spiroplasma
{{Short description|Genus of bacteria}}
{{Taxobox
| image = Spiro.jpg
| image_caption = Corn stunt Spiroplasma in phloem cells. Thick section (0.4 micrometers) observed in a TEM. Magnified 75,000X.
| domain = Bacteria
| phylum = Mycoplasmatota
| classis = Mollicutes
| ordo = Mycoplasmatales
| familia = Spiroplasmataceae
| familia_authority = Skrypal 1974 ex Skrypal 1983
| genus = Spiroplasma
| genus_authority = Saglio et al. 1973
| type_species = Spiroplasma citri
| type_species_authority = Saglio et al. 1973
| subdivision_ranks = Species
| subdivision =
See text
}}
Spiroplasma is a genus of Mollicutes, a group of small bacteria without cell walls. Spiroplasma shares the simple metabolism, parasitic lifestyle, fried-egg colony morphology and small genome of other Mollicutes, but has a distinctive helical morphology, unlike Mycoplasma. It has a spiral shape and moves in a corkscrew motion. Many Spiroplasma are found either in the gut or haemolymph of insects where they can act to manipulate host reproduction, or defend the host as endosymbionts. Spiroplasma are also disease-causing agents in the phloem of plants. Spiroplasmas are fastidious organisms, which require a rich culture medium. Typically they grow well at 30 °C, but not at 37 °C. A few species, notably Spiroplasma mirum, grow well at 37 °C (human body temperature), and cause cataracts and neurological damage in suckling mice.
The best studied species of spiroplasmas are Spiroplasma poulsonii, a reproductive manipulator and defensive insect symbiont, Spiroplasma citri, the causative agent of citrus stubborn disease, and Spiroplasma kunkelii, the causative agent of corn stunt disease.
Genus structure
Spiroplasma as currently circumscribeed is not monophyletic and consists of four separate clades (see §Phylogeny below):
- Spiroplasma sensu stricto consists of the large clade around S. citri. This clade has been subdivided into mirum, chrysopicola, citri, and poulsonii clades, which can be readily distinguished in the phylogenetic trees provided below.
- The ixodetis clade contains two species.
- The apis clade contains 24 species in the broadest view.
- "Candidatus Spiroplasma holothuricola" was named in 2018, creating the fourth clade due to its position on the phylogenetic tree. It was found in an unnamed sea cucumber species close to Zygothuria oxysclera.{{cite journal |last1=He |first1=LS |last2=Zhang |first2=PW |last3=Huang |first3=JM |last4=Zhu |first4=FC |last5=Danchin |first5=A |last6=Wang |first6=Y |title=The Enigmatic Genome of an Obligate Ancient Spiroplasma Symbiont in a Hadal Holothurian. |journal=Applied and Environmental Microbiology |date=1 January 2018 |volume=84 |issue=1 |doi=10.1128/AEM.01965-17 |pmid=29054873|pmc=5734040 |bibcode=2018ApEnM..84E1965H }}
In arthropods
=Insect symbioses=
Many Spiroplasma strains are vertically transmitted endosymbionts of Drosophila species, with a variety of host-altering mechanisms similar to Wolbachia. These strains are from the Spiroplasma poulsonii clade, and can have important effects on host fitness. The S. poulsonii strain of Drosophila neotestacea protects its host against parasitic nematodes. This interaction is an example of defensive symbiosis, where the fitness of the symbiont is intricately tied to the fitness of the host. The D. neotestacea S. poulsonii also defends its fly host from infestation by parasitic wasps.{{cite journal |last1=Jaenike |first1=J. |last2=Unckless |first2=R. |last3=Cockburn |first3=S N. |last4=Boelio |first4=L. M. |last5=Perlman |first5=S. J. |title=Adaptation via Symbiosis: Recent Spread of a Drosophila Defensive Symbiont |journal=Science |date=8 July 2010 |volume=329 |issue=5988 |pages=212–215 |doi=10.1126/science.1188235 |pmid=20616278 |bibcode=2010Sci...329..212J |s2cid=206526012 }}{{cite journal |last1=Haselkorn |first1=Tamara S.|last2=Jaenike |first2=John |title=Macroevolutionary persistence of heritable endosymbionts: acquisition, retention and expression of adaptive phenotypes in |journal=Molecular Ecology |date=July 2015 |volume=24 |issue=14 |pages=3752–3765 |doi=10.1111/mec.13261 |pmid=26053523 |s2cid=206182327 }} The mechanism through which S. poulsonii attacks nematodes and parasitic wasps relies on the presence of toxins called ribosome-inactivating proteins (RIPs), similar to Sarcin or Ricin.{{cite journal |last1=Ballinger |first1=Matthew J. |last2=Perlman |first2=Steve J. |last3=Hurst |first3=Greg |title=Generality of toxins in defensive symbiosis: Ribosome-inactivating proteins and defense against parasitic wasps in Drosophila |journal=PLOS Pathogens |date=6 July 2017 |volume=13 |issue=7 |pages=e1006431 |doi=10.1371/journal.ppat.1006431 |pmid=28683136 |pmc=5500355 |doi-access=free }} These toxins depurinate a conserved adenine site in eukaryotic 28S ribosomal RNA called the Sarcin-Ricin loop by cleaving the N-glycosidic bond between the rRNA backbone and the adenine. Spiroplasma associations highlight a growing movement to consider heritable symbionts as important drivers in patterns of evolution.{{cite journal |last1=Jaenike |first1=John |last2=Stahlhut |first2=Julie K. |last3=Boelio |first3=Lisa M. |last4=Uncless |first4=Robert L. |title=Association between Wolbachia and Spiroplasma within Drosophila neotestacea: an emerging symbiotic mutualism? |journal=Molecular Ecology |date=January 2010 |volume=19 |issue=2 |pages=414–425 |doi=10.1111/j.1365-294X.2009.04448.x |pmid=20002580 |s2cid=46063874 |doi-access=free |bibcode=2010MolEc..19..414J }}{{cite journal |last1=Koch |first1=Hauke |last2=Schmid-Hempel |first2=Paul |title=Socially transmitted gut microbiota protect bumble bees against an intestinal parasite |journal=Proceedings of the National Academy of Sciences of the United States of America |date=29 November 2011 |volume=108 |issue=48 |pages=19288–19292 |doi=10.1073/pnas.1110474108 |pmid=22084077 |pmc=3228419 |bibcode=2011PNAS..10819288K |doi-access=free }} Protection against wasp attack can be thermally sensitive, ablated at lower environmental temperatures.{{Cite journal |last1=Corbin |first1=Chris |last2=Jones |first2=Jordan E. |last3=Chrostek |first3=Ewa |last4=Fenton |first4=Andy |last5=Hurst |first5=Gregory D. D. |date=2021 |title=Thermal sensitivity of the Spiroplasma–Drosophila hydei protective symbiosis: The best of climes, the worst of climes |journal=Molecular Ecology |language=en |volume=30 |issue=5 |pages=1336–1344 |doi=10.1111/mec.15799 |pmid=33428287 |bibcode=2021MolEc..30.1336C |issn=1365-294X|doi-access=free }}{{Cite journal |last1=Jones |first1=Jordan E. |last2=Hurst |first2=Gregory D. D. |date=2023 |title=History matters: Thermal environment before but not during wasp attack determines the efficiency of symbiont-mediated protection |journal=Molecular Ecology |language=en |volume=32 |issue=12 |pages=3340–3351 |doi=10.1111/mec.16935 |bibcode=2023MolEc..32.3340J |issn=1365-294X|doi-access=free |pmid=36946891 }}
The S. poulsonii strain of Drosophila melanogaster can also attack parasitoid wasps, but is not regarded as a primarily defensive symbiont. This is because this strain called MSRO kills D. melanogaster eggs fertilized by Y-bearing sperm.{{Cite journal |last1=Montenegro |first1=H. |last2=Solferini |first2=V. N. |last3=Klaczko |first3=L. B. |last4=Hurst |first4=G. D. D. |date=2005 |title=Male-killing Spiroplasma naturally infecting Drosophila melanogaster |url=https://resjournals.onlinelibrary.wiley.com/doi/10.1111/j.1365-2583.2005.00558.x |journal=Insect Molecular Biology |language=en |volume=14 |issue=3 |pages=281–287 |doi=10.1111/j.1365-2583.2005.00558.x |pmid=15926897 |issn=1365-2583|url-access=subscription }} This mode of reproductive manipulation benefits the symbiont as the female fly has a greater reproductive output than males. Work by Veneti and colleagues demonstrated that male-killing was ablated by loss of function of any gene in the dosage compensation complex (DCC), leading to the hypothesis that the target of male-killing was the single X chromosome of males, and enabled by the DCC binding to this chromosome.{{Cite journal |last1=Veneti |first1=Zoe |last2=Bentley |first2=Joanna K. |last3=Koana |first3=Takao |last4=Braig |first4=Henk R. |last5=Hurst |first5=Gregory D. D. |date=2005-03-04 |title=A Functional Dosage Compensation Complex Required for Male Killing in Drosophila |journal=Science |volume=307 |issue=5714 |pages=1461–1463 |doi=10.1126/science.1107182|pmid=15746426 |bibcode=2005Sci...307.1461V |doi-access=free }} Work in D. nebulosa demonstrated male death was associated with widespread apoptosis in male embryos during mid/late embryogenesis.{{Cite journal |last1=Bentley |first1=Joanna K. |last2=Veneti |first2=Zoe |last3=Heraty |first3=Joseph |last4=Hurst |first4=Gregory DD |date=2007-03-15 |title=The pathology of embryo death caused by the male-killing Spiroplasma bacterium in Drosophila nebulosa |journal=BMC Biology |volume=5 |issue=1 |pages=9 |doi=10.1186/1741-7007-5-9 |doi-access=free |issn=1741-7007 |pmc=1832177 |pmid=17362512}} The genetic basis of this male-killing was discovered in 2018, solving a decades-old mystery of how the bacteria targeted male-specific cells.{{cite journal |last1=Harumoto |first1=Toshiyuki |last2=Lemaitre |first2=Bruno |title=Male-killing toxin in a bacterial symbiont of Drosophila |journal=Nature |date=May 2018 |volume=557 |issue=7704 |pages=252–255 |doi=10.1038/s41586-018-0086-2 |pmid=29720654 |pmc=5969570 |bibcode=2018Natur.557..252H }} In an interview with the Global Health Institute, Dr. Toshiyuki Harumoto said this discovery is the first example of a bacterial effector protein that affects host cellular machinery in a sex-specific manner, and the first endosymbiont factor identified to explain the cause of male-killing. Thus it should have a big impact on the fields of symbiosis, sex determination, and evolution.{{cite news |last1=Papageorgiou |first1=Nik |title=Mystery solved: The bacterial protein that kills male fruit flies |url=https://actu.epfl.ch/news/mystery-solved-the-bacterial-protein-that-kills--3/ |date=5 July 2018 }}
Beyond Drosophila, Spiroplasma sensu stricto and that of the ixodetis clade are also found in many insects and arthropods, including ticks, spiders, bees, ants, beetles, and butterflies:
{{inc-science|date=June 2025}}
= Crustacean diseases =
Crustaceans are an economically important group of arthropods.{{cite journal |last1=Cisak |first1=Ewa |last2=Wójcik-Fatla |first2=Angelina |last3=Zając |first3=Violetta |last4=Sawczyn |first4=Anna |last5=Sroka |first5=Jacek |last6=Dutkiewicz |first6=Jacek |title=Spiroplasma – an emerging arthropod-borne pathogen? |journal=Annals of Agricultural and Environmental Medicine |date=13 December 2015 |volume=22 |issue=4 |pages=589–593 |doi=10.5604/12321966.1185758|doi-access=free |pmid=26706960 }}
- An epidemic of tremor disease in the Chinese mitten crab was traced to a new species which has since been named Spiroplasma eriocheiris.
- S. eriocheiris also causes disease in Procambarus clarkii crayfish.{{cite journal |last1=Ou |first1=J |last2=Wang |first2=X |last3=Luan |first3=X |last4=Yu |first4=S |last5=Chen |first5=H |last6=Dong |first6=H |last7=Zhang |first7=B |last8=Xu |first8=Z |last9=Liu |first9=Y |last10=Zhao |first10=W |title=Comprehensive analysis of the mRNA and miRNA transcriptome implicated in the immune response of Procambarus clarkii to Spiroplasma eriocheiris. |journal=Microbial Pathogenesis |date=November 2024 |volume=196 |pages=106928 |doi=10.1016/j.micpath.2024.106928 |pmid=39270754}}
- S. penaei causes up to 90% mortality in whiteleg shrimps in Colombia.
In plants
=Plant diseases=
Spiroplasma citri is the causative agent of Citrus stubborn disease, a plant disease affecting species in the genus Citrus.{{cite journal |last1=Yokomi |first1=Raymond K. |last2=Mello |first2=Alexandre F. S. |last3=Saponari |first3=Maria |last4=Fletcher |first4=Jacqueline |title=Polymerase Chain Reaction-Based Detection of Spiroplasma citri Associated with Citrus Stubborn Disease |journal=Plant Disease |date=February 2008 |volume=92 |issue=2 |pages=253–260 |doi=10.1094/PDIS-92-2-0253 |pmid=30769379 |doi-access=free |bibcode=2008PlDis..92..253Y }} It infects the phloem of the affected plant, causing fruit deformities.
Spiroplasma kunkelii is also referred to as Corn Stunt Spiroplasma as it is the causative agent of Corn stunt disease, a disease of corn and other grasses that stunts plant growth. Spiroplasma kunkelii represents a major economic risk, as corn production in the United States is an industry worth over $50 billion.{{cite web|url=https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&dirEntryId=191255 |title=Use of Spectral Vegetation Indices for Detection of European Corn Borer Infestation in Iowa Corn Plots | Science Inventory | US EPA |publisher=Cfpub.epa.gov |date= |accessdate=2019-02-12}}
Both Spiroplasma citri and Spiroplasma kunkelii are transmitted by leafhoppers.{{Cite journal |last1=Bové |first1=Joseph M. |last2=Renaudin |first2=Joël |last3=Saillard |first3=Colette |last4=Foissac |first4=Xavier |last5=Garnier |first5=Monique |date=2003 |title=Spiroplasma citri, a Plant Pathogenic Mollicute: Relationships with Its Two Hosts, the Plant and the Leafhopper Vector |url=https://www.annualreviews.org/doi/10.1146/annurev.phyto.41.052102.104034 |journal=Annual Review of Phytopathology |language=en |volume=41 |issue=1 |pages=483–500 |doi=10.1146/annurev.phyto.41.052102.104034 |pmid=12730387 |bibcode=2003AnRvP..41..483B |issn=0066-4286|url-access=subscription }}{{Cite journal |last1=Özbek |first1=Elvan |last2=Miller |first2=Sally A |last3=Meulia |first3=Tea |last4=Hogenhout |first4=Saskia A |date=2003-03-01 |title=Infection and replication sites of Spiroplasma kunkelii (Class: Mollicutes) in midgut and Malpighian tubules of the leafhopper Dalbulus maidis |url=https://www.sciencedirect.com/science/article/pii/S0022201103000314 |journal=Journal of Invertebrate Pathology |volume=82 |issue=3 |pages=167–175 |doi=10.1016/S0022-2011(03)00031-4 |pmid=12676553 |bibcode=2003JInvP..82..167O |issn=0022-2011|url-access=subscription }} Both plant pathogens belong to the citri clade. Another member of the clade that infects plants is S. phoeniceum, which causes periwinkle yellowing disease. The rest of the clade infects arthopods.
= Plant symbiosis =
Spiroplasma floricola lives on the surface of the flowers of the tulip tree Liriodendron tulipifera.
In vertebrates
One member of this species, Spiroplasma mirum, readily infects newborn rodents but not adult rodents.{{cite journal |last1=Tully |first1=J. G. |last2=Whitcomb |first2=R. F. |last3=Rose |first3=D. L. |last4=Bove |first4=J. M. |title=Spiroplasma mirum, a New Species from the Rabbit Tick (Haemaphysalis leporispalustris) |journal=International Journal of Systematic Bacteriology |date=1 January 1982 |volume=32 |issue=1 |pages=92–100 |doi=10.1099/00207713-32-1-92}}
= In humans =
In 1997, an unnamed species closest to S. taiwanense was found in a newborn with unilateral cataract and anterior uveitis. This is the first known human infection.{{cite journal |last1=Lorenz |first1=Birgit |last2=Schroeder |first2=Josef |last3=Reischl |first3=Udo |title=First evidence of an endogenous Spiroplasma sp. infection in humans manifesting as unilateral cataract associated with anterior uveitis in a premature baby |journal=Graefe's Archive for Clinical and Experimental Ophthalmology |date=May 2002 |volume=240 |issue=5 |pages=348–353 |doi=10.1007/s00417-002-0453-3|pmid=12073057 }}
In 2014, S. turonicum caused a systemic infection in an immunocompromised individual with hypogammaglobulinemia and rheumatoid arthritis, the latter being treated with biologics. This was the first human systemic infection reported.{{cite journal |last1=Aquilino |first1=A |last2=Masiá |first2=M |last3=López |first3=P |last4=Galiana |first4=AJ |last5=Tovar |first5=J |last6=Andrés |first6=M |last7=Gutiérrez |first7=F |title=First human systemic infection caused by Spiroplasma. |journal=Journal of Clinical Microbiology |date=February 2015 |volume=53 |issue=2 |pages=719–21 |doi=10.1128/JCM.02841-14 |pmid=25428150|pmc=4298541 }}
In 2022, an unnamed species closest to S. eriocheiris caused a bloodstream and lung infection in a man who underwent surgery for aortic dissection. The genome has been sequenced.{{cite journal |last1=Xiu |first1=N |last2=Yang |first2=C |last3=Chen |first3=X |last4=Long |first4=J |last5=Qu |first5=P |title=Rare Spiroplasma Bloodstream Infection in Patient after Surgery, China, 2022. |journal=Emerging Infectious Diseases |date=January 2024 |volume=30 |issue=1 |pages=187–189 |doi=10.3201/eid3001.230858 |pmid=38147505 |pmc=10756377}} GTDB calls this species Spiroplasma sp040940205, a placeholder name based on the GenBank/RefSeq genome assembly identifier.{{cite web |title=GTDB - GCF_040940205.1 Spiroplasma sp040940205 |url=https://gtdb.ecogenomic.org/genome?gid=GCF_040940205.1 |website=gtdb.ecogenomic.org}}
=Transmissible spongiform encephalopathy theory=
There is some disputed evidence for the role of spiroplasmas in the etiology of transmissible spongiform encephalopathies (TSEs), due primarily to the work of Frank Bastian, summarized below. Other researchers have failed to replicate this work, while the prion model for TSEs has gained very wide acceptance.{{cite journal |last1=Leach |first1=R.H. |last2=Matthews |first2=W.B. |last3=Will |first3=R. |title=Creutzfeldt-Jakob disease |journal=Journal of the Neurological Sciences |date=June 1983 |volume=59 |issue=3 |pages=349–353 |doi=10.1016/0022-510x(83)90020-5 |pmid=6348215 |s2cid=3558955 }} A 2006 study appears to refute the role of spiroplasmas in the best small animal scrapie model (hamsters).{{cite journal |last1=Alexeeva |first1=I. |last2=Elliott |first2=E. J. |last3=Rollins |first3=S. |last4=Gasparich |first4=G. E. |last5=Lazar |first5=J. |last6=Rohwer |first6=R. G. |title=Absence of Spiroplasma or Other Bacterial 16S rRNA Genes in Brain Tissue of Hamsters with Scrapie |journal=Journal of Clinical Microbiology |date=3 January 2006 |volume=44 |issue=1 |pages=91–97 |doi=10.1128/JCM.44.1.91-97.2006 |pmid=16390954 |pmc=1351941 }} Bastian et al. (2007) have responded to this challenge with the isolation of a spiroplasma species from scrapie-infected tissue, grown it in cell-free culture, and demonstrated its infectivity in deer. Another experiment in the same study isolates S. mirum from ticks and demonstrates its infectivity in deer. The study also claims S. mirum was previously demonstrated to cause TSE in rodents.{{cite journal |last1=Bastian |first1=Frank O. |last2=Sanders |first2=Dearl E. |last3=Forbes |first3=Will A. |last4=Hagius |first4=Sue D. |last5=Walker |first5=Joel V. |last6=Henk |first6=William G. |last7=Enright |first7=Fred M. |last8=Elzer |first8=Philip H. |title=Spiroplasma spp. from transmissible spongiform encephalopathy brains or ticks induce spongiform encephalopathy in ruminants |journal=Journal of Medical Microbiology |date=1 September 2007 |volume=56 |issue=9 |pages=1235–1242 |doi=10.1099/jmm.0.47159-0 |pmid=17761489 |doi-access=free }} A 2011 study fails to cause TSE in raccoons with S. mirum, but succeeded with sick raccoon brain tissue.{{cite journal |last1=Hamir |first1=AN |last2=Greenlee |first2=JJ |last3=Stanton |first3=TB |last4=Smith |first4=JD |last5=Doucette |first5=S |last6=Kunkle |first6=RA |last7=Stasko |first7=JA |last8=Richt |first8=JA |last9=Kehrli ME |first9=Jr |title=Experimental inoculation of raccoons (Procyon lotor) with Spiroplasma mirum and transmissible mink encephalopathy (TME). |journal=Canadian journal of veterinary research = Revue canadienne de recherche veterinaire |date=January 2011 |volume=75 |issue=1 |pages=18–24 |pmid=21461191|pmc=3003558 }}
In 2014, yet another argument for this theory was put forward by Bastian, this time pointing to the production of alpha-synuclein in mammalian cells cultured with Spiroplasma and biofilm formation. The same article also repeats the previous claims about other supportive evidence.{{cite journal |last1=Bastian |first1=Frank O. |title=The Case for Involvement of Spiroplasma in the Pathogenesis of Transmissible Spongiform Encephalopathies |journal=Journal of Neuropathology & Experimental Neurology |date=February 2014 |volume=73 |issue=2 |pages=104–114 |doi=10.1097/NEN.0000000000000033|pmid=24423635 }} No specific rebuttal has been found among PubMed articles that cite this paper. Only one of the 8 citations dealt with any form of TSE as the main topic.
Genetics and Molecular evolution
Spiroplasma, like other mollicutes, have a distinct genetic code, with two rather than three stop codons.{{Cite journal |last1=Renbaum |first1=Paul |last2=Abrahamove |first2=Dan |last3=Fainsod |first3=Abraham |last4=Wilson |first4=Geoffrey G. |last5=Rottem |first5=Shlomo |last6=Razin |first6=Aharon |date=1990-03-11 |title=Cloning, characterization, and expression in Escherichia coli of the gene coding for the CpG DNA methylase from Spiroplasma sp. strain MQ1(M Sssl) |url=https://academic.oup.com/nar/article/18/5/1145/2387861 |journal=Nucleic Acids Research |volume=18 |issue=5 |pages=1145–1152 |doi=10.1093/nar/18.5.1145 |issn=0305-1048 |pmc=330428 |pmid=2181400}} Molecular evolution studies, using Spiroplasma passaged vertically in Drosophila, indicate a very fast rate of molecular evolution.{{Cite journal |last1=Gerth |first1=Michael |last2=Martinez-Montoya |first2=Humberto |last3=Ramirez |first3=Paulino |last4=Masson |first4=Florent |last5=Griffin |first5=Joanne S. |last6=Aramayo |first6=Rodolfo |last7=Siozios |first7=Stefanos |last8=Lemaitre |first8=Bruno |last9=Mateos |first9=Mariana |last10=Hurst |first10=Gregory D. D. |date=2021 |title=Rapid molecular evolution of Spiroplasma symbionts of Drosophila |journal=Microbial Genomics |volume=7 |issue=2 |pages=000503 |doi=10.1099/mgen.0.000503 |doi-access=free |issn=2057-5858 |pmc=8208695 |pmid=33591248}} Spiroplasma genomes are commonly extremely AT rich, can contain a variety of prophage (viral) elements, and also plasmids.CRISPR defences are found in some members of the genus.{{Cite journal |last1=Ipoutcha |first1=Thomas |last2=Tsarmpopoulos |first2=Iason |last3=Talenton |first3=Vincent |last4=Gaspin |first4=Christine |last5=Moisan |first5=Annick |last6=Walker |first6=Caray A. |last7=Brownlie |first7=Joe |last8=Blanchard |first8=Alain |last9=Thebault |first9=Patricia |last10=Sirand-Pugnet |first10=Pascal |date=2019-11-21 |title=Multiple Origins and Specific Evolution of CRISPR/Cas9 Systems in Minimal Bacteria (Mollicutes) |journal=Frontiers in Microbiology |language=English |volume=10 |page=2701 |doi=10.3389/fmicb.2019.02701 |doi-access=free |issn=1664-302X |pmc=6882279 |pmid=31824468}} Genome sizes are generally between 0.7 and 2.2 Mb.
Phylogeny
The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN){{cite web |author=J.P. Euzéby |url=https://lpsn.dsmz.de/genus/spiroplasma |title=Spiroplasma |access-date=2022-09-09 |publisher=List of Prokaryotic names with Standing in Nomenclature (LPSN)}} and National Center for Biotechnology Information (NCBI).{{cite web |author=Sayers |url=https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Tree&id=2132&lvl=3&lin=f&keep=1&srchmode=1&unlock |title=Spiroplasma |access-date=2022-09-09 |publisher=National Center for Biotechnology Information (NCBI) taxonomy database |display-authors=et al.}}
class="wikitable" |
colspan=1 | 16S rRNA based LTP_10_2024{{cite web |title=The LTP |url=https://imedea.uib-csic.es/mmg/ltp/#LTP| access-date=10 December 2024}}{{cite web |title=LTP_all tree in newick format |url=https://imedea.uib-csic.es/mmg/ltp/wp-content/uploads/ltp/LTP_all_10_2024.ntree |access-date=10 December 2024}}{{cite web |title=LTP_10_2024 Release Notes |url=https://imedea.uib-csic.es/mmg/ltp/wp-content/uploads/ltp/LTP_10_2024_release_notes.pdf |access-date=10 December 2024}}
! colspan=1 | 120 marker proteins based GTDB 09-RS220{{cite web |title=GTDB release 09-RS220 |url=https://gtdb.ecogenomic.org/about#4%7C |website=Genome Taxonomy Database |access-date=10 May 2024}}{{cite web |title=bac120_r220.sp_labels |url=https://data.gtdb.ecogenomic.org/releases/release220/220.0/auxillary_files/bac120_r220.sp_labels.tree |website=Genome Taxonomy Database |access-date=10 May 2024}}{{cite web |title=Taxon History |url=https://gtdb.ecogenomic.org/taxon_history/ |website=Genome Taxonomy Database |access-date=10 May 2024}} |
---|
style="vertical-align:top|
{{Clade | style=font-size:90%;line-height:80% |1={{clade |2={{clade |label1=Mycoplasmoidales |1={{clade |label2=Spiroplasma~1 |2={{clade |1=S. ixodetis Tully et al. 1995 |2=S. platyhelix Williamson et al. 1997 }} }} |label2=Mycoplasmatales |sublabel2=/Entomoplasmatales |2={{clade |1={{clade |label1=Spiroplasma |sublabel1=Spiroplasmataceae |1={{clade |1={{clade |1=S. eriocheiris Wang et al. 2011 |2=S. mirum Tully et al. 1982 [incl. S. atrichopogonis Koerber et al. 2005] }} |2={{clade |1={{clade |1=S. chrysopicola Whitcomb et al. 1997 |2=S. syrphidicola Whitcomb et al. 1996 }} |2={{clade |1={{clade |1=S. penaei Nunan et al. 2005 |2={{clade |1=S. insolitum Hackett et al. 1993 |2={{clade |1=S. leucomae Oduori, Lipa & Gasparich 2005 |2=S. poulsonii Williamson et al. 1999 }} }} }} |2={{clade |1=S. phoeniceum Saillard et al. 1987 |2={{clade |1=S. kunkelii Whitcomb et al. 1986 |2={{clade |1=S. citri Saglio et al. 1973 |2=S. melliferum Clark et al. 1985 }} }} }} }} }} }} }} |2={{clade |label1=Spiroplasma |sublabel1=species-group 2 |1={{clade |1={{clade |1=S. alleghenense Adams et al. 1997 |2=S. sabaudiense Abalain-Colloc et al. 1987 }} |2={{clade |1={{clade |1=S. lampyridicola Stevens et al. 1997 |2=S. leptinotarsae Hackett et al. 1996 }} |2={{clade |1=S. clarkii Whitcomb et al. 1993 |2={{clade |1={{clade |1=S. apis Mouches et al. 1984 |2=S. montanense Whitcomb et al. 1997 }} |2={{clade |1={{clade |1=S. taiwanense Abalain-Colloc et al. 1988 |2={{clade |1=S. monobiae Whitcomb et al. 1993 |2={{clade |1={{clade |1=S. cantharicola Whitcomb et al. 1993 |2=S. diminutum Williamson et al. 1996 }} |2={{clade |1=S. floricola Davis, Lee & Worley 1981 |2={{clade |1=S. diabroticae Carle et al. 1997 |2=Mesoplasma melaleucae (Tully et al. 1990) Gupta, Son & Oren 2019 }} }} }} }} }} |2={{clade |1={{clade |2={{clade |1=S. chinense }} }} |2={{clade |1={{clade |1=S. litorale |2={{clade |1=S. corruscae |2=S. turonicum }} }} |2={{clade |2={{clade |2={{clade |1=S. lineolae }} }} }} }} }} }} }} }} }} }} |label2=Mycoplasmataceae |sublabel2=/Entomoplasmataceae |2={{clade |1="Edwardiiplasma" |2={{clade |2={{clade |1="Tullyiplasma" |2={{clade |1={{clade |1=Entomoplasma |2=Mesoplasma }} |2=Mycoplasma }} }} }} }} }} }} }} }} }} | {{Clade | style=font-size:90%;line-height:80% |1={{clade |1={{clade |1={{clade |label1=Spiroplasma_C |1="Ca. Spiroplasma holothuricola" He et al. 2018 }} |2={{clade |1="Hepatoplasmataceae" }} }} |2={{clade |label1=VBWQ01 |1={{clade |label1=Spiroplasma_D |1={{clade |1=S. ixodetis |2=S. platyhelix }} }} |label2=Mycoplasmataceae|sublabel2=sensu GTDB |2={{clade |1={{clade |label1=Spiroplasma |1={{clade |1={{clade |1=S. eriocheiris |2=S. mirum [incl. S. atrichopogonis] }} |2={{clade |1={{clade |1=S. chrysopicola |2=S. syrphidicola }} |2={{clade |1=S. poulsonii |2={{clade |1=S. phoeniceum |2={{clade |1=S. citri |2=S. melliferum }} }} }} }} }} }} |2={{clade |1={{clade |label1=Spiroplasma_B |1={{clade |1=S. alleghenense |2=S. sabaudiense }} |label2=Spiroplasma_A |2={{clade |1={{clade |1=S. litorale |2={{clade |1=S. corruscae |2=S. turonica }} }} |2={{clade |1={{clade |1=S. taiwanense |2={{clade |1=S. floricola |2={{clade |1=S. cantharicola |2={{clade |1=S. diminuta |2=S. monobiae }} }} }} }} |2={{clade |1=S. apis |2={{clade |1=S. clarkii |2={{clade |1={{clade |1=S. chinense |2=S. culicicola }} |2={{clade |1=S. helicoides |2={{clade |1=S. gladiatoris |2=S. tabanidicola }} }} }} }} }} }} }} }} |2={{clade |1="Edwardiiplasma" |2={{clade |2={{clade |1="Tullyiplasma" |2={{clade |1={{clade |1=Entomoplasma |2=Mesoplasma }} |2=Mycoplasma }} }} }} }} }} }} }} }} }} |
Notes on individual species:
- Spiroplasma mirum has also been called Spiroplasma mira, an attempt at correcting the grammatical gender of the specific epithet to match that of the genus name. However, mirum is of neuter gender and requires no correction. In addition, LPSN (and the LoRN) and GTDB treat S. atrichopogonis as a heterotypic synonym.{{cite web |title=Species: Spiroplasma mirum |url=https://lpsn.dsmz.de/species/spiroplasma-mirum |website=lpsn.dsmz.de |language=en}}
- S. insolitum, S. phoeniceum, S. melliferum, and S. diminutum are also gramatically correct and in no need of correction per LPSN.
See also
- Mycoplasma, a similar organism causing disease in animals including humans and linked to autoimmune diseases like rheumatoid arthritis.{{cite journal |last1=Ramírez |first1=A. S. |last2=Rosas |first2=A. |last3=Hernández-Beriain |first3=J. A. |last4=Orengo |first4=J. C. |last5=Saavedra |first5=P. |last6=de la Fe |first6=C. |last7=Fernández |first7=A. |last8=Poveda |first8=J. B. |title=Relationship between rheumatoid arthritis and Mycoplasma pneumoniae: a case–control study |journal=Rheumatology |date=July 2005 |volume=44 |issue=7 |pages=912–914 |doi=10.1093/rheumatology/keh630 |pmid=15814575 |doi-access=free }}
- Phytoplasma, another similar organism causing disease in plants.
- Prion
- Virino
- List of bacterial orders
- List of bacteria genera
References
{{Reflist}}
External links
- [http://www.infectiousdiseasenews.com/199606/cjd.asp Spiroplasma may cause Creutzfeldt–Jakob disease. An interview with a leading expert in infectious diseases: Frank O. Bastsian, MD.]
- [https://web.archive.org/web/20030212111758/http://sparc.airtime.co.uk/bse/gehrman.htm Spiroplasma & Transmissible Spongiform Encephalopathies, Ed Gehrman]
- [http://www.genomesonline.org/search.cgi?colcol=all&goldstamp=ALL&gen_type=ALL&org_name1=genus&gensp=Spiroplasma&org_domain=ALL&org_status=ALL&size2=ALL&org_size=Kb&gen_gc=ALL&phylogeny2=ALL&gen_institution=ALL&gen_funding=ALL&gen_data=ALL&cont=ALL&gen_country=ALL&gen_pheno=ALL&gen_eco=ALL&gen_disease=ALL&gen_relevance=ALL&gen_avail=ALL&selection=submit+search Spiroplasma Genome Projects] from [http://www.genomesonline.org Genomes OnLine Database]
- {{cite journal |last1=Jaenike |first1=J. |last2=Unckless |first2=R. |last3=Cockburn |first3=S. N. |last4=Boelio |first4=L. M. |last5=Perlman |first5=S. J. |title=Adaptation via Symbiosis: Recent Spread of a Drosophila Defensive Symbiont |journal=Science |date=8 July 2010 |volume=329 |issue=5988 |pages=212–215 |doi=10.1126/science.1188235 |pmid=20616278 |bibcode=2010Sci...329..212J |s2cid=206526012 }}
{{Bacteria classification}}
{{Taxonbar|from=Q1769476}}