

BGCOLOR="#e0f0e0"

!15

|(0,0,1,2,3,3)

|Bicantitruncated 5-simplex
great birhombated dodecateron (gibrid)
{{CDD|node|3|node_1|3|node_1|3|node_1|3|node}}

| 32

| 180

| 420

| 450

| 180

|60px

|60px
tr{3,3,3}

| -

|60px
{3}×{3}

| -

|60px
tr{3,3,3}

|

BGCOLOR="#e0f0e0"

!16

|(0,1,1,1,1,2)

|Stericated 5-simplex
small cellated dodecateron (scad)
{{CDD|node_1|3|node|3|node|3|node|3|node_1}}

| 62

| 180

| 210

| 120

| 30

| 60px
Irr.16-cell

|60px
{3,3,3}

|60px
{ }×{3,3}

|60px
{3}×{3}

|60px
{ }×{3,3}

|60px
{3,3,3}

|

BGCOLOR="#e0f0e0"

!17

|(0,1,1,2,2,3)

|Stericantellated 5-simplex
small cellirhombated dodecateron (card)
{{CDD|node_1|3|node|3|node_1|3|node|3|node_1}}

| 62

| 420

| 900

| 720

| 180

|60px

| 60px
rr{3,3,3}

| 60px
{ }×rr{3,3}

| 60px
{3}×{3}

| 60px
{ }×rr{3,3}

| 60px
rr{3,3,3}

|

BGCOLOR="#e0f0e0"

!18

|(0,1,2,2,3,4)

|Steriruncitruncated 5-simplex
celliprismatotruncated dodecateron (captid)
{{CDD|node_1|3|node_1|3|node|3|node_1|3|node_1}}

| 62

| 450

| 1110

| 1080

| 360

|60px

| 60px
t0,1,3{3,3,3}

| 60px
{ }×t{3,3}

| 60px
{6}×{6}

| 60px
{ }×t{3,3}

| 60px
t0,1,3{3,3,3}

|

BGCOLOR="#e0f0e0"

!19

|(0,1,2,3,4,5)

|Omnitruncated 5-simplex
great cellated dodecateron (gocad)
{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node_1}}

| 62

| 540

| 1560

| 1800

| 720

|60px
Irr. {3,3,3}

|60px
t0,1,2,3{3,3,3}

|60px
{ }×tr{3,3}

|60px
{6}×{6}

|60px
{ }×tr{3,3}

|60px
t0,1,2,3{3,3,3}

|

BGCOLOR="#d0f0f0"

!Nonuniform

|

|Omnisnub 5-simplex
snub dodecateron (snod)
snub hexateron (snix)
{{CDD|node_h|3|node_h|3|node_h|3|node_h|3|node_h}}

| 422

| 2340

| 4080

| 2520

| 360

|

|ht0,1,2,3{3,3,3}

|ht0,1,2,3{3,3,2}

|ht0,1,2,3{3,2,3}

|ht0,1,2,3{3,3,2}

|ht0,1,2,3{3,3,3}

|(360)
60px
Irr. {3,3,3}

= The B<sub>5</sub> family =

{{See|B5 polytope}}

The B5 family has symmetry of order 3840 (5!×25).

This family has 25−1=31 Wythoffian uniform polytopes generated by marking one or more nodes of the Coxeter diagram. Also added are 8 uniform polytopes generated as alternations with half the symmetry, which form a complete duplicate of the D5 family as {{CDD|node_h1|4|node|3}}... = {{CDD|nodes_10ru|split2}}..... (There are more alternations that are not listed because they produce only repetitions, as {{CDD|node_h0|4|node_1|3}}... = {{CDD|nodes_11|split2}}.... and {{CDD|node_h0|4|node|3}}... = {{CDD|nodes|split2}}.... These would give a complete duplication of the uniform 5-polytopes numbered 20 through 34 with symmetry broken in half.)

For simplicity it is divided into two subgroups, each with 12 forms, and 7 "middle" forms which equally belong in both.

The 5-cube family of 5-polytopes are given by the convex hulls of the base points listed in the following table, with all permutations of coordinates and sign taken. Each base point generates a distinct uniform 5-polytope. All coordinates correspond with uniform 5-polytopes of edge length 2.

class="wikitable"

!rowspan=2|#

!rowspan=2|Base point

!rowspan=2|Name
Coxeter diagram

!colspan=5|Element counts

!rowspan=2|Vertex
figure

!colspan=6 |Facet counts by location: [4,3,3,3]

BGCOLOR="#e0e0f0"

!4

3210

! {{CDD|node|4|node|3|node|3|node}}
[4,3,3]
(10)

! {{CDD|node|4|node|3|node|2

node}}
[4,3,2]
(40)

! {{CDD|node|4|node|2|node|3|node}}
[4,2,3]
(80)

! {{CDD|node|2|node|3|node|3|node}}
[2,3,3]
(80)

! {{CDD|node|3|node|3|node|3|node}}
[3,3,3]
(32)

! Alt

BGCOLOR="#f0e0e0"

!20

(0,0,0,0,1)√25-orthoplex
triacontaditeron (tac)
{{CDD
node|4|node|3|node|3|node|3|node_1}}328080401060px
{3,3,4}
----60px
{3,3,3}
BGCOLOR="#f0e0e0"

!21

(0,0,0,1,1)√2Rectified 5-orthoplex
rectified triacontaditeron (rat)
{{CDD
node|4|node|3|node|3|node_1|3|node}}422404002404060px
{ }×{3,4}
60px
{3,3,4}
---60px
r{3,3,3}
BGCOLOR="#f0e0e0"

!22

(0,0,0,1,2)√2Truncated 5-orthoplex
truncated triacontaditeron (tot)
{{CDD
node|4|node|3|node|3|node_1|3|node_1}}422404002808060px
(Octah.pyr)
60px
{3,3,4}
---60px
t{3,3,3}
BGCOLOR="#e0f0e0"

!23

(0,0,1,1,1)√2Birectified 5-cube
penteractitriacontaditeron (nit)
(Birectified 5-orthoplex)
{{CDD
node|4|node|3|node_1|3|node|3|node}}422806404808060px
{4}×{3}
60px
r{3,3,4}
---60px
r{3,3,3}
BGCOLOR="#f0e0e0"

!24

(0,0,1,1,2)√2Cantellated 5-orthoplex
small rhombated triacontaditeron (sart)
{{CDD
node|4|node|3|node_1|3|node|3|node_1}}826401520120024060px
Prism-wedge
60px
r{3,3,4}
60px
{ }×{3,4}
--60px
rr{3,3,3}
BGCOLOR="#f0e0e0"

!25

(0,0,1,2,2)√2Bitruncated 5-orthoplex
bitruncated triacontaditeron (bittit)
{{CDD
node|4|node|3|node_1|3|node_1|3|node}}4228072072024060px60px
t{3,3,4}
---60px
2t{3,3,3}
BGCOLOR="#f0e0e0"

!26

(0,0,1,2,3)√2Cantitruncated 5-orthoplex
great rhombated triacontaditeron (gart)
{{CDD
node|4|node|3|node_1|3|node_1|3|node_1}}826401520144048060px60px
t{3,3,4}
60px
{ }×{3,4}
--60px
t0,1,3{3,3,3}
BGCOLOR="#e0e0f0"

!27

(0,1,1,1,1)√2Rectified 5-cube
rectified penteract (rin)
{{CDD
node|4|node_1|3|node|3|node|3|node}}422004003208060px
{3,3}×{ }
60px
r{4,3,3}
---60px
{3,3,3}
BGCOLOR="#f0e0e0"

!28

(0,1,1,1,2)√2Runcinated 5-orthoplex
small prismated triacontaditeron (spat)
{{CDD
node|4|node_1|3|node|3|node|3|node_1}}16212002160144032060px60px
r{4,3,3}
60px
{ }×r{3,4}
60px
{3}×{4}
60px
t0,3{3,3,3}
BGCOLOR="#e0f0e0"

!29

(0,1,1,2,2)√2Bicantellated 5-cube
small birhombated penteractitriacontaditeron (sibrant)
(Bicantellated 5-orthoplex)
{{CDD
node|4|node_1|3|node|3|node_1|3|node}}1228402160192048060px60px
rr{3,3,4}
-60px
{4}×{3}
-60px
rr{3,3,3}
BGCOLOR="#f0e0e0"

!30

(0,1,1,2,3)√2Runcitruncated 5-orthoplex
prismatotruncated triacontaditeron (pattit)
{{CDD
node|4|node_1|3|node|3|node_1|3|node_1}}16214403680336096060px60px
rr{3,3,4}
60px
{ }×r{3,4}
60px
{6}×{4}
-60px
t0,1,3{3,3,3}
BGCOLOR="#e0e0f0"

!31

(0,1,2,2,2)√2Bitruncated 5-cube
bitruncated penteract (bittin)
{{CDD
node|4|node_1|3|node_1|3|node|3|node}}4228072080032060px60px
2t{4,3,3}
---60px
t{3,3,3}
BGCOLOR="#f0e0e0"

!32

(0,1,2,2,3)√2Runcicantellated 5-orthoplex
prismatorhombated triacontaditeron (pirt)
{{CDD
node|4|node_1|3|node_1|3|node|3|node_1}}16212002960288096060px60px
2t{4,3,3}
60px
{ }×t{3,4}
60px
{3}×{4}
-60px
t0,1,3{3,3,3}
BGCOLOR="#e0f0e0"

!33

(0,1,2,3,3)√2Bicantitruncated 5-cube
great birhombated triacontaditeron (gibrant)
(Bicantitruncated 5-orthoplex)
{{CDD
node|4|node_1|3|node_1|3|node_1|3|node}}1228402160240096060px60px
tr{3,3,4}
-60px
{4}×{3}
-60px
rr{3,3,3}
BGCOLOR="#f0e0e0"

!34

(0,1,2,3,4)√2Runcicantitruncated 5-orthoplex
great prismated triacontaditeron (gippit)
{{CDD
node|4|node_1|3|node_1|3|node_1|3|node_1}}162144041604800192060px60px
tr{3,3,4}
60px
{ }×t{3,4}
60px
{6}×{4}
-60px
t0,1,2,3{3,3,3}
BGCOLOR="#e0e0f0"

!35

(1,1,1,1,1)5-cube
penteract (pent)
{{CDD
node_1|4|node|3|node|3|node|3|node}}104080803260px
{3,3,3}
60px
{4,3,3}
----
BGCOLOR="#e0f0e0"

!36

(1,1,1,1,1)
+ (0,0,0,0,1)√2
Stericated 5-cube
small cellated penteractitriacontaditeron (scant)
(Stericated 5-orthoplex)
{{CDD
node_1|4|node|3|node|3|node|3|node_1}}242800104064016060px
Tetr.antiprm
60px
{4,3,3}
60px
{4,3}×{ }
60px
{4}×{3}
60px
{ }×{3,3}
60px
{3,3,3}
BGCOLOR="#e0e0f0"

!37

(1,1,1,1,1)
+ (0,0,0,1,1)√2
Runcinated 5-cube
small prismated penteract (span)
{{CDD
node_1|4|node|3|node|3|node_1|3|node}}20212402160144032060px60px
t0,3{4,3,3}
-60px
{4}×{3}
60px
{ }×r{3,3}
60px
r{3,3,3}
BGCOLOR="#f0e0e0"

!38

(1,1,1,1,1)
+ (0,0,0,1,2)√2
Steritruncated 5-orthoplex
celliprismated triacontaditeron (cappin)
{{CDD
node_1|4|node|3|node|3|node_1|3|node_1}}24215202880224064060px60px
t0,3{4,3,3}
60px
{4,3}×{ }
60px
{6}×{4}
60px
{ }×t{3,3}
60px
t{3,3,3}
BGCOLOR="#e0e0f0"

!39

(1,1,1,1,1)
+ (0,0,1,1,1)√2
Cantellated 5-cube
small rhombated penteract (sirn)
{{CDD
node_1|4|node|3|node_1|3|node|3|node}}1226801520128032060px
Prism-wedge
60px
rr{4,3,3}
--60px
{ }×{3,3}
60px
r{3,3,3}
BGCOLOR="#e0f0e0"

!40

(1,1,1,1,1)
+ (0,0,1,1,2)√2
Stericantellated 5-cube
cellirhombated penteractitriacontaditeron (carnit)
(Stericantellated 5-orthoplex)
{{CDD
node_1|4|node|3|node_1|3|node|3|node_1}}24220804720384096060px60px
rr{4,3,3}
60px
rr{4,3}×{ }
60px
{4}×{3}
60px
{ }×rr{3,3}
60px
rr{3,3,3}
BGCOLOR="#e0e0f0"

!41

(1,1,1,1,1)
+ (0,0,1,2,2)√2
Runcicantellated 5-cube
prismatorhombated penteract (prin)
{{CDD
node_1|4|node|3|node_1|3|node_1|3|node}}20212402960288096060px60px
t0,2,3{4,3,3}
-60px
{4}×{3}
60px
{ }×t{3,3}
60px
2t{3,3,3}
BGCOLOR="#f0e0e0"

!42

(1,1,1,1,1)
+ (0,0,1,2,3)√2
Stericantitruncated 5-orthoplex
celligreatorhombated triacontaditeron (cogart)
{{CDD
node_1|4|node|3|node_1|3|node_1|3|node_1}}242232059205760192060px60px
t0,2,3{4,3,3}
60px
rr{4,3}×{ }
60px
{6}×{4}
60px
{ }×tr{3,3}
60px
tr{3,3,3}
BGCOLOR="#e0e0f0"

!43

(1,1,1,1,1)
+ (0,1,1,1,1)√2
Truncated 5-cube
truncated penteract (tan)
{{CDD
node_1|4|node_1|3|node|3|node|3|node}}4220040040016060px
Tetrah.pyr
60px
t{4,3,3}
---60px
{3,3,3}
BGCOLOR="#e0e0f0"

!44

(1,1,1,1,1)
+ (0,1,1,1,2)√2
Steritruncated 5-cube
celliprismated triacontaditeron (capt)
{{CDD
node_1|4|node_1|3|node|3|node|3|node_1}}24216002960224064060px60px
t{4,3,3}
60px
t{4,3}×{ }
60px
{8}×{3}
60px
{ }×{3,3}
60px
t0,3{3,3,3}
BGCOLOR="#e0e0f0"

!45

(1,1,1,1,1)
+ (0,1,1,2,2)√2
Runcitruncated 5-cube
prismatotruncated penteract (pattin)
{{CDD
node_1|4|node_1|3|node|3|node_1|3|node}}20215603760336096060px60px
t0,1,3{4,3,3}
-60px
{8}×{3}
60px
{ }×r{3,3}
60px
rr{3,3,3}
BGCOLOR="#e0f0e0"

!46

(1,1,1,1,1)
+ (0,1,1,2,3)√2
Steriruncitruncated 5-cube
celliprismatotruncated penteractitriacontaditeron (captint)
(Steriruncitruncated 5-orthoplex)
{{CDD
node_1|4|node_1|3|node|3|node_1|3|node_1}}242216057605760192060px60px
t0,1,3{4,3,3}
60px
t{4,3}×{ }
60px
{8}×{6}
60px
{ }×t{3,3}
60px
t0,1,3{3,3,3}
BGCOLOR="#e0e0f0"

!47

(1,1,1,1,1)
+ (0,1,2,2,2)√2
Cantitruncated 5-cube
great rhombated penteract (girn)
{{CDD
node_1|4|node_1|3|node_1|3|node|3|node}}1226801520160064060px60px
tr{4,3,3}
--60px
{ }×{3,3}
60px
t{3,3,3}
BGCOLOR="#e0e0f0"

!48

(1,1,1,1,1)
+ (0,1,2,2,3)√2
Stericantitruncated 5-cube
celligreatorhombated penteract (cogrin)
{{CDD
node_1|4|node_1|3|node_1|3|node|3|node_1}}242240060005760192060px60px
tr{4,3,3}
60px
tr{4,3}×{ }
60px
{8}×{3}
60px
{ }×rr{3,3}
60px
t0,1,3{3,3,3}
BGCOLOR="#e0e0f0"

!49

(1,1,1,1,1)
+ (0,1,2,3,3)√2
Runcicantitruncated 5-cube
great prismated penteract (gippin)
{{CDD
node_1|4|node_1|3|node_1|3|node_1|3|node}}202156042404800192060px60px
t0,1,2,3{4,3,3}
-60px
{8}×{3}
60px
{ }×t{3,3}
60px
tr{3,3,3}
BGCOLOR="#e0f0e0"

!50

(1,1,1,1,1)
+ (0,1,2,3,4)√2
Omnitruncated 5-cube
great cellated penteractitriacontaditeron (gacnet)
(omnitruncated 5-orthoplex)
{{CDD
node_1|4|node_1|3|node_1|3|node_1|3|node_1}}242264081609600384060px
Irr. {3,3,3}
60px
tr{4,3}×{ }
60px
tr{4,3}×{ }
60px
{8}×{6}
60px
{ }×tr{3,3}
60px
t0,1,2,3{3,3,3}
BGCOLOR="#d0f0f0"

!51

|

|5-demicube
hemipenteract (hin)
{{CDD|node_h1|4|node|3|node|3|node|3|node}} = {{CDD|nodes_10ru|split2|node|3|node|3|node}}

|26

|120

|160

|80

|16

|60px
r{3,3,3}

|60px
h{4,3,3}

| -

| -

| -

| -

|(16)
60px
{3,3,3}

BGCOLOR="#d0f0f0"

!52

|

|Cantic 5-cube
Truncated hemipenteract (thin)
{{CDD|node_h1|4|node|3|node_1|3|node|3|node}} = {{CDD|nodes_10ru|split2|node_1|3|node|3|node}}

|42

|280

|640

|560

|160

|60px

|60px
h2{4,3,3}

| -

| -

| -

|(16)
60px
r{3,3,3}

|(16)
60px
t{3,3,3}

BGCOLOR="#d0f0f0"

!53

|

| Runcic 5-cube
Small rhombated hemipenteract (sirhin)
{{CDD|node_h1|4|node|3|node|3|node_1|3|node}} = {{CDD|nodes_10ru|split2|node|3|node_1|3|node}}

|42

|360

|880

|720

|160

|

|60px
h3{4,3,3}

| -

| -

| -

|(16)
60px
r{3,3,3}

|(16)
60px
rr{3,3,3}

BGCOLOR="#d0f0f0"

!54

|

| Steric 5-cube
Small prismated hemipenteract (siphin)
{{CDD|node_h1|4|node|3|node|3|node|3|node_1}} = {{CDD|nodes_10ru|split2|node|3|node|3|node_1}}

|82

|480

|720

|400

|80

|

|60px
h{4,3,3}

|60px
h{4,3}×{}

| -

| -

|(16)
60px
{3,3,3}

|(16)
60px
t0,3{3,3,3}

BGCOLOR="#d0f0f0"

!55

|

| Runcicantic 5-cube
Great rhombated hemipenteract (girhin)
{{CDD|node_h1|4|node|3|node_1|3|node_1|3|node}} = {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node}}

|42

|360

|1040

|1200

|480

|

|60px
h2,3{4,3,3}

| -

| -

| -

|(16)
60px
2t{3,3,3}

|(16)
60px
tr{3,3,3}

BGCOLOR="#d0f0f0"

!56

|

| Stericantic 5-cube
Prismatotruncated hemipenteract (pithin)
{{CDD|node_h1|4|node|3|node_1|3|node|3|node_1}} = {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1}}

|82

|720

|1840

|1680

|480

|

|60px
h2{4,3,3}

|60px
h2{4,3}×{}

| -

| -

|(16)
60px
rr{3,3,3}

|(16)
60px
t0,1,3{3,3,3}

BGCOLOR="#d0f0f0"

!57

|

|Steriruncic 5-cube
Prismatorhombated hemipenteract (pirhin)
{{CDD|node_h1|4|node|3|node|3|node_1|3|node_1}} = {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1}}

|82

|560

|1280

|1120

|320

|

|60px
h3{4,3,3}

|60px
h{4,3}×{}

| -

| -

|(16)
60px
t{3,3,3}

|(16)
60px
t0,1,3{3,3,3}

BGCOLOR="#d0f0f0"

!58

|

|Steriruncicantic 5-cube
Great prismated hemipenteract (giphin)
{{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1}} = {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1}}

|82

|720

|2080

|2400

|960

|

|60px
h2,3{4,3,3}

|60px
h2{4,3}×{}

| -

| -

|(16)
60px
tr{3,3,3}

|(16)
60px
t0,1,2,3{3,3,3}

BGCOLOR="#d0f0f0"

!Nonuniform

|

|Alternated runcicantitruncated 5-orthoplex
Snub prismatotriacontaditeron (snippit)
Snub hemipenteract (snahin)
{{CDD|node|4|node_h|3|node_h|3|node_h|3|node_h}} = {{CDD|nodes_hh|split2|node_h|3|node_h|3|node_h}}

|1122

|6240

|10880

|6720

|960

|

|60px
sr{3,3,4}

|sr{2,3,4}

|sr{3,2,4}

| -

|ht0,1,2,3{3,3,3}

|(960)
60px
Irr. {3,3,3}

BGCOLOR="#d0f0f0"

!Nonuniform

|

|Edge-snub 5-orthoplex
Pyritosnub penteract (pysnan)
{{CDD|node_1|4|node_h|3|node_h|3|node_h|3|node_h}}

|1202

|7920

|15360

|10560

|1920

|

|sr3{3,3,4}

|sr3{2,3,4}

|sr3{3,2,4}

|60px
s{3,3}×{ }

|ht0,1,2,3{3,3,3}

|(960)
60px
Irr. {3,3}×{ }

BGCOLOR="#d0f0f0"

!Nonuniform

|

|Snub 5-cube
Snub penteract (snan)
{{CDD|node_h|4|node_h|3|node_h|3|node_h|3|node_h}}

|2162

|12240

|21600

|13440

|960

|

|ht0,1,2,3{3,3,4}

|ht0,1,2,3{2,3,4}

|ht0,1,2,3{3,2,4}

|ht0,1,2,3{3,3,2}

|ht0,1,2,3{3,3,3}

|(1920)
60px
Irr. {3,3,3}

= The D<sub>5</sub> family =

{{See|D5 polytope}}

The D5 family has symmetry of order 1920 (5! x 24).

This family has 23 Wythoffian uniform polytopes, from 3×8-1 permutations of the D5 Coxeter diagram with one or more rings. 15 (2×8-1) are repeated from the B5 family and 8 are unique to this family, though even those 8 duplicate the alternations from the B5 family.

In the 15 repeats, both of the nodes terminating the length-1 branches are ringed, so the two kinds of {{CDD|node|3|node|3|node|3|node}} element are identical and the symmetry doubles: the relations are {{CDD|node_h0|4|node_1|3}}... = {{CDD|nodes_11|split2}}.... and {{CDD|node_h0|4|node|3}}... = {{CDD|nodes|split2}}..., creating a complete duplication of the uniform 5-polytopes 20 through 34 above. The 8 new forms have one such node ringed and one not, with the relation {{CDD|node_h1|4|node|3}}... = {{CDD|nodes_10ru|split2}}... duplicating uniform 5-polytopes 51 through 58 above.

class="wikitable"

!rowspan=2|#

!rowspan=2|Coxeter diagram
Schläfli symbol symbols
Johnson and Bowers names

!colspan=5|Element counts

!rowspan=2|Vertex
figure

!colspan=6 |Facets by location: File:CD B5 nodes.png [31,2,1]

4

!3

!2

!1

!0

! {{CDD|node|3|node|3|node|3|node}}
[3,3,3]
(16)

! {{CDD|nodes|split2|node|3|node}}
[31,1,1]
(10)

! {{CDD|nodes|split2|node|2|node}}
[3,3]×[ ]
(40)

! {{CDD|node|2|node|3|node|2|node}}
[ ]×[3]×[ ]
(80)

! {{CDD|node|3|node|3|node|3|node}}
[3,3,3]
(16)

! Alt

[51]

| {{CDD|nodes_10ru|split2|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node}}
h{4,3,3,3}, 5-demicube
Hemipenteract (hin)

| 26

| 120

| 160

| 80

| 16

| 50px
r{3,3,3}

| 60px
{3,3,3}

| 60px
h{4,3,3}

| -

| -

| -

|

[52]

| {{CDD|nodes_10ru|split2|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node}}
h2{4,3,3,3}, cantic 5-cube
Truncated hemipenteract (thin)

| 42

| 280

| 640

| 560

| 160

|60px

|60px
t{3,3,3}

|60px
h2{4,3,3}

| -

| -

|60px
r{3,3,3}

|

[53]

| {{CDD|nodes_10ru|split2|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node}}
h3{4,3,3,3}, runcic 5-cube
Small rhombated hemipenteract (sirhin)

| 42

| 360

| 880

| 720

| 160

|

|60px
rr{3,3,3}

|60px
h3{4,3,3}

| -

| -

|60px
r{3,3,3}

|

[54]

| {{CDD|nodes_10ru|split2|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1}}
h4{4,3,3,3}, steric 5-cube
Small prismated hemipenteract (siphin)

| 82

| 480

| 720

| 400

| 80

|

|60px
t0,3{3,3,3}

|60px
h{4,3,3}

|60px
h{4,3}×{}

| -

|60px
{3,3,3}

|

[55]

| {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node}}
h2,3{4,3,3,3}, runcicantic 5-cube
Great rhombated hemipenteract (girhin)

| 42

| 360

| 1040

| 1200

| 480

|

|60px
2t{3,3,3}

|60px
h2,3{4,3,3}

| -

| -

|60px
tr{3,3,3}

|

[56]

| {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1}}
h2,4{4,3,3,3}, stericantic 5-cube
Prismatotruncated hemipenteract (pithin)

| 82

| 720

| 1840

| 1680

| 480

|

|60px
t0,1,3{3,3,3}

|60px
h2{4,3,3}

|60px
h2{4,3}×{}

| -

|60px
rr{3,3,3}

|

[57]

| {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1}}
h3,4{4,3,3,3}, steriruncic 5-cube
Prismatorhombated hemipenteract (pirhin)

| 82

| 560

| 1280

| 1120

| 320

|

|60px
t0,1,3{3,3,3}

|60px
h3{4,3,3}

|60px
h{4,3}×{}

| -

|60px
t{3,3,3}

|

[58]

| {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1}}
h2,3,4{4,3,3,3}, steriruncicantic 5-cube
Great prismated hemipenteract (giphin)

| 82

| 720

| 2080

| 2400

| 960

|

| 60px
t0,1,2,3{3,3,3}

| 60px
h2,3{4,3,3}

| 60px
h2{4,3}×{}

| -

| 60px
tr{3,3,3}

|

bgcolor="#D0F0F0"

! Nonuniform

| {{CDD|nodes_hh|split2|node_h|3|node_h|3|node_h}} = {{CDD|node|4|node_h|3|node_h|3|node_h|3|node_h}}
ht0,1,2,3{3,3,3,4}, alternated runcicantitruncated 5-orthoplex
Snub hemipenteract (snahin)

|1122

|6240

|10880

|6720

|960

|

| ht0,1,2,3{3,3,3}

| 60px
sr{3,3,4}

| sr{2,3,4}

| sr{3,2,4}

| ht0,1,2,3{3,3,3}

| (960)
60px
Irr. {3,3,3}

= Uniform prismatic forms =

There are 5 finite categorical uniform prismatic families of polytopes based on the nonprismatic uniform 4-polytopes. For simplicity, most alternations are not shown.

== A<sub>4</sub> × A<sub>1</sub> ==

This prismatic family has 9 forms:

The A1 x A4 family has symmetry of order 240 (2*5!).

class="wikitable"

!rowspan=2|#

!rowspan=2|Coxeter diagram
and Schläfli
symbols
Name

!colspan=5 rowspan=1|Element counts

Facets|| Cells|| Faces|| Edges|| Vertices
59

|{{CDD|node_1|3|node|3|node|3|node|2|node_1}} = {3,3,3}×{ }
5-cell prism (penp)

|7

20302510
60

|{{CDD|node|3|node_1|3|node|3|node|2|node_1}} = r{3,3,3}×{ }
Rectified 5-cell prism (rappip)

|12

50907020
61

|{{CDD|node_1|3|node_1|3|node|3|node|2|node_1}} = t{3,3,3}×{ }
Truncated 5-cell prism (tippip)

|12

5010010040
62

|{{CDD|node_1|3|node|3|node_1|3|node|2|node_1}} = rr{3,3,3}×{ }
Cantellated 5-cell prism (srippip)

|22

12025021060
BGCOLOR="#e0f0e0"

|63

|{{CDD|node_1|3|node|3|node|3|node_1|2|node_1}} = t0,3{3,3,3}×{ }
Runcinated 5-cell prism (spiddip)

|32

13020014040
BGCOLOR="#e0f0e0"

|64

|{{CDD|node|3|node_1|3|node_1|3|node|2|node_1}} = 2t{3,3,3}×{ }
Bitruncated 5-cell prism (decap)

|12

6014015060
65

|{{CDD|node_1|3|node_1|3|node_1|3|node|2|node_1}} = tr{3,3,3}×{ }
Cantitruncated 5-cell prism (grippip)

|22

120280300120
66

|{{CDD|node_1|3|node_1|3|node|3|node_1|2|node_1}} = t0,1,3{3,3,3}×{ }
Runcitruncated 5-cell prism (prippip)

|32

180390360120
BGCOLOR="#e0f0e0"

|67

|{{CDD|node_1|3|node_1|3|node_1|3|node_1|2|node_1}} = t0,1,2,3{3,3,3}×{ }
Omnitruncated 5-cell prism (gippiddip)

|32

210540600240

== B<sub>4</sub> × A<sub>1</sub> ==

This prismatic family has 16 forms. (Three are shared with [3,4,3]×[ ] family)

The A1×B4 family has symmetry of order 768 (254!).

The last three snubs can be realised with equal-length edges, but turn out nonuniform anyway because some of their 4-faces are not uniform 4-polytopes.

class="wikitable"

!rowspan=2|#

!rowspan=2|Coxeter diagram
and Schläfli
symbols
Name

!colspan=5 rowspan=1|Element counts

Facets|| Cells|| Faces|| Edges|| Vertices
BGCOLOR="#f0e0e0"

|[16]

{{CDD|node_1|4|node|3|node|3|node|2|node_1}} = {4,3,3}×{ }
Tesseractic prism (pent)
(Same as 5-cube)

|10

40808032
BGCOLOR="#f0e0e0"

|68

{{CDD|node|4|node_1|3|node|3|node|2|node_1}} = r{4,3,3}×{ }
Rectified tesseractic prism (rittip)

|26

13627222464
BGCOLOR="#f0e0e0"

|69

{{CDD|node_1|4|node_1|3|node|3|node|2|node_1}} = t{4,3,3}×{ }
Truncated tesseractic prism (tattip)

|26

136304320128
BGCOLOR="#f0e0e0"

|70

{{CDD|node_1|4|node|3|node_1|3|node|2|node_1}} = rr{4,3,3}×{ }
Cantellated tesseractic prism (srittip)

|58

360784672192
BGCOLOR="#e0f0e0"

|71

{{CDD|node_1|4|node|3|node|3|node_1|2|node_1}} = t0,3{4,3,3}×{ }
Runcinated tesseractic prism (sidpithip)

|82

368608448128
BGCOLOR="#e0f0e0"

|72

{{CDD|node|4|node_1|3|node_1|3|node|2|node_1}} = 2t{4,3,3}×{ }
Bitruncated tesseractic prism (tahp)

|26

168432480192
BGCOLOR="#f0e0e0"

|73

{{CDD|node_1|4|node_1|3|node_1|3|node|2|node_1}} = tr{4,3,3}×{ }
Cantitruncated tesseractic prism (grittip)

|58

360880960384
BGCOLOR="#f0e0e0"

|74

{{CDD|node_1|4|node_1|3|node|3|node_1|2|node_1}} = t0,1,3{4,3,3}×{ }
Runcitruncated tesseractic prism (prohp)

|82

52812161152384
BGCOLOR="#e0f0e0"

|75

{{CDD|node_1|4|node_1|3|node_1|3|node_1|2|node_1}} = t0,1,2,3{4,3,3}×{ }
Omnitruncated tesseractic prism (gidpithip)

|82

62416961920768
BGCOLOR="#e0e0f0"

|76

{{CDD|node|4|node|3|node|3|node_1|2|node_1}} = {3,3,4}×{ }
16-cell prism (hexip)

|18

64885616
BGCOLOR="#e0e0f0"

|77

{{CDD|node|4|node|3|node_1|3|node|2|node_1}} = r{3,3,4}×{ }
Rectified 16-cell prism (icope)
(Same as 24-cell prism)

|26

14428821648
BGCOLOR="#e0e0f0"

|78

{{CDD|node|4|node|3|node_1|3|node_1|2|node_1}} = t{3,3,4}×{ }
Truncated 16-cell prism (thexip)

|26

14431228896
BGCOLOR="#e0e0f0"

|79

{{CDD|node|4|node_1|3|node|3|node_1|2|node_1}} = rr{3,3,4}×{ }
Cantellated 16-cell prism (ricope)
(Same as rectified 24-cell prism)

|50

336768672192
BGCOLOR="#e0e0f0"

|80

{{CDD|node|4|node_1|3|node_1|3|node_1|2|node_1}} = tr{3,3,4}×{ }
Cantitruncated 16-cell prism (ticope)
(Same as truncated 24-cell prism)

|50

336864960384
BGCOLOR="#e0e0f0"

|81

{{CDD|node_1|4|node|3|node_1|3|node_1|2|node_1}} = t0,1,3{3,3,4}×{ }
Runcitruncated 16-cell prism (prittip)

|82

52812161152384
BGCOLOR="#a0e0f0"

|82

{{CDD|node_h|3|node_h|3|node_h|4|node|2|node_1}} = sr{3,3,4}×{ }
snub 24-cell prism (sadip)

|146

7681392960192
BGCOLOR="#a0e0f0"

|Nonuniform

{{CDD|node_h|2x|node_1|3|node|3|node|4|node_h}}
rectified tesseractic alterprism (rita)

|50

28846428864
BGCOLOR="#a0e0f0"

|Nonuniform

{{CDD|node_h|2x|node|3|node_1|3|node|4|node_h}}
truncated 16-cell alterprism (thexa)

|26

16838433696
BGCOLOR="#a0e0f0"

|Nonuniform

{{CDD|node_h|2x|node_1|3|node_1|3|node|4|node_h}}
bitruncated tesseractic alterprism (taha)

|50

288624576192

== F<sub>4</sub> × A<sub>1</sub> ==

This prismatic family has 10 forms.

The A1 x F4 family has symmetry of order 2304 (2*1152). Three polytopes 85, 86 and 89 (green background) have double symmetry [[3,4,3],2], order 4608. The last one, snub 24-cell prism, (blue background) has [3+,4,3,2] symmetry, order 1152.

class="wikitable"

!rowspan=2|#

!rowspan=2|Coxeter diagram
and Schläfli
symbols
Name

!colspan=5 rowspan=1|Element counts

Facets|| Cells|| Faces|| Edges|| Vertices
[77]{{CDD|node_1|3|node|4|node|3|node|2|node_1}} = {3,4,3}×{ }
24-cell prism (icope)

|26

14428821648
[79]{{CDD|node|3|node_1|4|node|3|node|2|node_1}} = r{3,4,3}×{ }
rectified 24-cell prism (ricope)

|50

336768672192
[80]{{CDD|node_1|3|node_1|4|node|3|node|2|node_1}} = t{3,4,3}×{ }
truncated 24-cell prism (ticope)

|50

336864960384
83{{CDD|node_1|3|node|4|node_1|3|node|2|node_1}} = rr{3,4,3}×{ }
cantellated 24-cell prism (sricope)

|146

100823042016576
BGCOLOR="#b0f0b0"

|84

{{CDD|node_1|3|node|4|node|3|node_1|2|node_1}} = t0,3{3,4,3}×{ }
runcinated 24-cell prism (spiccup)

|242

115219201296288
BGCOLOR="#b0f0b0"

|85

{{CDD|node|3|node_1|4|node_1|3|node|2|node_1}} = 2t{3,4,3}×{ }
bitruncated 24-cell prism (contip)

|50

43212481440576
86{{CDD|node_1|3|node_1|4|node_1|3|node|2|node_1}} = tr{3,4,3}×{ }
cantitruncated 24-cell prism (gricope)

|146

1008259228801152
87{{CDD|node_1|3|node_1|4|node|3|node_1|2|node_1}} = t0,1,3{3,4,3}×{ }
runcitruncated 24-cell prism (pricope)

|242

1584364834561152
BGCOLOR="#b0f0b0"

|88

{{CDD|node_1|3|node_1|4|node_1|3|node_1|2|node_1}} = t0,1,2,3{3,4,3}×{ }
omnitruncated 24-cell prism (gippiccup)

|242

1872508857602304
BGCOLOR="#b0e0f0"

|[82]

{{CDD|node_h|3|node_h|4|node|3|node|2|node_1}} = s{3,4,3}×{ }
snub 24-cell prism (sadip)

|146

7681392960192

== H<sub>4</sub> × A<sub>1</sub> ==

This prismatic family has 15 forms:

The A1 x H4 family has symmetry of order 28800 (2*14400).

class="wikitable"

!rowspan=2|#

!rowspan=2|Coxeter diagram
and Schläfli
symbols
Name

!colspan=5 rowspan=1|Element counts

Facets|| Cells|| Faces|| Edges|| Vertices
BGCOLOR="#f0e0e0"

|89

{{CDD|node_1|5|node|3|node|3|node|2|node_1}} = {5,3,3}×{ }
120-cell prism (hipe)

|122

960264030001200
BGCOLOR="#f0e0e0"

|90

{{CDD|node|5|node_1|3|node|3|node|2|node_1}} = r{5,3,3}×{ }
Rectified 120-cell prism (rahipe)

|722

4560984084002400
BGCOLOR="#f0e0e0"

|91

{{CDD|node_1|5|node_1|3|node|3|node|2|node_1}} = t{5,3,3}×{ }
Truncated 120-cell prism (thipe)

|722

456011040120004800
BGCOLOR="#f0e0e0"

|92

{{CDD|node_1|5|node|3|node_1|3|node|2|node_1}} = rr{5,3,3}×{ }
Cantellated 120-cell prism (srahip)

|1922

1296029040252007200
BGCOLOR="#e0f0e0"

|93

{{CDD|node_1|5|node|3|node|3|node_1|2|node_1}} = t0,3{5,3,3}×{ }
Runcinated 120-cell prism (sidpixhip)

|2642

1272022080168004800
BGCOLOR="#e0f0e0"

|94

{{CDD|node|5|node_1|3|node_1|3|node|2|node_1}} = 2t{5,3,3}×{ }
Bitruncated 120-cell prism (xhip)

|722

576015840180007200
BGCOLOR="#f0e0e0"

|95

{{CDD|node_1|5|node_1|3|node_1|3|node|2|node_1}} = tr{5,3,3}×{ }
Cantitruncated 120-cell prism (grahip)

|1922

12960326403600014400
BGCOLOR="#f0e0e0"

|96

{{CDD|node_1|5|node_1|3|node|3|node_1|2|node_1}} = t0,1,3{5,3,3}×{ }
Runcitruncated 120-cell prism (prixip)

|2642

18720448804320014400
BGCOLOR="#e0f0e0"

|97

{{CDD|node_1|5|node_1|3|node_1|3|node_1|2|node_1}} = t0,1,2,3{5,3,3}×{ }
Omnitruncated 120-cell prism (gidpixhip)

|2642

22320628807200028800
BGCOLOR="#e0e0f0"

|98

{{CDD|node|5|node|3|node|3|node_1|2|node_1}} = {3,3,5}×{ }
600-cell prism (exip)

|602

240031201560240
BGCOLOR="#e0e0f0"

|99

{{CDD|node|5|node|3|node_1|3|node|2|node_1}} = r{3,3,5}×{ }
Rectified 600-cell prism (roxip)

|722

50401080079201440
BGCOLOR="#e0e0f0"

|100

{{CDD|node|5|node|3|node_1|3|node_1|2|node_1}} = t{3,3,5}×{ }
Truncated 600-cell prism (texip)

|722

504011520100802880
BGCOLOR="#e0e0f0"

|101

{{CDD|node|5|node_1|3|node|3|node_1|2|node_1}} = rr{3,3,5}×{ }
Cantellated 600-cell prism (srixip)

|1442

1152028080252007200
BGCOLOR="#e0e0f0"

|102

{{CDD|node|5|node_1|3|node_1|3|node_1|2|node_1}} = tr{3,3,5}×{ }
Cantitruncated 600-cell prism (grixip)

|1442

11520316803600014400
BGCOLOR="#e0e0f0"

|103

{{CDD|node_1|5|node|3|node_1|3|node_1|2|node_1}} = t0,1,3{3,3,5}×{ }
Runcitruncated 600-cell prism (prahip)

|2642

18720448804320014400

== Duoprism prisms ==

Uniform duoprism prisms, {p}×{q}×{ }, form an infinite class for all integers p,q>2. {4}×{4}×{ } makes a lower symmetry form of the 5-cube.

The extended f-vector of {p}×{q}×{ } is computed as (p,p,1)*(q,q,1)*(2,1) = (2pq,5pq,4pq+2p+2q,3pq+3p+3q,p+q+2,1).

class="wikitable"
rowspan=2|Coxeter diagram

!rowspan=2|Names

!colspan=6|Element counts

4-faces

! Cells

! Faces

! Edges

! Vertices

align=center

|{{CDD|branch_10|labelp|2|branch_10|labelq|2|node_1}}

{p}×{q}×{ }{{cite web | url=https://bendwavy.org/klitzing/incmats/n-m-dippip.htm | title=N,k-dippip }}p+q+23pq+3p+3q4pq+2p+2q5pq2pq
align=center

|{{CDD|branch_10|labelp|2|branch_10|labelp|2|node_1}}

{p}2×{ }2(p+1)3p(p+1)4p(p+1)5p22p2
align=center

|{{CDD|branch_10|2|branch_10|2|node_1}}

{3}2×{ }836484518
align=center

|{{CDD|branch_10|label4|2|branch_10|label4|2|node_1}}

{4}2×{ } = 5-cube1040808032

== Grand antiprism prism ==

The grand antiprism prism is the only known convex non-Wythoffian uniform 5-polytope. It has 200 vertices, 1100 edges, 1940 faces (40 pentagons, 500 squares, 1400 triangles), 1360 cells (600 tetrahedra, 40 pentagonal antiprisms, 700 triangular prisms, 20 pentagonal prisms), and 322 hypercells (2 grand antiprisms 50px, 20 pentagonal antiprism prisms 50px, and 300 tetrahedral prisms 50px).

class="wikitable"

!rowspan=2|#

!rowspan=2| Name

!colspan=5|Element counts

Facets|| Cells|| Faces|| Edges|| Vertices
104grand antiprism prism (gappip){{cite web | url=https://bendwavy.org/klitzing/incmats/gappip.htm | title=Gappip }}322136019401100200

Notes on the Wythoff construction for the uniform 5-polytopes

Construction of the reflective 5-dimensional uniform polytopes are done through a Wythoff construction process, and represented through a Coxeter diagram, where each node represents a mirror. Nodes are ringed to imply which mirrors are active. The full set of uniform polytopes generated are based on the unique permutations of ringed nodes. Uniform 5-polytopes are named in relation to the regular polytopes in each family. Some families have two regular constructors and thus may have two ways of naming them.

Here are the primary operators available for constructing and naming the uniform 5-polytopes.

The last operation, the snub, and more generally the alternation, are the operations that can create nonreflective forms. These are drawn with "hollow rings" at the nodes.

The prismatic forms and bifurcating graphs can use the same truncation indexing notation, but require an explicit numbering system on the nodes for clarity.

class="wikitable"

!Operation

!width=200 colspan=2|Extended
Schläfli symbol

!width=80|Coxeter diagram

!Description

align=center

! Parent

|t0{p,q,r,s}

|{p,q,r,s}

|{{CDD|node_1|p|node|q|node|r|node|s|node}}

| Any regular 5-polytope

align=center

! Rectified

| t1{p,q,r,s}

r{p,q,r,s}

|{{CDD|node|p|node_1|q|node|r|node|s|node}}

|align=left|The edges are fully truncated into single points. The 5-polytope now has the combined faces of the parent and dual.

align=center

! Birectified

| t2{p,q,r,s}

2r{p,q,r,s}

|{{CDD|node|p|node|q|node_1|r|node|s|node}}

|align=left|Birectification reduces faces to points, cells to their duals.

align=center

! Trirectified

| t3{p,q,r,s}

3r{p,q,r,s}

|{{CDD|node|p|node|q|node|r|node_1|s|node}}

|align=left|Trirectification reduces cells to points. (Dual rectification)

align=center

! Quadrirectified

| t4{p,q,r,s}

4r{p,q,r,s}

|{{CDD|node|p|node|q|node|r|node|s|node_1}}

|align=left|Quadrirectification reduces 4-faces to points. (Dual)

align=center

!Truncated

| t0,1{p,q,r,s}

t{p,q,r,s}

|{{CDD|node_1|p|node_1|q|node|r|node|s|node}}

|align=left|Each original vertex is cut off, with a new face filling the gap. Truncation has a degree of freedom, which has one solution that creates a uniform truncated 5-polytope. The 5-polytope has its original faces doubled in sides, and contains the faces of the dual.
400px

align=center

! Cantellated

| t0,2{p,q,r,s}

rr{p,q,r,s}

|{{CDD|node_1|p|node|q|node_1|r|node|s|node}}

|align=left|In addition to vertex truncation, each original edge is beveled with new rectangular faces appearing in their place.
400px

align=center

! Runcinated

|colspan=2| t0,3{p,q,r,s}

|{{CDD|node_1|p|node|q|node|r|node_1|s|node}}

|align=left|Runcination reduces cells and creates new cells at the vertices and edges.

align=center

! Stericated

|t0,4{p,q,r,s}

2r2r{p,q,r,s}

|{{CDD|node_1|p|node|q|node|r|node|s|node_1}}

|align=left|Sterication reduces facets and creates new facets (hypercells) at the vertices and edges in the gaps. (Same as expansion operation for 5-polytopes.)

align=center

!Omnitruncated

|colspan=2| t0,1,2,3,4{p,q,r,s}

|{{CDD|node_1|p|node_1|q|node_1|r|node_1|s|node_1}}

|align=left|All four operators, truncation, cantellation, runcination, and sterication are applied.

align=center

!Half

|colspan=2|h{2p,3,q,r}

|{{CDD|node_h1|2x|p|node|3|node|q|node|r|node}}

|align=left|Alternation, same as {{CDD|labelp|branch_10ru|split2|node|q|node|r|node}}

align=center

!Cantic

|colspan=2|h2{2p,3,q,r}

|{{CDD|node_h1|2x|p|node|3|node_1|q|node|r|node}}

|align=left|Same as {{CDD|labelp|branch_10ru|split2|node_1|q|node|r|node}}

align=center

!Runcic

|colspan=2|h3{2p,3,q,r}

|{{CDD|node_h1|2x|p|node|3|node|q|node_1|r|node}}

|align=left|Same as {{CDD|labelp|branch_10ru|split2|node|q|node_1|r|node}}

align=center

!Runcicantic

|colspan=2|h2,3{2p,3,q,r}

|{{CDD|node_h1|2x|p|node|3|node_1|q|node_1|r|node}}

|align=left|Same as {{CDD|labelp|branch_10ru|split2|node_1|q|node_1|r|node}}

align=center

!Steric

|colspan=2|h4{2p,3,q,r}

|{{CDD|node_h1|2x|p|node|3|node|q|node|r|node_1}}

|align=left|Same as {{CDD|labelp|branch_10ru|split2|node|q|node|r|node_1}}

align=center

!Steriruncic

|colspan=2|h3,4{2p,3,q,r}

|{{CDD|node_h1|2x|p|node|3|node|q|node_1|r|node_1}}

|align=left|Same as {{CDD|labelp|branch_10ru|split2|node|q|node_1|r|node_1}}

align=center

!Stericantic

|colspan=2|h2,4{2p,3,q,r}

|{{CDD|node_h1|2x|p|node|3|node_1|q|node|r|node_1}}

|align=left|Same as {{CDD|labelp|branch_10ru|split2|node_1|q|node|r|node_1}}

align=center

!Steriruncicantic

|colspan=2|h2,3,4{2p,3,q,r}

|{{CDD|node_h1|2x|p|node|3|node_1|q|node_1|r|node_1}}

|align=left|Same as {{CDD|labelp|branch_10ru|split2|node_1|q|node_1|r|node_1}}

align=center

!Snub

|colspan=2|s{p,2q,r,s}

|{{CDD|node_h|p|node_h|2x|q|node|r|node|s|node}}

|align=left|Alternated truncation

align=center

!Snub rectified

|colspan=2|sr{p,q,2r,s}

|{{CDD|node_h|p|node_h|q|node_h|2x|r|node|s|node}}

|align=left|Alternated truncated rectification

align=center

!

|colspan=2|ht0,1,2,3{p,q,r,s}

|{{CDD|node_h|p|node_h|q|node_h|r|node_h|2x|s|node}}

|align=left|Alternated runcicantitruncation

align=center

!Full snub

|colspan=2|ht0,1,2,3,4{p,q,r,s}

|{{CDD|node_h|p|node_h|q|node_h|r|node_h|s|node_h}}

|align=left|Alternated omnitruncation

Regular and uniform honeycombs

File:Coxeter diagram affine rank5 correspondence.png

There are five fundamental affine Coxeter groups, and 13 prismatic groups that generate regular and uniform tessellations in Euclidean 4-space.Regular polytopes, p.297. Table IV, Fundamental regions for irreducible groups generated by reflections.Regular and Semiregular polytopes, II, pp.298-302 Four-dimensional honeycombs

class=wikitable

|+ Fundamental groups

#

!colspan=3|Coxeter group

!Coxeter diagram

!Forms

align=center

|1

{\tilde{A}}_4[3[5]][(3,3,3,3,3)]{{CDD|branch|3ab|nodes|split2|node}}7
align=center

|2

{\tilde{C}}_4[4,3,3,4]{{CDD|node|4|node|3|node|3|node|4|node}}19
align=center

|3

{\tilde{B}}_4[4,3,31,1][4,3,3,4,1+]{{CDD|nodes|split2|node|3|node|4|node}} = {{CDD|node_h0|4|node|3|node|3|node|4|node}}23 (8 new)
align=center

|4

{\tilde{D}}_4[31,1,1,1][1+,4,3,3,4,1+]{{CDD|nodes|split2|node|split1|nodes}} = {{CDD|node_h0|4|node|3|node|3|node|4|node_h0}}9 (0 new)
align=center

|5

{\tilde{F}}_4[3,4,3,3]{{CDD|node|3|node|4|node|3|node|3|node}}31 (21 new)

There are three regular honeycombs of Euclidean 4-space:

  • tesseractic honeycomb, with symbols {4,3,3,4}, {{CDD|node_1|4|node|3|node|3|node|4|node}} = {{CDD|node_1|4|node|3|node|split1|nodes}}. There are 19 uniform honeycombs in this family.
  • 24-cell honeycomb, with symbols {3,4,3,3}, {{CDD|node_1|3|node|4|node|3|node|3|node}}. There are 31 reflective uniform honeycombs in this family, and one alternated form.
  • Truncated 24-cell honeycomb with symbols t{3,4,3,3}, {{CDD|node_1|3|node_1|4|node|3|node|3|node}}
  • Snub 24-cell honeycomb, with symbols s{3,4,3,3}, {{CDD|node_h|3|node_h|4|node|3|node|3|node}} and {{CDD|node_h|3|node_h|3|node_h|4|node|3|node}} constructed by four snub 24-cell, one 16-cell, and five 5-cells at each vertex.
  • 16-cell honeycomb, with symbols {3,3,4,3}, {{CDD|node_1|3|node|3|node|4|node|3|node}}

Other families that generate uniform honeycombs:

  • There are 23 uniquely ringed forms, 8 new ones in the 16-cell honeycomb family. With symbols h{4,32,4} it is geometrically identical to the 16-cell honeycomb, {{CDD|node|4|node|3|node|3|node|4|node_h1}} = {{CDD|node|4|node|3|node|split1|nodes_10lu}}
  • There are 7 uniquely ringed forms from the {\tilde{A}}_4, {{CDD|branch|3ab|nodes|split2|node}} family, all new, including:
  • 4-simplex honeycomb {{CDD|branch|3ab|nodes|split2|node_1}}
  • Truncated 4-simplex honeycomb {{CDD|branch_11|3ab|nodes|split2|node}}
  • Omnitruncated 4-simplex honeycomb {{CDD|branch_11|3ab|nodes_11|split2|node_1}}
  • There are 9 uniquely ringed forms in the {\tilde{D}}_4: [31,1,1,1] {{CDD|nodes|split2|node|split1|nodes}} family, two new ones, including the quarter tesseractic honeycomb, {{CDD|nodes_10ru|split2|node|split1|nodes_10lu}} = {{CDD|node_h1|4|node|3|node|3|node|4|node_h1}}, and the bitruncated tesseractic honeycomb, {{CDD|nodes_10ru|split2|node_1|split1|nodes_10lu}} = {{CDD|node_h1|4|node|3|node_1|3|node|4|node_h1}}.

Non-Wythoffian uniform tessellations in 4-space also exist by elongation (inserting layers), and gyration (rotating layers) from these reflective forms.

class=wikitable

|+ Prismatic groups

#

!colspan=2|Coxeter group

!Coxeter diagram

1{\tilde{C}}_3×{\tilde{I}}_1[4,3,4,2,∞]{{CDD|node|4|node|3|node|4|node|2|node|infin|node}}
2{\tilde{B}}_3×{\tilde{I}}_1[4,31,1,2,∞]{{CDD|nodea|3a|branch|3a|4a|nodea|2|node|infin|node}}
3{\tilde{A}}_3×{\tilde{I}}_1[3[4],2,∞]{{CDD|branch|3ab|branch|2|node|infin|node}}
4{\tilde{C}}_2×{\tilde{I}}_1x{\tilde{I}}_1[4,4,2,∞,2,∞]{{CDD|node|4|node|4|node|2|node|infin|node|2|node|infin|node}}
5{\tilde{H}}_2×{\tilde{I}}_1x{\tilde{I}}_1[6,3,2,∞,2,∞]{{CDD|node|6|node|3|node|2|node|infin|node|2|node|infin|node}}
6{\tilde{A}}_2×{\tilde{I}}_1x{\tilde{I}}_1[3[3],2,∞,2,∞]{{CDD|node|split1|branch|2|node|infin|node|2|node|infin|node}}
7{\tilde{I}}_1×{\tilde{I}}_1x{\tilde{I}}_1x{\tilde{I}}_1[∞,2,∞,2,∞,2,∞]{{CDD|node|infin|node|2|node|infin|node|2|node|infin|node|2|node|infin|node}}
8{\tilde{A}}_2x{\tilde{A}}_2[3[3],2,3[3]]{{CDD|node|split1|branch|2|node|split1|branch}}
9{\tilde{A}}_2×{\tilde{B}}_2[3[3],2,4,4]{{CDD|node|split1|branch|2|node|4|node|4|node}}
10{\tilde{A}}_2×{\tilde{G}}_2[3[3],2,6,3]{{CDD|node|split1|branch|2|node|6|node|3|node}}
11{\tilde{B}}_2×{\tilde{B}}_2[4,4,2,4,4]{{CDD|node|4|node|4|node|2|node|4|node|4|node}}
12{\tilde{B}}_2×{\tilde{G}}_2[4,4,2,6,3]{{CDD|node|4|node|4|node|2|node|6|node|3|node}}
13{\tilde{G}}_2×{\tilde{G}}_2[6,3,2,6,3]{{CDD|node|6|node|3|node|2|node|6|node|3|node}}

= Regular and uniform hyperbolic honeycombs =

;Hyperbolic compact groups

There are 5 compact hyperbolic Coxeter groups of rank 5, each generating uniform honeycombs in hyperbolic 4-space as permutations of rings of the Coxeter diagrams.

class="wikitable"

| valign=top align=right|

{\widehat{AF}}_4 = [(3,3,3,3,4)]: {{CDD|label4|branch|3ab|nodes|split2|node}}

| valign=top align=right|

{\bar{DH}}_4 = [5,3,31,1]: {{CDD|node|5|node|3|node|split1|nodes}}

| valign=top align=right|{\bar{H}}_4 = [3,3,3,5]: {{CDD|node|3|node|3|node|3|node|5|node}}

{\bar{BH}}_4 = [4,3,3,5]: {{CDD|node|4|node|3|node|3|node|5|node}}

{\bar{K}}_4 = [5,3,3,5]: {{CDD|node|5|node|3|node|3|node|5|node}}

There are 5 regular compact convex hyperbolic honeycombs in H4 space:Coxeter, The Beauty of Geometry: Twelve Essays, Chapter 10: Regular honeycombs in hyperbolic space, Summary tables IV p213

class="wikitable"

|+ Compact regular convex hyperbolic honeycombs

Honeycomb name

!Schläfli
Symbol
{p,q,r,s}

!Coxeter diagram

!Facet
type
{p,q,r}

!Cell
type
{p,q}

!Face
type
{p}

!Face
figure
{s}

!Edge
figure
{r,s}

!Vertex
figure

{q,r,s}

!Dual

BGCOLOR="#ffe0e0" align=center

|Order-5 5-cell (pente)

{3,3,3,5}{{CDD|node|5|node|3|node|3|node|3|node_1}}{3,3,3}{3,3}{3}{5}{3,5}{3,3,5}{5,3,3,3}
BGCOLOR="#e0e0ff" align=center

|Order-3 120-cell (hitte)

{5,3,3,3}{{CDD|node_1|5|node|3|node|3|node|3|node}}{5,3,3}{5,3}{5}{3}{3,3}{3,3,3}{3,3,3,5}
BGCOLOR="#ffe0e0" align=center

|Order-5 tesseractic (pitest)

{4,3,3,5}{{CDD|node|5|node|3|node|3|node|4|node_1}}{4,3,3}{4,3}{4}{5}{3,5}{3,3,5}{5,3,3,4}
BGCOLOR="#e0e0ff" align=center

|Order-4 120-cell (shitte)

{5,3,3,4}{{CDD|node_1|5|node|3|node|3|node|4|node}}{5,3,3}{5,3}{5}{4}{3,4}{3,3,4}{4,3,3,5}
BGCOLOR="#e0ffe0" align=center

|Order-5 120-cell (phitte)

{5,3,3,5}{{CDD|node_1|5|node|3|node|3|node|5|node}}{5,3,3}{5,3}{5}{5}{3,5}{3,3,5}Self-dual

There are also 4 regular compact hyperbolic star-honeycombs in H4 space:

class="wikitable"

|+ Compact regular hyperbolic star-honeycombs

Honeycomb name

!Schläfli
Symbol
{p,q,r,s}

!Coxeter diagram

!Facet
type
{p,q,r}

!Cell
type
{p,q}

!Face
type
{p}

!Face
figure
{s}

!Edge
figure
{r,s}

!Vertex
figure

{q,r,s}

!Dual

BGCOLOR="#ffe0e0" align=center

|Order-3 small stellated 120-cell

{5/2,5,3,3}{{CDD|node_1|5|rat|d2|node|5|node|3|node|3|node}}{5/2,5,3}{5/2,5}{5}{5}{3,3}{5,3,3}{3,3,5,5/2}
BGCOLOR="#e0e0ff" align=center

|Order-5/2 600-cell

{3,3,5,5/2}{{CDD|node|5|rat|d2|node|5|node|3|node|3|node_1}}{3,3,5}{3,3}{3}{5/2}{5,5/2}{3,5,5/2}{5/2,5,3,3}
BGCOLOR="#ffe0e0" align=center

|Order-5 icosahedral 120-cell

{3,5,5/2,5}{{CDD|node_1|3|node|5|node|5|rat|d2|node|5|node}}{3,5,5/2}{3,5}{3}{5}{5/2,5}{5,5/2,5}{5,5/2,5,3}
BGCOLOR="#e0e0ff" align=center

|Order-3 great 120-cell

{5,5/2,5,3}{{CDD|node|3|node|5|node|5|rat|d2|node|5|node_1}}{5,5/2,5}{5,5/2}{5}{3}{5,3}{5/2,5,3}{3,5,5/2,5}

;Hyperbolic paracompact groups

There are 9 paracompact hyperbolic Coxeter groups of rank 5, each generating uniform honeycombs in 4-space as permutations of rings of the Coxeter diagrams. Paracompact groups generate honeycombs with infinite facets or vertex figures.

class=wikitable

|align=right|

{\bar{P}}_4 = [3,3[4]]: {{CDD|node|split1|nodes|split2|node|3|node}}

{\bar{BP}}_4 = [4,3[4]]: {{CDD|node|split1|nodes|split2|node|4|node}}

{\bar{FR}}_4 = [(3,3,4,3,4)]: {{CDD|branch|4-4|nodes|split2|node}}

{\bar{DP}}_4 = [3[3]×[]]: {{CDD|node|split1|branchbranch|split2|node}}

|align=right|

{\bar{N}}_4 = [4,/3\,3,4]: {{CDD|nodes|split2-43|node|3|node|4|node}}

{\bar{O}}_4 = [3,4,31,1]: {{CDD|nodes|split2|node|4|node|3|node}}

{\bar{S}}_4 = [4,32,1]: {{CDD|nodes|split2-43|node|3|node|3|node}}

{\bar{M}}_4 = [4,31,1,1]: {{CDD|nodes|split2-43|node|split1|nodes}}

|align=right|

{\bar{R}}_4 = [3,4,3,4]: {{CDD|node|4|node|3|node|4|node|3|node}}

Notes

{{reflist}}

References

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900 (3 regular and one semiregular 4-polytope)
  • A. Boole Stott: Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
  • H.S.M. Coxeter:
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973 (p. 297 Fundamental regions for irreducible groups generated by reflections, Spherical and Euclidean)
  • H.S.M. Coxeter, The Beauty of Geometry: Twelve Essays (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables IV p213)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591] (p. 287 5D Euclidean groups, p. 298 Four-dimensionsal honeycombs)
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • James E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge studies in advanced mathematics, 29 (1990) (Page 141, 6.9 List of hyperbolic Coxeter groups, figure 2) [https://books.google.com/books?id=ODfjmOeNLMUC&dq=%22Reflection%20groups%20and%20Coxeter%20groups%22&pg=PA141]