2025 in paleontology
{{Year nav topic20 |2025|paleontology |paleobotany |arthropod paleontology |paleoentomology |paleomalacology |reptile paleontology |archosaur paleontology |paleomammalogy |paleoichthyology }}
{{Year in paleontology header}}
{{Science year nav|2025}}
Flora
=Plants=
{{main|2025 in paleobotany}}
=Fungi=
==Newly named fungi==
==Mycological research==
- Tian et al. (2025) describe remains of fungi colonizing an insect-infested conifer wood from the Jurassic Tiaojishan Formation (China), interpreted as the oldest record of blue stain fungi reported to date.{{Cite journal|last1=Tian |first1=N. |last2=Wang |first2=Y. |last3=Li |first3=F. |last4=Jiang |first4=Z. |last5=Tan |first5=X. |year=2025 |title=The blue-stain fungus from Jurassic providing new insights into early evolution and ecological interactions |journal=National Science Review |doi=10.1093/nsr/nwaf160 |doi-access=free }}
- Hodgson et al. (2025) present a global dataset of Cenozoic fungi records.{{Cite journal|last1=Hodgson |first1=E. |last2=McCoy |first2=J. |last3=Webber |first3=K. |last4=Nuñez Otaño |first4=N. |last5=O'Keefe |first5=J. |last6=Pound |first6=M. |year=2025 |title=A global dataset of fossil fungi records from the Cenozoic |journal=Scientific Data |volume=12 |issue=1 |at=316 |doi=10.1038/s41597-025-04553-4 |pmid=39984506 |doi-access=free |pmc=11845674 |bibcode=2025NatSD..12..316H }}
Cnidarians
=Cnidarian research=
- Evidence from the study of specimens of Sphenothallus cf. longissimus from the Ordovician (Katian) strata in Estonia, indicative of enhanced phosphatic biomineralization in the studied cnidarian, is presented by Vinn & Madison (2025).{{Cite journal|last1=Vinn |first1=O. |last2=Madison |first2=A. |year=2025 |title=Discovery of a phosphatic helical-looking microstructure in Sphenothallus (Cnidaria) from the Late Ordovician of Estonia: Implications for phosphatic biomineralization |journal=Proceedings of the Geologists' Association |doi=10.1016/j.pgeola.2025.101096 }}
- Ivantsov & Zakrevskaya (2025) study the morphology of Staurinidia crucicula, interpreted as supporting the affinities of the studied species with scyphomedusae.{{Cite journal|last1=Ivantsov |first1=A. Yu. |last2=Zakrevskaya |first2=M. A. |year=2025 |title=The last jellyfish of the Precambrian |journal=Invertebrate Zoology |volume=22 |issue=1 |pages=56–67 |doi=10.15298/invertzool.22.1.05 |url=https://kmkjournals.com/journals/Inv_Zool/IZ_Index_Volumes/IZ_22/IZ_22_1_056_067 }}
Arthropods
{{main|2025 in arthropod paleontology|2025 in paleoentomology}}
Bryozoans
class="wikitable sortable" align="center" width="100%" |
Name
!Novelty !Status !Authors !Age !Type locality !Location !Notes !Images |
---|
Catalinella{{Cite journal|last1=Martha |first1=S. O. |last2=Sanner |first2=J. |last3=Cheetham |first3=A. H. |last4=Scholz |first4=J. |year=2025 |title=The cheilostome bryozoan fauna of the Vincentown Limesand from the Thanetian of New Jersey and Delaware, USA: countdown to the Paleocene–Eocene Thermal Maximum (PETM) |journal=Palaeontographica Abteilung A |volume=330 |issue=1–6 |pages=23–176 |doi=10.1127/pala/2025/0159 |bibcode=2025PalAA.330...23M }}
| Gen. et comb. nov | Valid | Martha et al. | Paleocene | | {{Flag|United States}} | A cheilostome bryozoan. The type species is "Lepralia" undata Reuss (1872). | |
Chenquepora{{Cite journal|last1=Iturra |first1=D. |last2=López-Gappa |first2=J. |last3=Pérez |first3=L. M. |year=2025 |title=The family Dysnoetoporidae (Bryozoa: Cheilostomatida) did not become extinct in the Late Cretaceous: a new genus from the Miocene of Patagonia (Argentina) |journal=Journal of Paleontology |volume=98 |issue=6 |pages=973–980 |doi=10.1017/jpa.2024.63 }}
| Gen. et sp. nov | Valid | Iturra, López-Gappa & Pérez | Miocene (Langhian) | Chenque Formation | {{Flag|Argentina}} | A member of Cheilostomatida belonging to the family Dysnoetoporidae. Genus includes new species C. miocenica. | |
Dionella asynithisti
| Sp. nov | Valid | Martha et al. | Paleocene | Vincentown Limesand | {{Flag|United States}} | A cheilostome bryozoan. | |
Distansescharella rancocasi
| Sp. nov | Valid | Martha et al. | Paleocene | Vincentown Limesand | {{Flag|United States}} | A cheilostome bryozoan. | |
Euritina laterospinata
| Sp. nov | Valid | Martha et al. | Paleocene | Vincentown Limesand | {{Flag|United States}} | A cheilostome bryozoan. | |
Fougaropora
| Gen. et comb. nov | Valid | Martha et al. | Paleocene | Vincentown Limesand | {{Flag|United States}} | A cheilostome bryozoan. The type species is "Stomatopora" temnichorda Ulrich & Bassler (1907). | |
Gabbhornia
| Gen. et comb. nov | Valid | Martha et al. | Paleocene | Vincentown Limesand | {{Flag|United States}} | A cheilostome bryozoan. The type species is "Flustrella" capistrata Gabb & Horn (1862). | |
Haplocephalopora foraminata
| Nom. nov | Valid | Martha et al. | Paleocene | Vincentown Limesand | {{Flag|United States}} | A cheilostome bryozoan. | |
Hemistylus rostratum
| Sp. nov | Valid | Martha et al. | Paleocene | Vincentown Limesand | {{Flag|United States}} | A cheilostome bryozoan. | |
Leiosellina pakhia
| Sp. nov | Valid | Martha et al. | Paleocene | Vincentown Limesand | {{Flag|United States}} | A cheilostome bryozoan. | |
Megaloramfozoon
| Gen. et comb. nov | Valid | Martha et al. | Paleocene | Vincentown Limesand | {{Flag|United States}} | A cheilostome bryozoan. The type species is "Membranipora" nematoporoides Ulrich & Bassler (1907). | |
Obsitacella
| Gen. et comb. nov | Valid | Martha et al. | Paleocene | Vincentown Limesand | {{Flag|United States}} | A cheilostome bryozoan. The type species is "Membranipora" jerseyensis Ulrich & Bassler (1907). | |
Paraptylopora gondwanica{{Cite journal|last1=Taboada |first1=C. A. |last2=Pagani |first2=M. A. |last3=Carrera |first3=M. G. |year=2025 |title=Carboniferous (upper Serpukhovian–Bashkirian) fenestrate bryozoans from the Pampa de Tepuel Formation, central-western Patagonia, Argentina |journal=Journal of Paleontology |pages=1–31 |doi=10.1017/jpa.2024.74 }}
| Sp. nov | Valid | Taboada, Pagani & Carrera | Carboniferous | Pampa de Tepuel Formation | {{Flag|Argentina}} | | |
Poricellaria karinae
| Sp. nov | Valid | Martha et al. | Paleocene | Vincentown Limesand | {{Flag|United States}} | A cheilostome bryozoan. | |
Quadrilateralia
| Gen. et comb. nov | Valid | Martha et al. | Paleocene | Vincentown Limesand | {{Flag|United States}} | A cheilostome bryozoan. The type species is "Membranipora" nellioides Canu & Bassler (1933). | |
Stavrozoon
| Gen. et comb. nov | Valid | Martha et al. | Paleocene | | {{Flag|United States}} | A cheilostome bryozoan. The type species is "Lepralia" interposita Reuss (1872). | |
"Taractopora" klausbreitenbachi
| Nom. nov | Valid | Martha et al. | Paleocene | Vincentown Limesand | {{Flag|United States}} | A cheilostome bryozoan. | |
Temachia canubassleri
| Nom. nov | Valid | Martha et al. | Paleocene | Vincentown Limesand | {{Flag|United States}} | A cheilostome bryozoan. | |
Vincentownia
| Gen. et comb. nov | Valid | Martha et al. | Paleocene | Vincentown Limesand | {{Flag|United States}} | A cheilostome bryozoan. The type species is "Vincularia" acutirostris Canu & Bassler (1933). | |
Xenikipora
| Gen. et comb. nov | Valid | Martha et al. | Paleocene | Vincentown Limesand | {{Flag|United States}} | A cheilostome bryozoan. The type species is "Kleidionella" trabeculifera Canu & Bassler (1933). | |
Yadayadapora
| Gen. et comb. nov | Valid | Martha et al. | Paleocene | Vincentown Limesand | {{Flag|United States}} | A cheilostome bryozoan. The type species is "Beisselina" mortoni Canu & Bassler (1933). | |
Zachosella
| Gen. et comb. nov | Valid | Martha et al. | Paleocene | Vincentown Limesand | {{Flag|United States}} | A cheilostome bryozoan. The type species is "Stichocados" mucronatus Canu & Bassler (1933). | |
Brachiopods
=Brachiopod research=
- A study on the diversity dynamics of members of Plectambonitoidea throughout their evolutionary history is published by Candela, Guo & Harper (2025).{{Cite journal|last1=Candela |first1=Y. |last2=Guo |first2=Z. |last3=Harper |first3=D. A. T. |title=Diversification and disparity in a major Palaeozoic clade of Brachiopoda: the rise and fall of the Plectambonitoidea |year=2025 |journal=Palaeontology |volume=68 |issue=3 |at=e70010 |doi=10.1111/pala.70010}}
- A study on the taxonomic diversity of Mediterranean brachiopods throughout the Jurassic and Early Cretaceous, providing evidence of faunal losses coinciding with oceanic anoxic events, is published by Vörös & Szives (2025).{{Cite journal|last1=Vörös |first1=A. |last2=Szives |first2=O. |title=Role of oceanic anoxic events in regulating the Jurassic–Early Cretaceous taxonomic diversity of Mediterranean brachiopods |year=2025 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=663 |at=112788 |doi=10.1016/j.palaeo.2025.112788 |doi-access=free|bibcode=2025PPP...66312788V }}
Molluscs
{{Main|2025 in paleomalacology}}
Echinoderms
class="wikitable sortable" align="center" width="100%" |
Name
! Novelty ! Status ! Authors ! Age ! Type locality ! Country ! Notes ! Images |
---|
Borszczia{{Cite journal |last1=Pauly |first1=L. |last2=Villier |first2=L. |year=2025 |title=Sea stars (Echinodermata, Asteroidea) from the Wallücke echinoderm Lagerstätte (Callovian, W Germany) |journal=PalZ |doi=10.1007/s12542-025-00731-2 |doi-access=free }}
| Gen. et sp. et comb. nov | Valid | Pauly & Villier | Middle Jurassic (Callovian) to Early Cretaceous (Hauterivian) | | {{Flag|France}} {{Flag|Germany}} {{Flag|United Kingdom}} | A starfish belonging to the order Paxillosida and the suborder Cribellina. The type species is B. wallueckensis; genus also includes "Chrispaulia" jurassica Gale (2011) and "Chrispaulia" spinosa Gale & Jagt (2021). | |
Brightonicystis salmoensis{{Cite journal |last=Paul |first=C. R. C. |title=Generic revision of holocystitid blastozoans |year=2025 |journal=Acta Palaeontologica Polonica |volume=70 |issue=1 |pages=125–141 |doi=10.4202/app.01212.2024 |doi-access=free }}
| Comb. nov | Valid | (Sheffield, Ausich & Sumrall) | Ordovician (Hirnantian) | | {{Flag|Canada}} | A blastozoan belonging to the group Diploporita and the family Holocystitidae; moved from Holocystites salmoensis Sheffield, Ausich & Sumrall. | |
Brissus jonesi{{Cite journal |last1=Osborn |first1=A. S. |last2=Portell |first2=R. W. |last3=Mooi |first3=R. |year=2025 |title=Paleogene Echinoids of Florida |journal=Bulletin of the Florida Museum of Natural History |volume=61 |issue=1 |pages=1–314 |doi=10.58782/flmnh.xqds7462 |doi-access=free }}
| Sp. nov | Valid | Osborn, Portell & Mooi | | | {{Flag|United States}} | A species of Brissus. | |
Castaneametra{{Cite journal|last1=Saulsbury |first1=J. G. |last2=Baumiller |first2=T. K. |last3=Sprinkle |first3=J. T. |year=2025 |title=New comatulid crinoids from the Early Cretaceous Glen Rose Formation (Texas, USA): paleobiology and evolutionary relationships of an endemic, ephemeral giant |journal=Journal of Paleontology |volume=98 |issue=6 |pages=1053–1065 |doi=10.1017/jpa.2024.37 |doi-access=free }}
| Gen. et sp. nov | Valid | Saulsbury, Baumiller & Sprinkle | Early Cretaceous (Albian) | | {{Flag|United States}} | A crinoid belonging to the group Comatulida and the family Notocrinidae. The type species is C. hodgesi. | |
Cherbonniericrinus pliocenicus{{Cite journal|last1=Roux |first1=M. |last2=Thuy |first2=B. |last3=Gale |first3=A. S. |year=2025 |title=Plio-Pleistocene deep-sea crinoid (Echinodermata) diversity from the western Rodrigues Ridge, Indian Ocean, revealed by microfossil evidence |journal=Zootaxa |volume=5583 |issue=3 |pages=509–525 |doi=10.11646/zootaxa.5583.3.5 |pmid=40174100 }}
| Sp. nov | Valid | Roux, Thuy & Gale | | | Indian Ocean (Rodrigues Ridge) | A crinoid belonging to the family Rhizocrinidae. | |
Crassicoma suedica{{Cite journal|last1=Gale |first1=A. S. |last2=Stevenson |first2=A. |year=2025 |title=Crinoids (Echinodermata, Articulata) from the Campanian (Upper Cretaceous) rocky shore at Ivö Klack, southern Sweden |journal=Acta Geologica Polonica |volume=75 |issue=2 |at=e45 |doi=10.24425/agp.2024.152667 |doi-access=free }}
| Sp. nov | Valid | Gale & Stevenson | Late Cretaceous (Campanian) | | {{Flag|Sweden}} | A crinoid belonging to the group Roveacrinida and the family Saccocomidae. | |
Durhamella tetrapora
| Sp. nov | Valid | Osborn, Portell & Mooi | Eocene | Ocala Limestone | {{Flag|United States}} | A sea urchin belonging to the family Neolaganidae. | |
Eupatagus dumonti
| Sp. nov | Valid | Osborn, Portell & Mooi | Oligocene | | {{Flag|United States}} | A sea urchin belonging to the family Eupatagidae. | |
Gasterocoma americana{{Cite journal|last1=Bohatý |first1=J. |last2=Ausich |first2=W. I. |last3=Ebert |first3=L. M. |title=Revision of "Myrtillocrinus" (Crinoidea, Eucladida) and related Devonian genera as an example of the importance of reassessing historical fossil collections vs. mere study of flawed literature |year=2025 |journal=Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen |volume=313 |issue=3 |pages=303–326 |doi=10.1127/njgpa/2025/1234 |bibcode=2025NJGPA.313..303B }}
| Comb. nov | Valid | (Hall) | | | {{Flag|United States}} | A crinoid belonging to the group Eucladida; moved from Myrtillocrinus americanus Hall. | |
Gasterocoma briareus
| Comb. nov | Valid | (Schultze) | Devonian | | {{Flag|Germany}} | A crinoid belonging to the group Eucladida; moved from Taxocrinus briareus Schultze. | |
Gasterocoma curta
| Comb. nov | Valid | (Schmidt) | Devonian | | {{Flag|Germany}} | A crinoid belonging to the group Eucladida; moved from Myrtillocrinus curtus Schmidt. | |
Gasterocoma eifeliana
| Comb. nov | Valid | (Müller) | Devonian | | {{Flag|Germany}} | A crinoid belonging to the group Eucladida; moved from Lecythocrinus eifelianus Müller. | |
Gasterocoma eifeliense
| Comb. nov | Valid | (Müller) | Devonian | | {{Flag|Germany}} | A crinoid belonging to the group Eucladida; moved from Ceramocrinus eifeliensis Müller. | |
Gasterocoma elongata
| Comb. nov | Valid | (Sandberger & Sandberger) | Devonian | | {{Flag|Germany}} | A crinoid belonging to the group Eucladida; moved from Myrtillocrinus elongatus Sandberger & Sandberger. | |
Gasterocoma extensa
| Comb. nov | Valid | (Wachsmuth & Springer) | Devonian | | {{Flag|United States}} | A crinoid belonging to the group Eucladida; moved from Arachnocrinus extensus Wachsmuth & Springer. | |
Gasterocoma ignota
| Comb. nov | Valid | (Stauffer) | Devonian | | {{Flag|Canada}} | A crinoid belonging to the group Eucladida; moved from Arachnocrinus ignotus Stauffer. | |
Gasterocoma knappi
| Comb. nov | Valid | (Wachsmuth & Springer) | Devonian | | {{Flag|United States}} | A crinoid belonging to the group Eucladida; moved from Arachnocrinus knappi Wachsmuth & Springer. | |
Gasterocoma onondagensis
| Nom. nov | Valid | Bohatý, Ausich & Ebert | Devonian | | {{Flag|United States}} | A crinoid belonging to the group Eucladida; a replacement name for Schultzicrinus(?) elongatus Springer. | |
Gasterocoma orbiculata
| Comb. nov | Valid | (Dubatolova) | Devonian | | {{Flag|Russia}} | A crinoid belonging to the group Eucladida; moved from Myrtillocrinus orbiculatus Dubatolova. | |
Gasterocoma (?) robusta
| Comb. nov | Valid | (Goldring) | Devonian | | {{Flag|United States}} | A crinoid belonging to the group Eucladida; moved from Mictocrinus robustus Goldring. | |
Haccourtaster berryensis{{Cite journal|last1=Gale |first1=A. S. |last2=Jagt |first2=J. W. M. |year=2025 |title=New species of the asteroid genus Haccourtaster Jagt, 2000 (Echinodermata, Goniasteridae) from the Upper Cretaceous of Denmark, Sweden and the United Kingdom |journal=Zootaxa |volume=5632 |issue=2 |pages=325–336 |doi=10.11646/zootaxa.5632.2.6 }}
| Sp. nov | Valid | Gale & Jagt | Late Cretaceous (Turonian) | | {{Flag|United Kingdom}} | A member of the family Goniasteridae. | |
Haccourtaster liticola
| Sp. nov | Valid | Gale & Jagt | Late Cretaceous (Campanian) | | {{Flag|Sweden}} | A member of the family Goniasteridae. | |
Haccourtaster nattestadae
| Sp. nov | Valid | Gale & Jagt | Late Cretaceous (Coniacian) | | {{Flag|Denmark}} | A member of the family Goniasteridae. | |
Kukrusecrinus{{Cite journal|last=Rozhnov |first=S. V. |year=2025 |title=Kukrusecrinus stellatus gen. et sp. nov.—the First Representative of the Family, Colpodecrinidae (Crinoidea, Camerata) in the Baltic Ordovician, Its Paleobiogeographic Significance and the Family Phylogenetic Position |journal=Paleontological Journal |volume=58 |issue=11 |pages=1266–1280 |doi=10.1134/S0031030124601129 }}
| Gen. et sp. nov | Valid | Rozhnov | Ordovician (Darriwilian and Sandbian) | | {{Flag|Estonia}} | A crinoid belonging to group Camerata and to the family Colpodecrinidae. The type species is K. stellatus. Published online in 2025, but the issue date is listed as December 2024. | |
Moyacystis
| Gen. et comb. nov | Valid | Paul | Silurian | Lewisburg Formation | {{Flag|United States}} | A blastozoan belonging to the group Diploporita and the family Holocystitidae. The type species is "Osgoodicystis" cooperi Frest & Strimple in Frest et al. (2011). | |
Neoholaster{{cite journal |last1=Borghi |first1=E. |last2=Garilli |first2=V. |last3=Morra |first3=L. E. |last4=Repetto |first4=G. |last5=Lozar |first5=F. |last6=Violanti |first6=D. |title=The Miocene deep-water echinoids Toxopatagus italicus and Neoholaster albensis gen. and sp. nov., implications for holasteroid phylogeny and palaeoecology |journal=Journal of Systematic Palaeontology |year=2025 |volume=23 |issue=1 |at=2472851 |doi=10.1080/14772019.2025.2472851 |bibcode=2025JSPal..2372851B }}
| Gen. et sp. nov | Valid | Borghi et al. | Miocene | | {{Flag|Italy}} | A sea urchin. Genus includes new species N. albensis. | |
Nipponicrinus{{Cite journal|last1=Keyes |first1=R. G. |last2=Wright |first2=D. F. |last3=Ausich |first3=W. I. |year=2025 |title=Phylogeny and macroevolution of a “dead clade walking”: a systematic revision of the Paragaricocrinidae (Crinoidea) |journal=Journal of Paleontology |pages=1–19 |doi=10.1017/jpa.2024.70 |doi-access=free }}
| Gen. et 2 sp. nov | Valid | Keyes, Wright & Ausich | Carboniferous (Moscovian) | Akiyoshi Limestone Group | {{Flag|Japan}} | A camerate crinoid belonging to the group Monobathrida and the family Paragaricocrinidae. The type species is N. hashimotoi; genus also includes N. akiyoshiensis. | |
Palenciacrinus
| Gen. et sp. nov | Valid | Keyes, Wright & Ausich | Carboniferous (Moscovian) | | {{Flag|Spain}} | A camerate crinoid belonging to the group Monobathrida and the family Paragaricocrinidae. The type species is P. mudaensis. | |
Paraconocrinus rodriguesensis
| Sp. nov | Valid | Roux, Thuy & Gale | Pliocene | | Indian Ocean (Rodrigues Ridge) | A crinoid belonging to the family Rhizocrinidae. | |
Persoonaster{{Cite journal|last1=Thuy |first1=B. |last2=Numberger-Thuy |first2=L. D. |last3=Gale |first3=A. S. |year=2025 |title=A Jurassic relict of the Triassic stem euryalid brittle star Aspiduriella (Echinodermata, Ophiuroidea) |journal=Zootaxa |volume=5620 |issue=3 |pages=470–476 |doi=10.11646/zootaxa.5620.3.6 }}
| Gen. et comb. nov | Valid | Thuy, Numberger-Thuy & Gale | Early Jurassic (Hettangian) | | {{Flag|Belgium}} | A brittle star, a member of the stem group of Euryalida related to the Triassic genus Aspiduriella. The type species is "Mesophiomusium" kianiae Thuy (2005). | |
Plagiobrissus cassadyi
| Sp. nov | Valid | Osborn, Portell & Mooi | Oligocene | | {{Flag|United States}} | A species of Plagiobrissus. | |
Plumaster echinoides
| Sp. nov | Valid | Pauly & Villier | Middle Jurassic (Callovian) | Ornatenton Formation | {{Flag|Germany}} | A starfish belonging to the family Plumasteridae. | |
Prionocidaris robertsi
| Sp. nov | Valid | Osborn, Portell & Mooi | Eocene | Ocala Limestone | {{Flag|United States}} | A species of Prionocidaris. | |
Pulcheracrinus
| Gen. et comb. nov | Valid | Keyes, Wright & Ausich | Carboniferous (Bashkirian) | Brentwood Limestone | {{Flag|United States}} | A camerate crinoid belonging to the group Monobathrida and the family Paragaricocrinidae. The type species is "Megaliocrinus" exotericus Strimple (1951). | |
Rhyncholampas bao
| Sp. nov | Valid | Osborn, Portell & Mooi | Eocene | Ocala Limestone | {{Flag|United States}} | A species of Rhyncholampas. | |
Rhyncholampas mariannaensis
| Sp. nov | Valid | Osborn, Portell & Mooi | Eocene | Ocala Limestone | {{Flag|United States}} | A species of Rhyncholampas. | |
Schizaster carlsoni
| Sp. nov | Valid | Osborn, Portell & Mooi | Oligocene | Suwannee Limestone | {{Flag|United States}} | A species of Schizaster. | |
Semiometra alveoradiata
| Sp. nov | Valid | Saulsbury, Baumiller & Sprinkle | Early Cretaceous (Albian) | Glen Rose Formation | {{Flag|United States}} | A crinoid belonging to the group Comatulida and the family Notocrinidae. | |
Sprinkleoglobus spencensis{{Cite journal|last1=Zamora |first1=S. |last2=Guensburg |first2=T. E. |last3=Sprinkle |first3=J. |year=2025 |title=Redescription of the Cambrian edrioasteroid Sprinkleoglobus spencensis n. comb. (Wen et al., 2019) from the Spence Shale (Utah, USA) |journal=Journal of Paleontology |volume=98 |issue=6 |pages=952–958 |doi=10.1017/jpa.2024.44 |doi-access=free}}
| Comb. nov | Valid | (Wen et al.) | Cambrian (Wuliuan) | | {{Flag|United States}} | A member of Edrioasteroidea; moved from Totiglobus spencensis Wen et al. (2019). | |
Tuscumbiacrinus
| Gen. et sp. nov | Valid | Keyes, Wright & Ausich | Carboniferous (Viséan) | Tuscumbia Limestone | {{Flag|United States}} | A camerate crinoid belonging to the group Monobathrida and the family Paragaricocrinidae. The type species is T. madisonensis. | |
Weisbordella inglisensis
| Sp. nov | Valid | Osborn, Portell & Mooi | Eocene | Ocala Limestone | {{Flag|United States}} | A sea urchin belonging to the family Neolaganidae. | |
Weisbordella libum
| Sp. nov | Valid | Osborn, Portell & Mooi | Eocene | Ocala Limestone | {{Flag|United States}} | A sea urchin belonging to the family Neolaganidae. | |
=Echinoderm research=
- Evidence from the study of outgrowths on disarticulated echinoderm fragments from the Cambrian (Wuliuan) rocks of the Burke River Structural Belt (Australia), interpreted as reaction to parasitic epibionts and the oldest evidence of parasitic symbiotic interactions on deuterostome hosts reported to date, is presented by Goñi et al. (2025).{{Cite journal|last1=Goñi |first1=I. |last2=Monnet |first2=C. |last3=De Baets |first3=K. |last4=Topper |first4=T. P. |last5=Régnier |first5=S. |last6=Schröer |first6=L. |last7=Cnudde |first7=V. |last8=Jell |first8=P. A. |last9=Clausen |first9=S. |title=Symbiotic interactions on middle Cambrian echinoderms reveal the oldest parasitism on deuterostomes |year=2025 |journal=Scientific Reports |volume=15 |issue=1 |at=14257 |doi=10.1038/s41598-025-97932-1 |doi-access=free |pmid=40274934 |pmc=12022240 |bibcode=2025NatSR..1514257G }}
- Guenser et al. (2025) report evidence of concentration of research on the fossil record of stylophorans in the higher-income countries, regardless of the origin of the studied fossil material, throughout the history of the study of this group, including evidence that the majority of studies on fossils from the Global South published between 1925 and 1999 did not include local collaborators, and evidence of transfer of fossil material from countries of the Global South to countries of the Global North.{{Cite journal |last1=Guenser |first1=P. |last2=El Hariri |first2=K. |last3=Jalil |first3=N.-E. |last4=Lefebvre |first4=B. |year=2025 |title=Historical bias in palaeontological collections: Stylophora (Echinodermata) as a case study |journal=Swiss Journal of Palaeontology |volume=144 |at=6 |doi=10.1186/s13358-024-00345-2 |doi-access=free }}
- An indeterminate solanocrinitid representing the first known opalized comatulid crinoid reported to date is described from the Cretaceous strata in South Australia by Salamon, Kapitany & Płachno (2025).{{cite journal |last1=Salamon |first1=M. A. |last2=Kapitany |first2=T. |last3=Płachno |first3=B. J. |year=2025 |title=First report of a nearly complete comatulid crinoid (Comatulida, Echinodermata) from the Cretaceous of Australia |journal=Scientific Reports |volume=15 |issue=1 |at=8610 |doi=10.1038/s41598-025-90111-2 |doi-access=free |pmid=40075114 |pmc=11903946 |bibcode=2025NatSR..15.8610S }}
- Evidence from the study of the fossil record of Paleozoic echinoids, indicating that inclusion of unpublished museum specimens can strongly affect the results of the studies of biogeography and evolution of groups known from fossils, is presented by Dean & Thompson (2025).{{cite journal |last1=Dean |first1=C. D. |last2=Thompson |first2=J. R. |year=2025 |title=Museum 'dark data' show variable impacts on deep-time biogeographic and evolutionary history |journal=Proceedings of the Royal Society B: Biological Sciences |volume=292 |issue=2041 |at=20242481 |doi=10.1098/rspb.2024.2481 |doi-access=free |pmid=39999885 |pmc=11858742 }}
- A study on the preservation of fossils of Paleozoic echinoids and on factors influencing the quality of preservation of the studied specimens is published by Thompson et al. (2025).{{cite journal |last1=Thompson |first1=J. R. |last2=Dean |first2=C. D. |last3=Ford |first3=M. |last4=Ewin |first4=T. A. M. |year=2025 |title=Taphonomic controls on a multi-element marine skeletal fossil record |journal=Palaeontology |volume=68 |issue=3 |at=e70008 |doi=10.1111/pala.70008 |doi-access=free }}
Hemichordates
=Hemichordate research=
- The conclusions of the study of Saulsbury et al. (2023), which found that the survivorship of the Ordovician and Silurian graptoloids is consistent with the neutral theory of biodiversity and that this theory can be used to formulate hypotheses on changes in ancient ecosystems,{{Cite journal|last1=Saulsbury |first1=J. G. |last2=Parins-Fukuchi |first2=C. T. |last3=Wilson |first3=C. J. |last4=Reitan |first4=T. |last5=Liow |first5=L. H. |year=2023 |title=Age-dependent extinction and the neutral theory of biodiversity |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=121 |issue=1 |pages=e2307629121 |doi=10.1073/pnas.2307629121 |pmid=38150497 |doi-access=free |pmc=10769858 |bibcode=2023PNAS..12107629S }} are contested by Johnson (2025){{Cite journal|last=Johnson |first=E. C. |year=2025 |title=Curve-fitting alone cannot validate neutral theory |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=122 |issue=10 |pages=e2412160122 |doi=10.1073/pnas.2412160122 |pmid=40030020 |doi-access=free |pmc=11912361 |bibcode=2025PNAS..12212160J }} and reaffirmed by Saulsbury et al. (2025).{{Cite journal|last1=Saulsbury |first1=J. G. |last2=Parins-Fukuchi |first2=C. T. |last3=Wilson |first3=C. J. |last4=Reitan |first4=T. |last5=Liow |first5=L. H. |year=2025 |title=Reply to Johnson: Holistic evaluation of ecological models in paleobiology |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=122 |issue=10 |pages=e2415303122 |doi=10.1073/pnas.2415303122 |pmid=40030032 |doi-access=free |pmc=11912387 |bibcode=2025PNAS..12215303S }}
- Gao, Tan & Wang (2025) consider the double-helical rotating locomotion as most likely for Dicellograptus, and argue that evolution from Jiangxigraptus to Dicellograptus involved selection for improvement in hydrodynamic characteristics.{{Cite journal |last1=Gao |first1=S. |last2=Tan |first2=J. |last3=Wang |first3=W. |year=2025 |title=Double-helical macrostructure aids the passive movement of extinctive graptolites (Dicellograptus) revealed by CFD simulation |journal=Swiss Journal of Palaeontology |volume=144 |at=13 |doi=10.1186/s13358-025-00356-7 |doi-access=free }}
- Evidence indicating that the decline of graptolite diversity in the Prague Basin during the Lundgreni Event was related to increased oxygenation of offshore environments is presented by Frýda & Frýdová (2025).{{Cite journal|last1=Frýda |first1=J. |last2=Frýdová |first2=B. |title=High-resolution records of the mid-Homerian (Silurian) marine chemistry evolution and graptolite biodiversity across the Lundgreni Event reveal what nearly killed the graptolites |year=2025 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=668 |at=112866 |doi=10.1016/j.palaeo.2025.112866 |bibcode=2025PPP...66812866F }}
Conodonts
=Conodont research=
- A study on the morphological variation of oral elements of members of the genus Polygnathus from the Devonian/Carboniferous transition is published by Nesme et al. (2025), who find evidence of reduced morphological variation in larger elements than in smaller ones, interpreted as indicative of increase in functional constraints on large-sized Polygnathus elements.{{Cite journal |last1=Nesme |first1=F. |last2=Girard |first2=C. |last3=Corradini |first3=C. |last4=Renaud |first4=S. |title=Convergent allometric trajectories in Devonian– Carboniferous unornamented Polygnathus conodonts |year=2025 |journal=Acta Palaeontologica Polonica |volume=70 |issue=1 |pages=25–41 |doi=10.4202/app.01198.2024 |doi-access=free }}
- A study on the phylogenetic relationships, biogeography and biostratigraphy of members of the genus Gnathodus is published by Wang, Hu & Wang (2025).{{Cite journal|last1=Wang |first1=W. |last2=Hu |first2=K. |last3=Wang |first3=X. |title=Temporal and spatial evolution of Mississippian conodont: A case study |year=2025 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=661 |at=112701 |doi=10.1016/j.palaeo.2024.112701 |bibcode=2025PPP...66112701W }}
Fish
{{main|2025 in paleoichthyology}}
Amphibians
=Amphibian research=
- A study on the body plan of Ichthyostega is published by Strong et al. (2025), who provide evidence of the presence of a mixture of fish- and tetrapod-like body proportions, and interpret forelimbs of Ichthyostega as bearing a higher fraction of body weight than its hindlimbs when the animal moved on land.{{Cite journal|last1=Strong |first1=C. R. C |last2=Bishop |first2=P. J. |last3=Hutchinson |first3=J. R. |last4=Pierce |first4=S. E. |year=2025 |title=Digital volumetric modeling reveals unique body plan experimentation in the Devonian tetrapod Ichthyostega |journal=iScience |volume=28 |issue=6 |at=112486 |doi=10.1016/j.isci.2025.112486 |doi-access=free }}
- The maximum depositional age of the Carboniferous fossils from the East Kirkton Quarry (Scotland, United Kingdom), including fossils of Balanerpeton woodi, Eucritta melanolimnetes, Kirktonecta milnerae, Ophiderpeton kirktonense, Silvanerpeton miripedes and Westlothiana lizziae, is reinterpreted as more likely to be middle-lower Viséan rather than upper Viséan by Garza et al. (2025).{{Cite journal|last1=Garza |first1=H. K. |last2=Catlos |first2=E. J. |last3=Lapen |first3=T. J. |last4=Clarke |first4=J. A. |last5=Brookfield |first5=M. E. |title=New U-Pb constraints and geochemistry of the East Kirkton Quarry, Scotland: Implications for early tetrapod evolution in the Carboniferous |year=2025 |journal=PLOS ONE |volume=20 |issue=4 |at=e0321714 |doi=10.1371/journal.pone.0321714 |doi-access=free |pmid=40238738 |pmc=12002438 |bibcode=2025PLoSO..2021714G }}
- Redescription of the anatomy of Calligenethlon watsoni is published by Adams et al. (2025).{{Cite journal |last1=Adams |first1=G. R. |last2=Otoo |first2=B. K. A. |last3=Bohus |first3=C. P. W. |last4=Micucci |first4=L. M. |last5=Maddin |first5=H. C. |year=2025 |title=Anatomy and revised diagnosis of the embolomere Calligenethlon watsoni from Joggins, Nova Scotia, based on micro-computed tomography |journal=Zoological Journal of the Linnean Society |volume=203 |issue=2 |at=zlae178 |doi=10.1093/zoolinnean/zlae178 }}
- A study on the body size, morphological diversity, biogeography and feeding ecology of temnospondyls throughout the Triassic is published by Mehmood et al. (2025).{{cite journal |last1=Mehmood |first1=A. |last2=Singh |first2=S. A. |last3=Elsler |first3=A. |last4=Benton |first4=M. J. |year=2025 |title=The ecology and geography of temnospondyl recovery after the Permian–Triassic mass extinction |journal=Royal Society Open Science |volume=12 |issue=3 |at=241200 |doi=10.1098/rsos.241200 |pmid=40046664 |pmc=11879622 |doi-access=free |bibcode=2025RSOS...1241200M }}
- A study on the parasphenoids of Early Triassic trematosauroids and capitosaurs from the European part of Russia, providing evidence of differences of the levator scapulae muscles of the studied temnospondyls that were likely related to differences of their lifestyles, is published by Morkovin (2025).{{Cite journal|last=Morkovin |first=B. I. |year=2025 |title=Structural Features of the Muscular Crests of the Parasphenoid in Early Triassic Capitosauromorphs (Amphibia: Capitosauromorpha) of the East European Platform as a Reflection of Adaptive Differences |journal=Paleontological Journal |volume=58 |issue=11 |pages=1291–1300 |doi=10.1134/S0031030124601130 }}
- A study on the morphological variation, phylogenetic relationships and evolutionary history of members of the genus Cyclotosaurus is published by Schoch et al. (2025).{{Cite journal|last1=Schoch |first1=R. R. |last2=Witzmann |first2=F. |last3=Werneburg |first3=I. |last4=Werneburg |first4=R. |last5=Mujal |first5=E. |last6=Moreno |first6=R. |year=2025 |title=The morphology and evolutionary history of the temnospondyl genus Cyclotosaurus with a focus on material from Germany |journal=PalZ |doi=10.1007/s12542-025-00729-w |doi-access=free }}
- Kufner et al. (2025) report the discovery of a probable mass mortality assemblage of Buettnererpeton bakeri from the Upper Triassic strata from the Nobby Knob site (Popo Agie Formation; Wyoming, United States).{{Cite journal|last1=Kufner |first1=A. M. |last2=Deckman |first2=M. E. |last3=Miller |first3=H. R. |last4=So |first4=C. |last5=Price |first5=B. R. |last6=Lovelace |first6=D. M. |title=A new metoposaurid (Temnospondyli) bonebed from the lower Popo Agie Formation (Carnian, Triassic) and an assessment of skeletal sorting |year=2025 |journal=PLOS ONE |volume=20 |issue=4 |at=e0317325 |doi=10.1371/journal.pone.0317325 |doi-access=free |pmc=11964259 |bibcode=2025PLoSO..2017325K }}
- A study on the structure of tissue of the dermal pectoral bones of Metoposaurus krasiejowensis is published by Kalita, Teschner & Konietzko-Meier (2025).{{Cite journal |last1=Kalita |first1=S. |last2=Teschner |first2=E. M. |last3=Konietzko-Meier |first3=D. |title=Illuminating the dark mess of fibers: Application of circular cross polarized light in unravelling the bone tissue structure of the dermal pectoral girdle of Metoposaurus krasiejowensis |year=2025 |journal=Journal of Anatomy |doi=10.1111/joa.14197 |pmid=39823289 |doi-access=free }}
- A study on the histology of the ilium and the ischium of Metoposaurus krasiejowensis, providing possible evidence of a reduced role of the pelvic girdle and hindlimbs in locomotion of members of the studied species, is published by Konietzko-Meier, Prino & Teschner (2025).{{cite journal|last1=Konietzko-Meier |first1=D. |last2=Prino |first2=A. |last3=Teschner |first3=E. M. |year=2025 |title=Hips do not lie… histology of the pelvic girdle elements of Metoposaurus from the Late Triassic of Poland |journal=Fossil Record |volume=28 |issue=1 |pages=165–178 |doi=10.3897/fr.28.e153929 |doi-access=free }}
- A study on pathologies in cervical vertebrae of specimens of Metoposaurus krasiejowensis is published by Antczak et al. (2025), who identify the oldest block joint between the atlas and the axis reported in a tetrapod, as well as the first record of spinal arthropathy in a non-amniote.{{Cite journal |last1=Antczak |first1=M. |last2=Kowalski |first2=J. |last3=Janecki |first3=P. |last4=Mazurek |first4=D. |last5=Kaszczyszyn |first5=K. |title=First evidence of spinal arthropathy and congenital block of the cervical vertebrae in Temnospondyli |year=2025 |journal=Scientific Reports |volume=15 |issue=1 |at=19592 |doi=10.1038/s41598-025-05373-7 |doi-access=free }}
- Skutschas, Kolchanov & Syromyatnikova (2025) report evidence of presence of pedicellate teeth in karaurids, interpreted as confirming the neotenic nature of the studied specimens.{{Cite journal |last1=Skutschas |first1=P. P. |last2=Kolchanov |first2=V. V. |last3=Syromyatnikova |first3=E. V. |year=2025 |title=Pedicellate Teeth in Archaic Salamanders (Lissamphibia, Caudata) |journal=Doklady Biological Sciences |volume=520 |issue=1 |pages=28–33 |doi=10.1134/S0012496624600532 |pmid=39899238 }}
- Redescription of the anatomy of Vieraella herbstii is published by Báez & Nicoli (2025).{{Cite journal |last1=Báez |first1=A. M. |last2=Nicoli |first2=L. |year=2025 |title=Re-examination of the oldest known frog from South America: New data prompt new evolutionary interpretations |journal=The Anatomical Record |doi=10.1002/ar.25654 |pmid=40091807 }}
- Fossil material representing the northernmost record of frogs from the Upper Cretaceous Bauru Group is described from the Adamantina and Serra da Galga formations (Brazil) by Muniz et al. (2025), who report the discovery of a possible calyptocephalellid representing the first member of the group reported from the northern part of South America.{{Cite journal |last1=Muniz |first1=F. |last2=Giaretta |first2=A. |last3=Fachini |first3=T. S. |last4=Marinho |first4=T. S. |last5=Buck |first5=P. |last6=Rodrigues |first6=S. |last7=Martinelli |first7=A. G. |year=2025 |title=New records of frogs (Anura, Lissamphibia) from the Late Cretaceous Bauru Group of Brazil and its paleobiogeographic implications |journal=Cretaceous Research |volume=175 |at=106150 |doi=10.1016/j.cretres.2025.106150 }}
- New fossil material of Bakonybatrachus fedori is described from the Santonian strata from the Iharkút vertebrate locality (Hungary) by Szentesi (2025).{{cite journal |last=Szentesi |first=Z. |year=2025 |title=New material of the frog Bakonybatrachus fedori Szentesi and Venczel, 2012 from the Santonian of Hungary |journal=Palaeobiodiversity and Palaeoenvironments |doi=10.1007/s12549-025-00655-4 }}
- Lemierre et al. (2025) describe new fossil material of members of Pipimorpha from the Upper Cretaceous (Coniacian-Santonian) strata from the Becetèn site (Niger), providing evidence of presence of at least four pipimorph taxa at the studied site.{{Cite journal |last1=Lemierre |first1=A. |last2=Bailon |first2=S. |last3=Folie |first3=A. |last4=Laurin |first4=M. |year=2025 |title=New pipimorphs from the Late Cretaceous of Niger |journal=Annales de Paléontologie |volume=111 |issue=2 |at=102751 |doi=10.1016/j.annpal.2024.102751 |url=https://hal.science/hal-05018914 }}
- Bravo et al. (2025) report the first discovery of fossil material of a member of the genus Ceratophrys from the Miocene Palo Pintado Formation, representing one of the westernmost records of the genus in northern Argentina reported to date.{{Cite journal |last1=Bravo |first1=G. G. |last2=Duport-Bru |first2=A. S. |last3=Alonso-Muruaga |first3=P. J. |last4=Armella |first4=M. A. |last5=García-López |first5=D. A. |title=The first record of Ceratophrys (Anura: Ceratophryidae) for the Upper Miocene of northwest Argentina and its paleoecological implications |year=2025 |journal=Journal of South American Earth Sciences |at=105618 |doi=10.1016/j.jsames.2025.105618 }}
- Jenkins et al. (2025) redescribe the skull of Hapsidopareion lepton, consider Llistrofus pricei to represent a junior synonym of this species, and reevaluate the affinities of recumbirostrans, recovering them as a clade of stem-amniotes.{{Cite journal|last1=Jenkins |first1=X. A. |last2=Sues |first2=H.-D. |last3=Webb |first3=S. |last4=Schepis |first4=Z. |last5=Peecook |first5=B. R. |last6=Mann |first6=A. |year=2025 |title=The recumbirostran Hapsidopareion lepton from the early Permian (Cisuralian: Artinskian) of Oklahoma reassessed using HRμCT, and the placement of Recumbirostra on the amniote stem |journal=Papers in Palaeontology |volume=11 |issue=1 |at=e1610 |doi=10.1002/spp2.1610 |bibcode=2025PPal...11E1610J }}
Reptiles
{{main|2025 in reptile paleontology|2025 in archosaur paleontology}}
Synapsids
=Non-mammalian synapsids=
==Synapsid research==
- Evidence from a comparative study of skull anatomy of non-mammalian synapsids and extant chameleons, interpreted as consistent with the presence a mandibular middle ear in early synapsids, is presented by Olroyd & Kopperud (2025).{{Cite journal|last1=Olroyd |first1=S. L. |last2=Kopperud |first2=B. T. |year=2025 |title=Allometry of sound reception structures and evidence for a mandibular middle ear in non-mammalian synapsids |journal=Evolution |doi=10.1093/evolut/qpaf041 |pmid=39989013 }}
- A study on changes in humerus and femur of synapsids throughout their evolutionary history is published by Bishop & Pierce (2025).{{Cite journal|last1=Bishop |first1=P. J. |last2=Pierce |first2=S. E. |year=2025 |title=Locomotor shifts, stylopod proportions, and the evolution of allometry in Synapsida |journal=The Anatomical Record |doi=10.1002/ar.70006 }}
- A study on the diversity of varanopids throughout their evolutionary history is published by Laurin & Didier (2025), who find no evidence for an end-Kungurian extinction event, and interpret the extinction of varanopids as likely related to the Capitanian mass extinction event.{{cite journal |last1=Laurin |first1=M. |last2=Didier |first2=G. |year=2025 |title=The rise and fall of Varanopidae† (Amniota, Synapsida) |journal=Frontiers in Earth Science |volume=13 |at=1544451 |doi=10.3389/feart.2025.1544451 |doi-access=free |bibcode=2025FrEaS..1344451L }}
- Marchetti et al. (2025) describe sphenacodontid body impressions (probably produced by a group of four individuals) from the Permian (Sakmarian) Tambach Formation (Germany), providing evidence of presence of epidermal scales in sphenacodontids, and name a new ichnotaxon Bromackerichnus requiescens.{{cite journal |last1=Marchetti |first1=L. |last2=Logghe |first2=A. |last3=Buchwitz |first3=M. |last4=Fröbisch |first4=J. |year=2025 |title=Early Permian synapsid impressions illuminate the origin of epidermal scales and aggregation behavior |journal=Current Biology |doi=10.1016/j.cub.2025.04.077 |pmid=40412378 |doi-access=free }}
- Nieke, Fröbisch & Canoville (2025) study the histology of limb bones of Suminia getmanovi, interpreted as consistent with an arboreal lifestyle.{{cite journal |last1=Nieke |first1=S. |last2=Fröbisch |first2=J. |last3=Canoville |first3=A. |year=2025 |title=Bone microstructure of the basal anomodont Suminia getmanovi supports its arboreal lifestyle |journal=Scientific Reports |volume=15 |issue=1 |at=10294 |doi=10.1038/s41598-025-92727-w |doi-access=free |pmc=11937274 |bibcode=2025NatSR..1510294N }}
- Macungo, Benoit & Araújo (2025) describe fossil material of Inostrancevia africana from the Permian strata of the K6a2 Member of the Metangula graben (Mozambique), supporting its correlation with the Daptocephalus Assemblage Zone in South Africa.{{Cite journal |last1=Macungo |first1=Z. |last2=Benoit |first2=J. |last3=Araújo |first3=R. |year=2025 |title=Inostrancevia africana, the first diagnosable gorgonopsian (Therapsida, Synapsida) from the Metangula graben (Mozambique): new anatomical observations and biostratigraphic implications |journal=Swiss Journal of Palaeontology |volume=144 |at=12 |doi=10.1186/s13358-025-00348-7 |doi-access=free }}
- Cookson and Mann (2025) re-examine two historic skulls of Lycaenops assigned to L. angusticeps and L. cf. L. angusticeps and reassess their taxonomy.{{cite journal |last1=Cookson |first1=N. I. |last2=Mann |first2=A. |year=2025 |title=Cranial osteology and reassessment of the historically collected South African gorgonopsians FMNH UC 1513 (Lycaenops cf. L. angusticeps) and AMNH FARB 5537 (Lycaenops angusticeps) |journal=Vertebrate Anatomy Morphology Palaeontology |volume=13 |pages=48–66 |doi=10.18435/vamp29406 |issn=2292-1389}}
- Kerber et al. (2025) describe traversodontid postcranial material from the Pinheiros-Chiniquá Sequence at the Linha Várzea 1 site (Brazil), representing a morphotype distinct from other traversodontid postcranial remains from this locality.{{Cite journal |last1=Kerber |first1=L. |last2=Michelotti |first2=I. M. |last3=Martins |first3=J. H. A. |last4=Müller |first4=R. T. |title=New postcranial remains of a non-mammaliaform cynodont from the Pinheiros-Chiniquá Sequence (Middle-Upper Triassic) of Brazil |year=2025 |journal=Journal of South American Earth Sciences |volume=158 |at=105487 |doi=10.1016/j.jsames.2025.105487 |bibcode=2025JSAES.15805487K }}
- A study on the bone histology of Luangwa drysdalli and Scalenodon angustifrons, providing evidence of different life histories of the studied cynodonts, is published by Kulik (2025).{{Cite journal|last=Kulik |first=Z. T. |year=2025 |title=Disparate life histories in coeval Triassic cynodonts and their implications for the evolution of mammalian life histories |journal=Paleobiology |pages=1–19 |doi=10.1017/pab.2024.58 }}
- A study on the anatomy of the postcranial skeleton of Luangwa sudamericana is published by Souza et al. (2025).{{Cite journal |last1=Souza |first1=N. L. |last2=Abdala |first2=F. |last3=Battista |first3=F. |last4=Ribeiro |first4=A. M. |title=The postcranial skeleton of Luangwa sudamericana (Traversodontidae: Cynodontia) from the Middle-Late Triassic of southern Brazil |year=2025 |journal=Journal of South American Earth Sciences |volume=160 |at=105546 |doi=10.1016/j.jsames.2025.105546 |bibcode=2025JSAES.16005546S }}
- Medina et al. (2025) provide new information on the anatomy of the cranial endocast of Massetognathus pascuali, and describe the maxillary canal of the studied cynodont.{{Cite journal|last1=Medina |first1=T. G. M. |last2=Martinelli |first2=A. G. |last3=Gaetano |first3=L. C. |last4=Roese-Miron |first4=L. |last5=Tartaglione |first5=A. |last6=Backs |first6=A. |last7=Novas |first7=F. E. |last8=Kerber |first8=L. |year=2025 |title=Revisiting the neuroanatomy of Massetognathus pascuali (Eucynodontia: Cynognathia) from the early Late Triassic of South America using Neutron Tomography |journal=The Science of Nature |volume=112 |issue=1 |at=7 |doi=10.1007/s00114-024-01955-z |pmid=39821074 |bibcode=2025SciNa.112....7M }}
- A study on changes in the skull anatomy of Siriusgnathus niemeyerorum during its ontogeny is published by Roese-Miron & Kerber (2025).{{Cite journal|last1=Roese-Miron |first1=L. |last2=Kerber |first2=L. |year=2025 |title=Ontogeny of a Brazilian Late Triassic Traversodontid (Cynodontia, Cynognathia): Anatomical and Paleoecological Implications |journal=Journal of Morphology |volume=286 |issue=4 |at=e70047 |doi=10.1002/jmor.70047 |pmid=40249030 |doi-access=free|pmc=12007396 }}
- New specimen of Exaeretodon riograndensis, providing new information on the postcranial anatomy of members of this species, is described by Kerber et al. (2025).{{Cite journal|last1=Kerber |first1=L. |last2=Montoya-Sanhueza |first2=G. |last3=Roese-Miron |first3=L. |last4=Damke |first4=L. V. S. |last5=Rezende |first5=L. |last6=Soares |first6=M. B. |last7=Müller |first7=R. T. |last8=Pretto |first8=F. A. |year=2025 |title=New insights into the postcranial anatomy of Exaeretodon riograndensis (Eucynodontia: Traversodontidae): phylogenetic implications, body mass, and lifestyle |journal=Journal of Mammalian Evolution |volume=32 |issue=1 |at=2 |doi=10.1007/s10914-024-09741-4 }}
- A specimen of Exaeretodon riograndensis affected by traumatic fracture of ribs that limited its locomotion capabilities, and possibly surviving with help of other members of its group, is described from the Upper Triassic strata of the Santa Maria Supersequence (Brazil) by Doneda, Roese–Miron & Kerber (2025).{{Cite journal|last1=Doneda |first1=A. L. |last2=Roese–Miron |first2=L. |last3=Kerber |first3=L. |year=2025 |title=Bony injuries in a Late Triassic forerunner of mammals from Brazil |journal=The Science of Nature |volume=112 |issue=3 |at=36 |doi=10.1007/s00114-025-01984-2 |pmid=40327109 |bibcode=2025SciNa.112...36D }}
- New information on the skull anatomy of Trucidocynodon riograndensis is provided by Kerber et al. (2025).{{Cite journal|last1=Kerber |first1=L. |last2=Müller |first2=R. T. |last3=Simão-Oliveira |first3=D. |last4=Pretto |first4=F. A. |last5=Martinelli |first5=A. G. |last6=Michelotti |first6=I. M. |last7=Benoit |first7=J. |last8=Fonseca |first8=P. H. |last9=David |first9=R. |last10=Fernandez |first10=V. |last11=Angielczyk |first11=K. D. |last12=Araújo |first12=R. |year=2025 |title=Synchrotron X-ray micro-computed tomography enhances our knowledge of the skull anatomy of a Late Triassic ecteniniid cynodont with hypercanines |journal=The Anatomical Record |doi=10.1002/ar.25616 |pmid=39801379 |url=https://www.researchgate.net/publication/387964224}}
- Dotto et al. (2025) describe fossil material of a prozostrodontian cynodont from the Upper Triassic strata from the Buriol site (Hyperodapedon Assemblage Zone, Brazil), providing new information on the morphological diversity of teeth of Carnian probainognathians.{{Cite journal|last1=Dotto |first1=P. H. |last2=Roese-Miron |first2=L. |last3=Cabreira |first3=S. F. |last4=Roberto-da-Silva |first4=L. |last5=Pretto |first5=F. A. |last6=Kerber |first6=L. |year=2025 |title=Mandibular anatomy of a new specimen of a prozostrodontian cynodont (Eucynodontia: Probainognathia) from the Upper Triassic of Brazil |journal=The Science of Nature |volume=112 |issue=1 |at=6 |doi=10.1007/s00114-024-01953-1 |pmid=39808199 |bibcode=2025SciNa.112....6D }}
- New information on the anatomy of Yuanotherium minor is provided by Liu, Ren & Mao (2025).{{cite journal|last1=Liu |first1=L. |last2=Ren |first2=J.-C. |last3=Mao |first3=F.-Y. |year=2025 |title=Reinvestigation of Yuanotherium minor and its implications for the cuspal homology and maxillary-palatal evolution of tritylodontids |journal=Vertebrata PalAsiatica |volume=63 |issue=2 |pages=81–101 |doi=10.19615/j.cnki.2096-9899.250331 }}
- Description of the endocranial anatomy of Bienotheroides is published by Ren et al. (2025).{{Cite journal|last1=Ren |first1=J. |last2=Wang |first2=P. |last3=Wei |first3=Z. |last4=Liu |first4=L. |last5=Meng |first5=J. |last6=Mao |first6=F. |title=The cranial endocast of tritylodontid Bienotheroides (Cynodontia, Mammaliamorpha) and its relevance to mammalian neurosensory evolution |year=2025 |journal=Papers in Palaeontology |volume=11 |issue=3 |at=e70021 |doi=10.1002/spp2.70021 }}
- Wang et al. (2025) describe a new mandible of Fossiomanus sinensis from the Lower Cretaceous Jiufotang Formation (China), providing new information on the mandible shape and tooth morphology of members of this species.{{Cite journal |last1=Wang |first1=H. |last2=Xie |first2=J. |last3=Yu |first3=Z. |last4=Hai |first4=L. |last5=Zhu |first5=Z. |last6=Zheng |first6=W. |last7=Wang |first7=Y. |title=Lower jaw morphology of the last surviving tritylodontid Fossiomanus sinensis from the Early Cretaceous Jehol Biota, Liaoning Province, China |year=2025 |journal=Acta Palaeontologica Polonica |volume=70 |issue=2 |pages=285–289 |doi=10.4202/app.01232.2024 |doi-access=free }}
- Hai et al. (2025) describe a mandible of a juvenile specimen of Sinoconodon rigneyi from the Lower Jurassic Lufeng Formation (China), providing new information on tooth replacement in members of this species.{{Cite journal |last1=Hai |first1=L. |last2=Wang |first2=Y. |last3=Wang |first3=H. |last4=Gao |first4=Y. |last5=Zhu |first5=Z. |last6=You |first6=H. |last7=Wang |first7=Y. |year=2025 |title=A juvenile specimen of Sinoconodon rigneyi with new information on pattern of tooth replacement |journal=Journal of Vertebrate Paleontology |volume=44 |issue=4 |at=e2442473 |doi=10.1080/02724634.2024.2442473 }}
- Tumelty & Lautenschlager (2025) study the skull anatomy of Hadrocodium wui, and interpret the studied mammaliaform as not fully fossorial.{{Cite journal|last1=Tumelty |first1=M. |last2=Lautenschlager |first2=S. |year=2025 |title=Is cranial anatomy indicative of fossoriality? A case study of the mammaliaform Hadrocodium wui |journal=The Anatomical Record |doi=10.1002/ar.25630 |pmid=39853864 |doi-access=free}}
=Mammals=
{{main|2025 in paleomammalogy}}
Other animals
=Other animal research=
- Surprenant & Droser (2025) develop a growth model for Funisia dorothea, providing evidence of a growth pattern different from that of Wutubus annularis.{{Cite journal|last1=Surprenant |first1=R. L. |last2=Droser |first2=M. L. |year=2025 |title=A growth model for the highly abundant Ediacaran tubular organism Funisia dorothea |journal=Journal of Paleontology |pages=1–13 |doi=10.1017/jpa.2025.10095 |doi-access=free }}
- Evidence of similarity of growth and mortality dynamics of Parvancorina minchami and extant small marine invertebrates is presented by Ivantsov et al. (2025).{{Cite journal |last1=Ivantsov |first1=A. |last2=Knoll |first2=A. H. |last3=Zakrevskaya |first3=M. |last4=Fedonkin |first4=M. |last5=Pauly |first5=D. |title=Growth of the enigmatic Ediacaran Parvancorina minchami |year=2025 |journal=Paleobiology |pages=1–8 |doi=10.1017/pab.2024.55 |doi-access=free }}
- Zhao et al. (2025) describe disc-like fossils from the Ediacaran Dengying Formation (China), preserving possibly remnants of the perioral musculature and innervation, and interpreted as probable fossils of eumetazoan-grade organisms.{{Cite journal|last1=Zhao |first1=M. |last2=Zhang |first2=Y. |last3=Tang |first3=F. |last4=Li |first4=Y. |last5=Li |first5=M. |last6=Zhong |first6=L. |last7=Ren |first7=L. |title=Enigmatic discoidal macrofossils with central ring from the Ediacaran Jiangchuan biota, Southwest China |year=2025 |journal=Papers in Palaeontology |volume=11 |issue=2 |at=e70005 |doi=10.1002/spp2.70005 |bibcode=2025PPal...11E0005Z }}
- Dunn, Donoghue & Liu (2025) describe a population of Fractofusus andersoni from the Mistaken Point Ecological Reserve (Newfoundland, Canada), and present a model of growth in the studied taxon.{{Cite journal |last1=Dunn |first1=F. S. |last2=Donoghue |first2=P. C. J. |last3=Liu |first3=A. G. |year=2025 |title=Morphogenesis of Fractofusus andersoni and the nature of early animal development |journal=Nature Communications |volume=16 |issue=1 |at=3439 |doi=10.1038/s41467-025-58605-9 |doi-access=free |pmid=40210650 |pmc=11985926 |bibcode=2025NatCo..16.3439D }}
- Wu et al. (2025) describe fossil material of Charnia masoni and C. gracilis from the Ediacaran Zhoujieshan Formation (China), extending known geographic distribution of Charnia and demonstrating that it likely persisted into the latest Ediacaran.{{Cite journal|last1=Wu |first1=C. |last2=Liu |first2=A. G. |last3=Lio |first3=Y. |last4=Wang |first4=X. |last5=Li |first5=G. |last6=Qu |first6=H. |last7=Huang |first7=R. |last8=Qiu |first8=M. |last9=Zheng |first9=W. |last10=Sun |first10=Y. |last11=Shi |first11=H. |last12=Ouyang |first12=Q. |last13=Wan |first13=B. |last14=Chen |first14=Z. |last15=Zhou |first15=C. |last16=Yuan |first16=X. |last17=Pang |first17=K. |title=The Quanjishan Charnia assemblage from the northern Qaidam Basin, Tibetan Plateau, and implications for palaeoecology and taphonomy of Ediacaran fronds |year=2025 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=665 |at=112816 |doi=10.1016/j.palaeo.2025.112816 |bibcode=2025PPP...66512816W }}
- Olivier et al. (2025) identify probable chaetetid fossil material from the Triassic (Olenekian) strata in Rock Canyon (Arizona, United States), representing the oldest Mesozoic record of chaetetids reported to date.{{Cite journal|last1=Olivier |first1=N. |last2=Brayard |first2=A. |last3=Lathuiliere |first3=B. |last4=Jenks |first4=J. F. |last5=Bylund |first5=K. G. |last6=Stephen |first6=D. A. |last7=Escarguel |first7=G. |last8=Fara |first8=E. |year=2025 |title=Presumed chaetetids in Smithian (early Olenekian, Early Triassic) microbial-sponge limestones, Rock Canyon, Arizona, USA |journal=Lethaia |volume=58 |issue=2 |pages=1–23 |doi=10.18261/let.58.2.6 |doi-access=free }}
- Becker-Kerber et al. (2025) reevaluate skeletal organization of Corumbella on the basis of the study of new specimens from the Ediacaran Tamengo Formation (Brazil), interpreted as inconsistent with close affinities with scyphozoan cnidarians.{{Cite journal|last1=Becker-Kerber |first1=B. |last2=Ortega-Hernández |first2=J. |last3=Schiffbauer |first3=J. D. |last4=Lerosey-Aubril |first4=R. |last5=Wang |first5=D. |last6=Warren |first6=L. V. |last7=Simões |first7=M. G. |last8=del Mouro |first8=L. |last9=Rodella |first9=C. B. |last10=Basei |first10=M. A. S. |last11=Archilha |first11=N. L. |year=2025 |title=Rebuilding Earth's first skeletal animals: the original morphology of Corumbella (Ediacaran, Brazil) |journal=Royal Society Open Science |volume=12 |issue=5 |at=250206 |doi=10.1098/rsos.250206 |doi-access=free }}
- A study on possible causes of decline of stromatoporoid diversity during the early Devonian is published by Stock et al. (2025).{{Cite journal|last1=Stock |first1=C. W. |last2=May |first2=A. |last3=Ebert |first3=J. R. |last4=Scotese |first4=C. R. |last5=Hagadorn |first5=J. W. |title=Early Devonian (Pragian) decrease in global generic diversity of stromatoporoids, and their extreme decrease in paleogeographic distribution in North America |year=2025 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=663 |at=112719 |doi=10.1016/j.palaeo.2025.112719 |bibcode=2025PPP...66312719S }}
- Purported early mollusc Shishania aculeata is reinterpreted as a chancelloriid by Yang et al. (2025).{{Cite journal|last1=Yang |first1=J. |last2=Li |first2=W. |last3=Chen |first3=A.-L. |last4=Du |first4=K.-S. |last5=Peng |first5=X. |last6=Wang |first6=Y. |last7=Zhang |first7=X.-H. |last8=Smith |first8=M. R. |title=Shishania is a chancelloriid and not a Cambrian mollusk |year=2025 |journal=Science |volume=388 |issue=6747 |pages=662–664 |doi=10.1126/science.adv4635 |pmid=40339003 }}
- Evidence from the study of Cambrian scalidophoran fossils, interpreted as indicating that the ventral nerve cord was ancestrally unpaired in scalidophorans, priapulids and possibly ecdysozoans in general, is presented by Wang et al. (2025).{{Cite journal|last1=Wang |first1=D. |last2=Vannier |first2=J. |last3=Martín-Durán |first3=J. M. |last4=Herranz |first4=M. |last5=Yu |first5=C. |title=Preservation and early evolution of scalidophoran ventral nerve cord |year=2025 |journal=Science Advances |volume=11 |issue=2 |at=eadr0896 |doi=10.1126/sciadv.adr0896 |pmid=39792685 |pmc=11721716 |doi-access=free |bibcode=2025SciA...11R.896W }}
- Slater (2025) describes Cambrian protoconodonts preserved as small carbonaceous fossils from the Lontova Formation (Estonia) and from the Borgholm Formation (Sweden), and interprets the studied fossils as indicating that bilaterians with chaetognath-like grasping spines diverged by the latest Ediacaran.{{cite journal |last=Slater |first=B. J. |year=2025 |title=Cambrian carbonaceous protoconodonts and the early fossil record of the Chaetognatha |journal=Proceedings of the Royal Society B: Biological Sciences |volume=292 |issue=2041 |at=20242386 |doi=10.1098/rspb.2024.2386 |doi-access=free |pmid=39968616 |pmc=11836706 }}
- Gao et al. (2025) describe new scolecodonts from the Silurian Miaogao Formation (Yunnan, China), extending known geographical range of members of the genus Langeites.{{Cite journal |last1=Gao |first1=D. |last2=Shen |first2=C. |last3=Huang |first3=L. |last4=Chen |first4=L. |last5=Zhang |first5=S. |last6=Tian |first6=Y. |last7=Li |first7=Y. |year=2025 |title=New scolecodonts (Polychaeta, Annelida) from the Late Silurian of Yunnan, South China |journal=Swiss Journal of Palaeontology |volume=144 |issue=1 |at=22 |doi=10.1186/s13358-025-00362-9 |doi-access=free |bibcode=2025SwJP..144...22G }}
- Jamison-Todd et al. (2025) study trace fossils in marine reptile bones from the Upper Cretaceous Chalk Group (United Kingdom), produced by bone-eating worms and interpreted as likely indicative of high species diversity of Osedax during the early Late Cretaceous, and name new ichnotaxa Osspecus eunicefootia, O. morsus, O. campanicum, O. arboreum, O. automedon, O. frumentum and O. panatlanticum.{{Cite journal|last1=Jamison-Todd |first1=S. |last2=Witts |first2=J. D. |last3=Jones |first3=M. E. H. |last4=Tangunan |first4=D. |last5=Chandler |first5=K. |last6=Bown |first6=P. |last7=Twitchett |first7=R. J. |title=The evolution of bone-eating worm diversity in the Upper Cretaceous Chalk Group of the United Kingdom |year=2025 |journal=PLOS ONE |volume=20 |issue=4 |at=e0320945 |doi=10.1371/journal.pone.0320945 |doi-access=free |pmid=40179110 |pmc=11967938 |bibcode=2025PLoSO..2020945J }}
- Jamison-Todd, Mannion & Upchurch (2025) identify boring produced by bone-eating worms in cetacean specimens from the Cenozoic strata from the Netherlands and the United States, including a specimen of Zyghorhiza kochii from the Eocene Yazoo Formation (Alabama) representing the oldest cetacean specimen with such borings reported to date, report evidence of high morphological diversity of the studied borings, and name a new ichnotaxon Osspecus pollardium described on the basis of borings from two teeth from the Neogene strata in the Netherlands.{{cite journal |last1=Jamison-Todd |first1=S. |last2=Mannion |first2=P. D. |last3=Upchurch |first3=P. |year=2025 |title=The earliest fossil cetacean with Osedax borings: narrowing the spatiotemporal gap between Cretaceous marine reptiles and late Cenozoic whales |journal=Royal Society Open Science |volume=12 |issue=6 |at=250446 |doi=10.1098/rsos.250446 |doi-access=free }}
- Evidence from the study of hyoliths from the Cambrian Sellick Hill Formation (Australia) and Ordovician Mójcza Limestone (Poland), indicative of similarities of early ontogeny of hyoliths and molluscs, is presented by Dzik (2025).{{Cite journal |last=Dzik |first=J. |title=Early ontogeny and other possible molluscan traits in hyolith biology and anatomy |year=2025 |journal=Lethaia |volume=58 |issue=2 |pages=1–16 |doi=10.18261/let.58.2.2 |doi-access=free }}
- A study on fossil material of the tommotiid Lapworthella fasciculata from the Cambrian strata in Australia is published by Bicknell et al. (2025), who report evidence of increase of thickness of sclerites of L. fasciculata and increase of the frequency of perforated sclerites through time, and interpret these findings as the oldest evidence of evolutionary arms race between predator and prey reported to date.{{Cite journal|last1=Bicknell |first1=R. D. C. |last2=Campione |first2=N. E. |last3=Brock |first3=G. A. |last4=Paterson |first4=J. R. |title=Adaptive responses in Cambrian predator and prey highlight the arms race during the rise of animals |year=2025 |journal=Current Biology |volume=35 |issue=4 |pages=882–888.e2 |doi=10.1016/j.cub.2024.12.007 |pmid=39755119 |bibcode=2025CBio...35..882B }}
- Vinn et al. (2025) describe soft body impressions of Devonian tentaculitids from Armenia, and interpret reconstructed muscle system of tentaculitids as supporting their placement within Lophotrochozoa and possibly within Lophophorata.{{Cite journal|last1=Vinn |first1=O. |last2=Hambardzumyan |first2=T. |last3=Wilson |first3=M. A. |last4=Serobyan |first4=V. |year=2025 |title=Palaeobiological and phylogenetic implications of preserved muscle scars in Devonian tentaculitids from Armenia |journal=Historical Biology: An International Journal of Paleobiology |pages=1–9 |doi=10.1080/08912963.2025.2458115 }}
- New information on the morphology and growth pattern of the microconchid species Aculeiconchus sandbergi is provided by Opitek et al. (2025).{{Cite journal |last1=Opitek |first1=K. |last2=Zatoń |first2=M. |last3=Hu |first3=M. |last4=Schiffbauer |first4=J. D. |last5=Selly |first5=T. |last6=Myrow |first6=P. |title=Morphology and mode of life of a peculiar Devonian microconchid tubeworm Aculeiconchus from Wyoming, USA |year=2025 |journal=Lethaia |volume=57 |issue=4 |pages=1–13 |doi=10.18261/let.57.4.8 |doi-access=free }}
- Ma et al. (2025) describe fossil material of Pomatrum cf. P. ventralis from the Balang Formation (China), extending known range of this species to Cambrian Stage 4 and representing its first known record from outside the Chengjiang Biota.{{Cite journal|last1=Ma |first1=S. |last2=Kimmig |first2=J. |last3=Schiffbauer |first3=J. D. |last4=Li |first4=R. |last5=Peng |first5=S. |last6=Yang |first6=X. |year=2025 |title=Deep water vetulicolians from the lower Cambrian of China |journal=PeerJ |volume=13 |at=e18864 |doi=10.7717/peerj.18864 |pmc=11760202 |doi-access=free |pmid=39866560 }}
- A study on the taphonomy of yunnanozoan fossils from the Chengjiang Lagerstätte (China) is published by He et al. (2025), who contest claims of preservation of cellular cartilage and microfibrils made by Tian et al. (2022),{{Cite journal |last1=Tian |first1=Q. |last2=Zhao |first2=F. |last3=Zeng |first3=H. |last4=Zhu |first4=M. |last5=Jiang |first5=B. |title=Ultrastructure reveals ancestral vertebrate pharyngeal skeleton in yunnanozoans |year=2022 |journal=Science |volume=377 |issue=6602 |pages=218–222 |doi=10.1126/science.abm2708 |pmid=35857544 |bibcode=2022Sci...377..218T |s2cid=250380981 |doi-access=free }} and argue that cellular-scale preservation of cartilaginous tissues in the studied fossils is unlikely.{{cite journal |last1=He |first1=K. |last2=Han |first2=J. |last3=Liu |first3=J. |last4=Ou |first4=Q. |last5=Mussini |first5=G. |last6=Reich |first6=M. |last7=Shu |first7=D. |year=2025 |title=Thermal taphonomy experiments challenge ultrastructural preservation in the Chengjiang yunnanozoans |journal=Proceedings of the Royal Society B: Biological Sciences |volume=292 |issue=2047 |at=20250567 |doi=10.1098/rspb.2025.0567 |pmid=40425157 |pmc=12115822 |pmc-embargo-date=May 28, 2026 }}
Foraminifera
=Foraminiferal research=
- A study on the impact of ocean chemistry changes on evolution of foraminiferal wall types throughout the Phanerozoic is published by Faulkner et al. (2025), who find that changes of foraminiferal wall types were mostly driven by short-term ocean chemistry changes.{{cite journal |last1=Faulkner |first1=K. |last2=Lowery |first2=C. |last3=Martindale |first3=R. C. |last4=Simpson |first4=C. |last5=Fraass |first5=A. J. |year=2025 |title=Record of Foraminifera test composition throughout the Phanerozoic |journal=Proceedings of the Royal Society B: Biological Sciences |volume=292 |issue=2044 |at=20250221 |doi=10.1098/rspb.2025.0221 |doi-access=free |pmid=40202068 |pmc=11979970 }}
- Evidence from the study of Carnian foraminiferal assemblages from the Erguan section in Guizhou and Quxia section in South Tibet (China), interpreted as indicating that there were no significant extinctions of foraminifera during the Carnian pluvial episode in the studied regions, is presented by Li et al. (2025).{{Cite journal|last1=Li |first1=Z. |last2=Yang |first2=X. |last3=Dal Corso |first3=J. |last4=Wang |first4=F. |last5=Jia |first5=E. |last6=Dai |first6=X. |last7=Yuan |first7=Z. |last8=Chen |first8=X. |last9=Lai |first9=J. |last10=Li |first10=X. |last11=Liu |first11=X. |last12=Jiang |first12=S. |last13=Wang |first13=B. |last14=Wu |first14=K. |last15=Chu |first15=D. |last16=Song |first16=H. |last17=Tian |first17=L. |last18=Song |first18=H. |title=No extinction in foraminifera during the Carnian Pluvial Episode (Late Triassic) |year=2025 |journal=Global and Planetary Change |volume=251 |at=104817 |doi=10.1016/j.gloplacha.2025.104817 |bibcode=2025GPC...25104817L }}
- A study on the composition of planktic foraminiferal assemblages from the Atlantic Ocean during the Eocene, providing evidence that they lacked resilience during the Middle Eocene Climatic Optimum, is published by Sigismondi et al. (2025).{{Cite journal|last1=Sigismondi |first1=S. |last2=Luciani |first2=V. |last3=Alegret |first3=L. |last4=Westerhold |first4=T. |title=Evaluating planktic foraminiferal resilience during the Middle Eocene Climatic Optimum (MECO) in the Atlantic Ocean |year=2025 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=667 |at=112867 |doi=10.1016/j.palaeo.2025.112867 |bibcode=2025PPP...66712867S }}
- Evidence of changes in morphology of members of nummulites from the Pande Formation (Tanzania), interpreted as likely related to environmental changes during the Eocene–Oligocene transition, is presented by Koorapati, Moon & Cotton (2025).{{Cite journal|last1=Koorapati |first1=R. K. |last2=Moon |first2=B. C. |last3=Cotton |first3=L. J. |year=2025 |title=Morphological trends in reticulate Nummulites across the Eocene–Oligocene transition |journal=Palaeontology |volume=68 |issue=2 |at=e70003 |doi=10.1111/pala.70003 |doi-access=free |bibcode=2025Palgy..6870003K }}
Other organisms
=Research on other organisms=
- Review of the fossil record of the late Paleoproterozoic to the latest Tonian eukaryotes and a study on their diversity patterns is published by Porter et al. (2025), who find the fossil evidence insufficient to conclude whether the Tonian radiation of eukaryotes was a real event or an artifact of sampling of the fossil record.{{Cite journal|last1=Porter |first1=S. M. |last2=Riedman |first2=L. A. |last3=Woltz |first3=C. R. |last4=Gold |first4=D. A. |last5=Kellogg |first5=J. B. |title=Early eukaryote diversity: a review and a reinterpretation |year=2025 |journal=Paleobiology |volume=51 |pages=132–149 |doi=10.1017/pab.2024.33 |doi-access=free }}
- Saint Martin et al. (2025) identify body fossils of Palaeopascichnus in the Neoproterozoic Histria Formation (Romania), providing evidence of the Ediacaran age of the studied formation.{{Cite journal|last1=Saint Martin |first1=J.-P. |last2=Charbonnier |first2=S. |last3=Saint Martin |first3=S. |last4=Cazes |first4=L. |last5=André |first5=J.-P. |year=2025 |title=New records of Palaeopaschichnus Palij, 1976 from the Ediacaran of Romania |journal=Geodiversitas |volume=47 |issue=1 |pages=1–16 |doi=10.5252/geodiversitas2025v47a1 |url=https://sciencepress.mnhn.fr/en/periodiques/geodiversitas/47/1 |url-access=subscription }}
- Kolesnikov, Pan'kova & Pan'kov (2025) report the discovery of a new assemblage of soft-bodied organisms from the Ediacaran Chernyi Kamen Formation (Russia), including fossils of Palaeopascichnus, Mawsonites, Hiemalora and putative rangeomorphs.{{Cite journal|last1=Kolesnikov |first1=A. V. |last2=Pan'kova |first2=V. A. |last3=Pan'kov |first3=V. N. |year=2025 |title=A new occurrence of Ediacara soft-bodied biota in the Central Urals, Russia |journal=Gondwana Research |doi=10.1016/j.gr.2025.05.008 }}
- Lonsdale et al. (2025) describe ribbon-like fossils from the Ediacaran Deep Spring Formation (Nevada, United States), interpreted as probable fossil material of vendotaenids and extending their known geographical range during the late Ediacaran.{{Cite journal|last1=Lonsdale |first1=M. C. |last2=Moore |first2=K. R. |last3=Webb |first3=L. C. |last4=Schildbach |first4=M. |last5=Livi |first5=K. J. T. |last6=Smith |first6=E. F. |year=2025 |title=Ribbon-like compression fossils from the late Ediacaran Esmeralda Member of the Deep Spring Formation at Mount Dunfee, Nevada, USA |journal=PALAIOS |volume=40 |issue=5 |pages=131–140 |doi=10.2110/palo.2024.027 }}
- Evidence of sustained shift in morphology of organic-walled microfossils during the Ediacaran-Cambrian transition, interpreted as likely linked to nutrient limitation resulting from environmental perturbations, is presented by Tingle et al. (2025).{{cite journal |last1=Tingle |first1=K. E. |last2=Anderson |first2=R. P. |last3=Kelley |first3=N. P. |last4=Darroch |first4=S. A. F. |year=2025 |title=Sustained shift in the morphology of organic-walled microfossils over the Ediacaran–Cambrian transition |journal=Royal Society Open Science |volume=12 |issue=6 |at=241966 |doi=10.1098/rsos.241966 |doi-access=free }}
- Fossil evidence of survival of albaillellarian radiolarians into the Triassic is reported from the Nanpihe bridge section of the Changning-Menglian belt (Yunnan, China) by Zheng et al. (2025).{{Cite journal|last1=Zheng |first1=J. |last2=Jin |first2=X. |last3=Huang |first3=H. |last4=Yan |first4=Z. |year=2025 |title=Died out at the end of Permian or extended into the Triassic? – The tale of the albaillellarians (radiolarians) and detrital zircons of the Nanpihe bridge section in the Changning-Menglian belt, Western Yunnan, China |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=673 |at=112988 |doi=10.1016/j.palaeo.2025.112988 }}
History of life in general
- A study on rare Earth element data from greenstone belts of the northwest Superior Craton (Canada), interpreted as evidence of the origin of oxygenic photosynthesis in the Mesoarchaean or earlier, is published by Patry et al. (2025).{{Cite journal|last1=Patry |first1=L. A. |last2=Bonnand |first2=P. |last3=Boyet |first3=M. |last4=Afroz |first4=M. |last5=Wilmeth |first5=D. T. |last6=Ramsay |first6=B. |last7=Nonnotte |first7=P. |last8=Homann |first8=M. |last9=Sansjofre |first9=P. |last10=Fralick |first10=P. W. |last11=Lalonde |first11=S. V. |title=Dating the evolution of oxygenic photosynthesis using La-Ce geochronology |year=2025 |journal=Nature |pages=1–6 |doi=10.1038/s41586-025-09009-8 |pmid=40437084 }}
- Evidence from experiments with algal-derived particulate matter in conditions similar to those of the late Neoproterozoic water column, interpreted as indicating that the appearance of algal particulate matter at the seafloor during the Neoproterozoic rise of the algae likely stimulated growth and activity of phagotrophs living in the anoxic conditions, is presented by Mills et al. (2025).{{Cite journal |last1=Mills |first1=D. B. |last2=Vuillemin |first2=A. |last3=Muschler |first3=K. |last4=Coskun |first4=Ö. K. |last5=Orsi |first5=W. D. |title=The Rise of Algae promoted eukaryote predation in the Neoproterozoic benthos |year=2025 |journal=Science Advances |volume=11 |issue=8 |at=eadt2147 |doi=10.1126/sciadv.adt2147 |pmid=39970204 |pmc=11838005 |doi-access=free |bibcode=2025SciA...11.2147M }}
- Evidence from the study of two Ediacaran communities from the Mistaken Point Formation (Canada), indicative of similar composition but different ecological dynamics of the studied communities, is presented by Mitchell et al. (2025).{{Cite journal |last1=Mitchell |first1=E. G. |last2=Stephenson |first2=N. P. |last3=Buma-at |first3=P. A. |last4=Roberts |first4=L. |last5=Dennis |first5=S. |last6=Kenchington |first6=C. G. |title=Variation of population and community ecology over large spatial scales in Ediacaran early animal communities |year=2025 |journal=Global and Planetary Change |volume=251 |doi=10.1016/j.gloplacha.2025.104818 |doi-access=free |bibcode=2025GPC...25104818M }}
- Hammarlund et al. (2025) argue that expansion of sunlit benthic habitats with severe daily oxygen fluctuations during the Neoproterozoic-Paleozoic transition might have promoted the radiation of organisms tolerant to oxygen variability.{{Cite journal |last1=Hammarlund |first1=E. U. |last2=Bukkuri |first2=A. |last3=Norling |first3=M. D. |last4=Islam |first4=M. |last5=Posth |first5=N. R. |last6=Baratchart |first6=E. |last7=Carroll |first7=C. |last8=Amend |first8=S. R. |last9=Gatenby |first9=R. A. |last10=Pienta |first10=K. J. |last11=Brown |first11=J. S. |last12=Peters |first12=S. E. |last13=Hancke |first13=K. |year=2025 |title=Benthic diel oxygen variability and stress as potential drivers for animal diversification in the Neoproterozoic-Palaeozoic |journal=Nature Communications |volume=16 |issue=1 |at=2223 |doi=10.1038/s41467-025-57345-0 |doi-access=free |pmid=40118825 |pmc=11928486 |bibcode=2025NatCo..16.2223H }}
- Review of changes of organismal and community ecology during the Ediacaran-Cambrian transition is published by Mitchell & Pates (2025).{{Cite journal |last1=Mitchell |first1=E. G. |last2=Pates |first2=S. |title=From organisms to biodiversity: the ecology of the Ediacaran/Cambrian transition |year=2025 |journal=Paleobiology |volume=51 |pages=150–173 |doi=10.1017/pab.2024.21 |doi-access=free }}
- Evidence of changes of composition of fossil assemblages from chert Lagerstätten from the Yangtze craton (China) during the Ediacaran-Cambrian transition is presented by Luo & Zhu (2025).{{Cite journal |last1=Luo |first1=C. |last2=Zhu |first2=M. |title=Chert Lagerstätten as a new window to the biological revolution across the Ediacaran−Cambrian boundary |year=2025 |journal=Geology |volume=53 |issue=5 |pages=467–472 |doi=10.1130/G52956.1 |bibcode=2025Geo....53..467L }}
- Reijenga & Close (2025) study the fossil record of Phanerozoic marine animals, and argue that purported evidence of a relationship between the duration of studied clades and their rates of origination and extinction can be explained by incomplete fossil sampling.{{Cite journal|last1=Reijenga |first1=B. R. |last2=Close |first2=R. A. |title=Apparent timescaling of fossil diversification rates is caused by sampling bias |year=2025 |journal=Current Biology |volume=35 |issue=4 |pages=905–910.e3 |doi=10.1016/j.cub.2024.12.038 |pmid=39855206 |doi-access=free|bibcode=2025CBio...35..905R }}
- Benson et al. (2025) study the fossil record of marine invertebrates and attempt to determine latitudinal biodiversity distributions of marine invertebrates throughout the Phanerozoic.{{Cite journal|last1=Benson |first1=R. B. J. |last2=Close |first2=R. A. |last3=Antell |first3=G. T. |last4=Whittaker |first4=R. J. |last5=Valdes |first5=P. |last6=Farnsworth |first6=A. |last7=Lunt |first7=D. J. |last8=Shen |first8=S. |last9=Fan |first9=J. |last10=Saupe |first10=E. E. |year=2025 |title=Marine animal diversity across latitudinal and temperature gradients during the Phanerozoic |journal=Palaeontology |volume=68 |issue=3 |at=e70006 |doi=10.1111/pala.70006 }}
- Review of the ecology and evolution of endobionts associated with corals throughout the Phanerozoic is published by Vinn, Zapalski & Wilson (2025).{{Cite journal |last1=Vinn |first1=O. |last2=Zapalski |first2=M. K. |last3=Wilson |first3=M. A. |title=Evolutionary paleoecology of macroscopic symbiotic endobionts in Phanerozoic corals |year=2025 |journal=Earth-Science Reviews |volume=263 |at=105071 |doi=10.1016/j.earscirev.2025.105071 |bibcode=2025ESRv..26305071V }}
- Maletz et al. (2025) revise Paleozoic fossils with similarities to feathers, and interpret the studied fossil material as including remains of macroalgae, hydrozoan cnidarians and graptolites.{{Cite journal|last1=Maletz |first1=J. |last2=Zhu |first2=X.-J. |last3=Zhang |first3=Y.-D. |last4=Gutiérrez-Marco |first4=J. C. |title=The identification of 'feather-like' fossils in the Palaeozoic: Algae, hydroids, or graptolites? |year=2025 |journal=Palaeoworld |volume=34 |issue=4 |doi=10.1016/j.palwor.2025.200909 |doi-access=free |bibcode=2025Palae..3400909M }}
- Evidence of the impact of the appearance and subsequent extinction of archaeocyath reefs on the abundance of Cambrian animals is presented by Pruss (2025).{{Cite journal|last1=Pruss |first1=S. B. |last2=Smith |first2=E. F. |last3=Zhuravlev |first3=A. Yu. |last4=Nolan |first4=R. Z. |last5=McGann |first5=T. C. |title=Rise and fall of archaeocyath reefs shaped early Cambrian skeletal animal abundance |year=2025 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=667 |at=112852 |doi=10.1016/j.palaeo.2025.112852 |bibcode=2025PPP...66712852P }}
- Revision of the Cambrian fauna from the Sæterdal Formation (Greenland), including fossils of trilobites, brachiopods and a hyolith, is published by Peel (2025).{{Cite journal|last=Peel |first=J. S. |year=2025 |title=Fauna of the Sæterdal Formation (Cambrian Series 2, Stage 4) of North Greenland (Laurentia) |journal=Bulletin of the Geological Society of Denmark |volume=74 |pages=1–13 |doi=10.37570/bgsd-2025-74-01 |doi-access=free |bibcode=2025BuGSD..74....1P }}
- Mussini & Butterfield (2025) report the discovery of a new assemblage of small carbonaceous fossils from the Cambrian Hess River Formation (Northwest Territories, Canada), including remains of wiwaxiids, annelids, brachiopods, chaetognaths, scalidophorans, arthropods and pterobranchs.{{cite journal |last1=Mussini |first1=G. |last2=Butterfield |first2=N. J. |year=2025 |title=A microscopic Burgess Shale: small carbonaceous fossils from a deeper water biota and the distribution of Cambrian non-mineralized faunas |journal=Proceedings of the Royal Society B: Biological Sciences |volume=292 |issue=2041 |at=20242948 |doi=10.1098/rspb.2024.2948 |doi-access=free |pmid=39968618 |pmc=11836709 }}
- A Burgess-Shale-type fauna occupying a peritidal habitat near the outer margin of a sea is described from the Cambrian (Guzhangian) Pika Formation (Alberta, Canada) by Mussini, Veenma & Butterfield (2025), providing new information ecological tolerances of Cambrian marine animals.{{Cite journal |last1=Mussini |first1=G. |last2=Veenma |first2=Y. P. |last3=Butterfield |first3=N. J. |year=2025 |title=A peritidal Burgess-Shale-type fauna from the middle Cambrian of western Canada |journal=Palaeontology |volume=68 |issue=1 |at=e70001 |doi=10.1111/pala.70001 |doi-access=free |bibcode=2025Palgy..6870001M }}
- Early evidence of colonization of gastropod shells by corals is reported from the Ordovician strata in Estonia by Vinn et al. (2025).{{Cite journal|last1=Vinn |first1=O. |last2=Liang |first2=K. |last3=Isakar |first3=M. |last4=Alkahtane |first4=A. A. |last5=Al Farraj |first5=S. |last6=El Hedeny |first6=M. |year=2025 |title=The evolutionary innovation of coral colonization on motile gastropod shells arose shortly after the Great Ordovician Biodiversification Event in Baltica |journal=PALAIOS |volume=40 |issue=2 |pages=62–69 |doi=10.2110/palo.2024.010 |bibcode=2025Palai..40...62V }}
- Evidence from the study of the trace fossil record ranging from the Ediacaran to the Devonian, interpreted as indicative of establishment of modern-style deep-marine benthic ecosystem during the Ordovician after 100 million years of protracted evolution, is presented by Buatois et al. (2025).{{Cite journal|last1=Buatois |first1=L. A. |last2=Mángano |first2=M. G. |last3=Paz |first3=M. |last4=Minter |first4=N. J. |last5=Zhou |first5=K. |year=2025 |title=Early colonization of the deep-sea bottom—The protracted build-up of an ecosystem |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=122 |issue=8 |at=e2414752122 |doi=10.1073/pnas.2414752122 |pmid=39928853 |pmc=11874251 |pmc-embargo-date=August 10, 2025 }}
- Vinn et al. (2025) report new evidence of symbiotic associations between worms and tabulate corals from the Ordovician and Silurian strata in Estonia, including evidence of symbiotic relationships between tabulates and cornulitids spanning from the late Katian to the Ludfordian.{{Cite journal|last1=Vinn |first1=O. |last2=Almansour |first2=M. I. |last3=Al Farraj |first3=S. |last4=El Hedeny |first4=M. |title=Symbiotic endobionts in tabulate corals from the Late Ordovician and Silurian of Estonia |year=2025 |journal=GFF |pages=1–6 |doi=10.1080/11035897.2024.2391283 }}
- Zhang et al. (2025) determine the timing and tempo of two phases of the Late Ordovician mass extinction on the basis of geochronological study of Ordovician-Silurian sections from the Yangtze Block (China), and link tempo of the extinction to rate of temperature change.{{Cite journal|last1=Zhang |first1=Z. |last2=Yang |first2=C. |last3=Sahy |first3=D. |last4=Zhan |first4=R.-B. |last5=Wu |first5=R.-C. |last6=Li |first6=Y. |last7=Deng |first7=Y. |last8=Huang |first8=B. |last9=Condon |first9=D. J. |last10=Rong |first10=J. |last11=Li |first11=X.-H. |title=Tempo of the Late Ordovician mass extinction controlled by the rate of climate change |year=2025 |journal=Science Advances |volume=11 |issue=22 |at=eadv6788 |doi=10.1126/sciadv.adv6788 |pmid=40446039 |pmc=12124363 |doi-access=free }}
- Zong et al. (2025) report the discovery of a new assemblage of well-preserved fossils (the Huangshi Fauna) in the Silurian (Rhuddanian) strata in south China, including fossils of sponges, cephalopods, arthropods and carbon film fossils of uncertain identity.{{Cite journal|last1=Zong |first1=R. |last2=Liu |first2=Y. |last3=Liu |first3=Q. |last4=Ma |first4=J. |last5=Liu |first5=S. |title=A new exceptionally preserved fauna from a lowest Silurian black shale: Insights into the recovery of deep-water ecosystems after the Late Ordovician mass extinction |year=2025 |journal=Geology |volume=53 |issue=4 |pages=291–295 |doi=10.1130/G53042.1 |bibcode=2025Geo....53..291Z |url=https://figshare.com/articles/journal_contribution/28074485 }}
- The first mesophotic coral reef ecosystem reported from the Paleozoic of eastern Gondwana, preserving fossil remains of corals and a diversified fish fauna, is described from the Devonian (Emsian) strata of the shore of Lake Burrinjuck (Taemas Formation; New South Wales, Australia) by Zapalski et al. (2025).{{Cite journal|last1=Zapalski |first1=M. K. |last2=Berkowski |first2=B. |last3=Skompski |first3=S. |last4=Pickett |first4=J. W. |last5=Young |first5=G. C. |title=Ancient depths: Unprecedented completeness of mesophotic fish-coral ecosystem from the Devonian of Eastern Gondwana |year=2025 |journal=Gondwana Research |doi=10.1016/j.gr.2025.03.006 |doi-access=free }}
- A study on the mandibular morphology of Devonian to Permian stem and crown tetrapods is published by Berks et al. (2025), who report evidence of a spike in morphological diversity in the Gzhelian, interpreted as related to the evolution of herbivory.{{Cite journal |last1=Berks |first1=H. O. |last2=Milla Carmona |first2=P. S. |last3=Donoghue |first3=P. C. J. |last4=Rayfield |first4=E. J. |year=2025 |title=The evolution of herbivory, not terrestrialisation, drove morphological change in the mandibles of Palaeozoic tetrapods |journal=Evolutionary Journal of the Linnean Society |volume=4 |doi=10.1093/evolinnean/kzaf004 |doi-access=free }}
- Lucas & Mansky (2025) revise invertebrate and vertebrate trace fossils from the Carboniferous (Mississippian) Horton Bluff Formation (Nova Scotia, Canada), name new ichnotaxa: fish traces Sonjawoodichnus monstrum and Doliosichnus sarjeanti, and tetrapod traces Thorakosichnus cameroni, Luctorichnus hunti and Pseudobradypus fillmorei, and interpret early tetrapodomorphs such as Panderichthys, Elpistostege and Tiktaalik as unlikely to be directly ancestral to tetrapods.{{Cite journal|last1=Lucas |first1=S. G. |last2=Mansky |first2=C. F. |title=Early Mississippian ichnofossils from Blue Beach (Nova Scotia, Canada), and the origin and early evolution of tetrapods |year=2025 |journal=New Mexico Museum of Natural History and Science Bulletin |volume=99 |pages=1–221 |url=https://www.researchgate.net/publication/391930392 }}
- A study on the fossil record of conodonts and carbon isotope of bulk rock from the Naqing, Narao and Shanglong sections in southern Guizhou (China), providing evidence of timing of biotic changes during the Moscovian and Kasimovian, is published by Wang et al. (2025).{{Cite journal|last1=Wang |first1=Y. |last2=Hu |first2=K. |last3=Ye |first3=X. |last4=Wang |first4=X. |title=The Middle–Late Pennsylvanian event: Timing and mechanisms |year=2025 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=667 |at=112893 |doi=10.1016/j.palaeo.2025.112893 |bibcode=2025PPP...66712893W }}
- Rossignol et al. (2025) determine plants and animals (including branchiosaurid temnospondyls) from the Perdasdefogu Basin (Sardinia, Italy) to be most likely early Permian in age, indicating that they were coeval with their counterparts from the Thuringian Forest Basin (Germany) and that the Variscan belt was not a barrier to their dispersal during the early Permian.{{Cite journal|last1=Rossignol |first1=C. |last2=Logghe |first2=A. |last3=Luccisano |first3=V. |last4=Shi |first4=X. |last5=Cogné |first5=N. |last6=Poujol |first6=M. |last7=Pradel |first7=A. |last8=Bourquin |first8=S. |last9=Pillola |first9=G. L. |last10=Botella |first10=H. |last11=Cocco |first11=F. |last12=Loi |first12=A. |last13=Fois |first13=D. |last14=Stara |first14=P. |last15=Sanciu |first15=L. |title=New age constraints for the Perdasdefogu Basin, Italy: implications for vertebrate paleobiogeography during the early Permian |year=2025 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |at=113085 |doi=10.1016/j.palaeo.2025.113085 |doi-access=free}}
- Natural casts of burrows that were possibly produced by small tetrapods are described from the Permian (Asselian) Słupiec Formation (Poland) by Sadlok (2025).{{Cite journal |last=Sadlok |first=G. |title=Tetrapod origins of small burrows from the Permian of Southwest Poland? |year=2025 |journal=Lethaia |volume=58 |issue=1 |pages=1–15 |doi=10.18261/let.58.1.5 |doi-access=free }}
- Wang et al. (2025) study the evolution of shell morphology of brachiopods and forams across the Permian–Triassic extinction event and of forams across the Toarcian Oceanic Anoxic Event, and report evidence of morphological changes reducing the energetic costs of shell calcification, likely in response to environmental pressures.{{Cite journal|last1=Wang |first1=F. |last2=Finnegan |first2=S. |last3=Dal Corso |first3=J. |last4=Ye |first4=F. |last5=Wu |first5=Y. |last6=Chen |first6=J. |last7=Jiang |first7=S. |last8=Tian |first8=L. |last9=Dai |first9=X. |last10=Chu |first10=D. |last11=Song |first11=H. |last12=Tong |first12=J. |last13=Song |first13=H. |title=Brachiopods and forams reduced calcification costs through morphological simplification during mass extinction events |year=2025 |journal=Nature Ecology & Evolution |pages=1–13 |doi=10.1038/s41559-025-02749-w }}
- Evidence from the study of animal and plant fossils from the Lower Triassic Heshanggou Formation (China), indicative of the presence of a diverse riparian ecosystem 2 million years after the Permian–Triassic extinction event, is presented by Guo et al. (2025).{{Cite journal|last1=Guo |first1=W. |last2=Tian |first2=L. |last3=Chu |first3=D. |last4=Shu |first4=W. |last5=Benton |first5=M. J. |last6=Liu |first6=J. |last7=Tong |first7=J. |title=Rapid riparian ecosystem recovery in low-latitudinal North China following the end-Permian mass extinction |year=2025 |journal=eLife |doi=10.7554/eLife.104205 |doi-access=free }}
- Review of the fossil record of Triassic terrestrial tetrapods from the Central European Basin is published by Mujal et al. (2025).{{Cite journal |last1=Mujal |first1=E. |last2=Sues |first2=H.-D. |last3=Moreno |first3=R. |last4=Schaeffer |first4=J. |last5=Sobral |first5=G. |last6=Chakravorti |first6=S. |last7=Spiekman |first7=S. N. F. |last8=Schoch |first8=R. R. |title=Triassic terrestrial tetrapod faunas of the Central European Basin, their stratigraphical distribution, and their palaeoenvironments |year=2025 |journal=Earth-Science Reviews |volume=264 |at=105085 |doi=10.1016/j.earscirev.2025.105085 |doi-access=free |bibcode=2025ESRv..26405085M }}
- A study on the assemblage of fossil teeth from the Middle Triassic (Anisian) strata from the Montseny area (Spain), providing evidence of presence of capitosaur temnospondyls, procolophonids, archosauromorphs and indeterminate diapsids, is published by Riccetto et al. (2025).{{Cite journal |last1=Riccetto |first1=M. |last2=Mujal |first2=E. |last3=Bolet |first3=A. |last4=De Jaime-Soguero |first4=C. |last5=De Esteban-Trivigno |first5=S. |last6=Fortuny |first6=J. |title=Tooth morphotypes shed light on the paleobiodiversity of Middle Triassic terrestrial vertebrate ecosystems from NE Iberian Peninsula (southwestern Europe) |year=2025 |journal=Rivista Italiana di Paleontologia e Stratigrafia |volume=131 |issue=1 |pages=39–62 |doi=10.54103/2039-4942/22340 |doi-access=free |bibcode=2025RIPS..13122340R }}
- Araujo et al. (2025) study the composition of the Carnian vertebrate assemblage from the Vale do Sol area (Brazil), and reevaluate the biostratigraphy of the Hyperodapedon Assemblage Zone.{{Cite journal |last1=Araujo |first1=C. S. |last2=Battista |first2=F. |last3=Martinelli |first3=A. G. |last4=Neto |first4=V. D. P. |last5=Schultz |first5=C. L. |last6=Pinheiro |first6=F. L. |last7=Soares |first7=M. B. |title=Refinement of the Brazilian Hyperodapedon Assemblage Zone (Late Triassic) and its biostratigraphic correlation with the Argentine biozones of the Ischigualasto Formation |year=2025 |journal=Journal of South American Earth Sciences |at=105641 |doi=10.1016/j.jsames.2025.105641 }}
- Evidence of similarity of processes of reef rubble consolidation and regeneration observed in Late Triassic reefs from the Dachstein platform (Austria) and in modern coral reefs is presented by Godbold et al. (2025).{{cite journal |last1=Godbold |first1=A. |last2=James |first2=C. C. |last3=Kiessling |first3=W. |last4=Hohmann |first4=N. |last5=Jarochowska |first5=E. |last6=Corsetti |first6=F. A. |last7=Bottjer |first7=D. J. |year=2025 |title=Ancient frameworks as modern templates: exploring reef rubble consolidation in an ancient reef system |journal=Proceedings of the Royal Society B: Biological Sciences |volume=292 |issue=2040 |at=20242123 |doi=10.1098/rspb.2024.2123 |doi-access=free |pmid=39904386 |pmc=11793968 }}
- Jésus et al. (2025) describe new vertebrate fossil material from the Upper Triassic Ørsted Dal Formation (Greenland), including the first records of a doswelliid and members of the genera Lissodus and Rhomphaiodon from the Upper Triassic strata from Greenland reported to date.{{cite journal|last1=Jésus |first1=V. J. P. |last2=Mateus |first2=O. |last3=Milàn |first3=J. |last4=Clemmensen |first4=L. B. |title=Late Triassic small and medium-sized vertebrates from the Fleming Fjord Group of the Jameson Land Basin, central East Greenland |year=2025 |journal=Palaeontologia Electronica |volume=28 |issue=1 |at=28.1.a18 |doi=10.26879/1423 |doi-access=free }}
- Alarcón et al. (2025) reconstruct environmental conditions in northwestern Gondwana during the Norian and report new fossil assemblages of plants, clam shrimps and vertebrates from the Bocas and Montebel formations (Colombia), providing evidence of biogeographic affinities with Laurasia.{{Cite journal|last1=Alarcón |first1=C. M. |last2=Colombi |first2=C. E. |last3=Gallego |first3=O. F. |last4=Drovandi |first4=J. M. |last5=Monferran |first5=M. D. |last6=Limarino |first6=O. |last7=Ezcurra |first7=M. D. |last8=Giordano |first8=P. G. |last9=Diaz |first9=J. S. |last10=Gómez-Coronado |first10=J. S. |title=Lacustrine and paleontological records from the middle Norian of the Eastern Cordillera of Colombia: Paleoenvironmental and paleobiogeographic implications of western paleo-equatorial Pangea |year=2025 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |at=113058 |doi=10.1016/j.palaeo.2025.113058 }}
- Stone et al. (2025) compare the composition of Pliensbachian reefs from lagoonal and platform edge settings in the Central High Atlas (Morocco), and identify environmental differences resulting in development of two different reef types.{{Cite journal |last1=Stone |first1=T. |last2=Martindale |first2=R. |last3=Bodin |first3=S. |last4=Lathuilière |first4=B. |last5=Krencker |first5=F.-N. |last6=Fonville |first6=T. |last7=Kabiri |first7=L. |year=2025 |title=Ecological Differences in Upper Pliensbachian (Early Jurassic) Reef Communities Determined by Environmental Conditions in Carbonate Settings |journal=Journal of African Earth Sciences |volume=224 |at=105547 |doi=10.1016/j.jafrearsci.2025.105547 |bibcode=2025JAfES.22405547S }}
- Evidence from the study of the fossil record of Early Jurassic brachiopods, gastropods and bivalves from the epicontinental seas of the north-western Tethys Ocean, indicative of a relationship between the thermal suitability of the studied animals and changes of their occupancy in response to climate changes during the Pliensbachian and Toarcian, is presented by Reddin et al. (2025).{{Cite journal |last1=Reddin |first1=C. J. |last2=Landwehrs |first2=J. P. |last3=Mathes |first3=G. H. |last4=Ullmann |first4=C. V. |last5=Feulner |first5=G. |last6=Aberhan |first6=M. |year=2025 |title=Marine species and assemblage change foreshadowed by their thermal bias over Early Jurassic warming |journal=Nature Communications |volume=16 |issue=1 |at=1370 |doi=10.1038/s41467-025-56589-0 |pmid=39910097 |doi-access=free |pmc=11799210 |bibcode=2025NatCo..16.1370R }}
- Salvino, Schmiedeler & Shimada (2025) document fossil material of an ecologically diverse vertebrate fauna from the Western Interior Seaway found in the Cenomanian strata of the Graneros Shale (Kansas, United States).{{Cite journal|last1=Salvino |first1=A. M. |last2=Schmiedeler |first2=J. W. |last3=Shimada |first3=K. |title=Fossil Vertebrates from the Middle of the Graneros Shale (Upper Cretaceous: Middle Cenomanian), Russell County, Kansas, USA |year=2025 |journal=Transactions of the Kansas Academy of Science |volume=128 |issue=1–2 |pages=109–124 |doi=10.1660/062.128.0110 }}
- Petrizzo et al. (2025) compare the impact of the Cenomanian-Turonian boundary event on different groups of marine biocalcifiers, and report evidence of higher vulnerability of large benthic foraminifera and rudist bivalves compared to other studied groups, likely caused by extremely high and fluctuating sea surface temperature.{{Cite journal|last1=Petrizzo |first1=M. R. |last2=Parente |first2=M. |last3=Falzoni |first3=F. |last4=Bottini |first4=C. |last5=Frijia |first5=G. |last6=Steuber |first6=T. |last7=Erba |first7=E. |title=Calcareous plankton and shallow-water benthic biocalcifiers: Resilience and extinction across the Cenomanian-Turonian Oceanic Anoxic Event 2 |year=2025 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=668 |at=112891 |doi=10.1016/j.palaeo.2025.112891 |doi-access=free|bibcode=2025PPP...66812891P }}
- Perea et al. (2025) report the discovery of bioerosion traces on dinosaur bones from the Upper Cretaceous Guichón Formation (Uruguay), interpreted as likely produced by beetles (probably dermestids) and small vertebrate scavengers (possibly multituberculate mammals).{{Cite journal |last1=Perea |first1=D. |last2=Verde |first2=M. |last3=Mesa |first3=V. |last4=Soto |first4=M. |last5=Montenegro |first5=F. |year=2025 |title=Bioerosion Structures on Dinosaur Bones Probably Made by Multituberculate Mammals and Dermestid Beetles (Guichón Formation, Late Cretaceous of Uruguay) |journal=Fossil Studies |volume=3 |issue=1 |at=2 |doi=10.3390/fossils3010002 |doi-access=free }}
- Dalla Vecchia et al. (2025) report the discovery of a new assemblage of Late Cretaceous (possibly Campanian-Maastrichtian) plants and fishes from the Friuli Carbonate Platform (Italy).{{Cite journal |last1=Dalla Vecchia |first1=F. M. |last2=Amalfitano |first2=J. |last3=Kustatscher |first3=E. |last4=Simonetto |first4=L. |title="Locality 84", a new Cretaceous Konservat-Lagerstätte in the Julian Prealps (Ne Italy) |year=2025 |journal=Rivista Italiana di Paleontologia e Stratigrafia |volume=131 |issue=2 |pages=383–413 |doi=10.54103/2039-4942/27672 |doi-access=free }}
- Close & Reijenga (2025) study the species–area relationships in North American terrestrial vertebrate assemblages during the Cretaceous-Paleogene transition, and report evidence of a large increase in regional-scale diversity of the studied vertebrates in the earliest Paleogene (primarily driven by the diversification of mammals), resulting in the earliest Paleogene assemblages being regionally homogenized to a lesser degree than the latest Cretaceous ones.{{Cite journal|last1=Close |first1=R. A. |last2=Reijenga |first2=B. R. |year=2025 |title=Tetrapod species–area relationships across the Cretaceous–Paleogene mass extinction |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=122 |issue=13 |pages=e2419052122 |doi=10.1073/pnas.2419052122 |pmid=40131953 |pmc=12002258 |doi-access=free |bibcode=2025PNAS..12219052C }}
- Zonneveld et al. (2025) study the composition of the marine invertebrate assemblage from the Eocene Tanjung Formation (Indonesia) and its stratigraphic setting, and interpret the studied assemblage as supporting the hypothesis that diverse tropical invertebrate faunas of the modern Indo-Australian region might have originated in the Paleogene.{{Cite journal|last1=Zonneveld |first1=J.-P. |last2=Adani |first2=N. |author3=Aswan |last4=Bloch |first4=J. I. |last5=Briguglio |first5=A. |last6=Ciochon |first6=R. L. |last7=Cotton |first7=L. J. |last8=Hascaryo |first8=A. T. |last9=Head |first9=J. |last10=Luque |first10=J. |last11=Rizal |first11=Y. |last12=Santodomingo |first12=N. |last13=Smith |first13=T. |last14=Todd |first14=J. |last15=Wilf |first15=P. |last16=Zaim |first16=Y. |year=2025 |title=Stratigraphy, paleontology, and depositional setting of the Late Eocene (Priabonian) lower Pagat Member, Tanjung Formation, in the Asem Asem Basin, South Kalimantan, Indonesia |journal=Journal of Paleontology |volume=98 |issue=Supplement S96 |pages=1–37 |doi=10.1017/jpa.2024.11 |doi-access=free }}
- Description of bird and squamate tracks from the Eocene Clarno Formation and feliform and ungulate tracks from the Oligocene John Day Formation (John Day Fossil Beds National Monument, Oregon, United States) is published by Bennett, Famoso & Hembree (2025).{{cite journal|last1=Bennett |first1=C. J. |last2=Famoso |first2=N. A. |last3=Hembree |first3=D. I. |title=Following their footsteps: Report of vertebrate fossil tracks from John Day Fossil Beds National Monument, Oregon, USA |year=2025 |journal=Palaeontologia Electronica |volume=28 |issue=1 |at=28.1.a11 |doi=10.26879/1413 |doi-access=free }}
- Revision of the Pleistocene assemblage from the Cumberland Bone Cave (Maryland, United States) and a study on its paleoecology is published by Eshelman et al. (2025).{{Cite journal|last1=Eshelman |first1=R. E. |last2=Bell |first2=C. J. |last3=Graham |first3=R. W. |last4=Semken |first4=H. A. |last5=Withnell |first5=C. B. |last6=Scarpetta |first6=S. G. |last7=James |first7=H. F. |last8=Godfrey |first8=S. J. |last9=Mead |first9=J. I. |last10=Hodnett |first10=J.-P. |last11=Grady |first11=F. V. |year=2025 |title=Middle Pleistocene Cumberland Bone Cave Local Fauna, Allegany County, Maryland: A Systematic Revision and Paleoecological Interpretation of the Irvingtonian, Middle Appalachians, USA |journal=Smithsonian Contributions to Paleobiology |volume=108 |pages=1–305 |doi=10.5479/si.28597193 |doi-access=free }}
- Berghuis et al. (2025) describe a vertebrate assemblage from a subsea site in the Madura Strait off the coast of Surabaya, living in the now-submerged part of Sundaland during the Middle Pleistocene, and report differences in the composition of this assemblage compared to the vertebrate assemblage from Ngandong (Java, Indonesia), including evidence of survival of Duboisia santeng, Epileptobos groeneveldtii and Axis lydekkeri in Java until the end of the Middle Pleistocene;{{Cite journal |last1=Berghuis |first1=H. W. K. |last2=van den Bergh |first2=G. |last3=van Kolfschoten |first3=T. |last4=Wibowo |first4=U. P. |last5=Kurniawan |first5=I. |last6=Adhityatama |first6=S. |last7=Sutisna |first7=I. |last8=Verheijen |first8=I. |last9=Pop |first9=E. |last10=Veldkamp |first10=A. |last11=Joordens |first11=J. C. A. |year=2025 |title=First vertebrate faunal record from submerged Sundaland: The late Middle Pleistocene, hominin-bearing fauna of the Madura Strait |journal=Quaternary Environments and Humans |at=100047 |doi=10.1016/j.qeh.2024.100047 |doi-access=free }} Berghuis et al. (2025) study the depositional conditions and age of the fossil-bearing strata of this site,{{Cite journal |last1=Berghuis |first1=H. W. K. |last2=Veldkamp |first2=A. |last3=Adhityatama |first3=S. |last4=Reimann |first4=T. |last5=Versendaal |first5=A. |last6=Kurniawan |first6=I. |last7=Pop |first7=E. |last8=van Kolfschoten |first8=T. |last9=Joordens |first9=J. C. A. |year=2025 |title=A late Middle Pleistocene lowstand valley of the Solo River on the Madura Strait seabed, geology and age of the first hominin locality of submerged Sundaland |journal=Quaternary Environments and Humans |at=100042 |doi=10.1016/j.qeh.2024.100042 |doi-access=free }} while Berghuis et al. (2025) study the taphonomy of fossils from this site.{{Cite journal |last1=Berghuis |first1=H. W. K. |last2=van Kolfschoten |first2=T. |last3=Wibowo |first3=U. P. |last4=Kurniawan |first4=I. |last5=Adhityatama |first5=S. |last6=Sutisna |first6=I. |last7=Pop |first7=E. |last8=Veldkamp |first8=A. |last9=Joordens |first9=J. C. A. |year=2025 |title=The taphonomy of the Madura Strait fossil assemblage, a record of selective hunting and marrow processing by late Middle Pleistocene Sundaland hominins |journal=Quaternary Environments and Humans |at=100055 |doi=10.1016/j.qeh.2024.100055 |doi-access=free }}
- Lallensack, Leonardi & Falkingham (2025) organized a comprehensive list of 277 terms used in tetrapod trace fossil research.{{cite journal|author1=Lallensack, J.N.|author2=Leonardi, G.|author3=Falkingham, P.L.|year=2025|title=Glossary of fossil tetrapod tracks|journal=Palaeontologia Electronica|volume=28|issue=1|at=28.1.a8|doi=10.26879/1389|doi-access=free}}
Other research
- Review of the Earth system processes and their impact on the evolution of life during the "Boring Billion" is published by Mukherjee et al. (2025).{{Cite journal |last1=Mukherjee |first1=I. |last2=Corkrey |first2=R. |last3=Gregory |first3=D. |last4=Large |first4=R. |last5=Poole |first5=A. M. |year=2025 |title=A billion years of geological drama – Boring or brilliant? |journal=Gondwana Research |volume=142 |pages=1–19 |doi=10.1016/j.gr.2025.02.018 |doi-access=free |bibcode=2025GondR.142....1M }}
- Evidence of a link between marine iodine cycle and stability of the ozone layer throughout Earth's history, resulting in an unstable ozone layer until approximately 500 million years ago that might have restricted complex life to the ocean prior to its stabilization, is presented by Liu et al. (2025).{{Cite journal|last1=Liu |first1=J. |last2=Hardisty |first2=D. S. |last3=Kasting |first3=J. F. |last4=Fakhraee |first4=M. |last5=Planavsky |first5=N. J. |year=2025 |title=Evolution of the iodine cycle and the late stabilization of the Earth's ozone layer |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=122 |issue=2 |at=e2412898121 |doi=10.1073/pnas.2412898121 |pmid=39761407 |pmc=11745384 |pmc-embargo-date=July 6, 2025 |bibcode=2025PNAS..12212898L }}
- Evidence of slow accumulation of Australian sediments preserving Archean mudrocks with high organic content is presented by Lotem et al. (2025), who interpret their findings as consistent with lower primary productivity in Archean than in present times.{{Cite journal|last1=Lotem |first1=N. |last2=Rasmussen |first2=B. |last3=Zi |first3=J.-W. |last4=Zeichner |first4=S. S. |last5=Present |first5=T. M. |last6=Bar-On |first6=Y. M. |last7=Fischer |first7=W. W. |year=2025 |title=Reconciling Archean organic-rich mudrocks with low primary productivity before the Great Oxygenation Event |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=122 |issue=2 |at=e2417673121 |pmid=39761395 |pmc=11745403 |pmc-embargo-date=July 6, 2025 |doi=10.1073/pnas.2417673121 |bibcode=2025PNAS..12217673L }}
- Evidence interpreted as indicative of a link between global tectonic processes, biogeochemical cycling in the ocean and a 60 million-year cyclic fluctuation in marine faunal diversity and extinction throughout the Phanerozoic is presented by Boulila et al. (2025).{{Cite journal|last1=Boulila |first1=S. |last2=Peters |first2=S. E. |last3=Müller |first3=R. D. |last4=Zaffos |first4=A. |last5=Farkaš |first5=J. |last6=Haq |first6=B. U. |year=2025 |title=A tectonically driven 60 million-year biogeochemical redox cycle paces marine biodiversity |journal=Communications Earth & Environment |volume=6 |issue=1 |at=440 |doi=10.1038/s43247-025-02370-6 |doi-access=free }}
- Farrell et al. (2025) present a global Furongian time scale, date Furongian as beginning approximately 494,5 million years ago and ending approximately 487,3 million years ago, and interpret the Steptoean positive carbon isotope excursion as lasting approximately 2,6 million years.{{Cite journal|last1=Farrell |first1=T. P. |last2=Cothren |first2=H. R. |last3=Sundberg |first3=F. A. |last4=Schmitz |first4=M. D. |last5=Dehler |first5=C. M. |last6=Landing |first6=E. |last7=Karlstrom |first7=K. E. |last8=Crossey |first8=L. J. |last9=Hagadorn |first9=J. W. |year=2025 |title=Revising the late Cambrian time scale and the duration of the SPICE event using a novel Bayesian age modeling approach |journal=GSA Bulletin |doi=10.1130/B37919.1 }}
- Cowen et al. (2025) study the geochemistry of dental tissue of Devonian fish fossils from Svalbard (Norway) and Cretaceous lungfish and plesiosaur fossils from Australia, and interpret their findings as indicative of preservation of the primary chemical composition of the bioapatite in the studied fossils.{{Cite journal|last1=Cowen |first1=M. B. |last2=de Rafélis |first2=M. |last3=Ségalen |first3=L. |last4=Kear |first4=B. P. |last5=Dumont |first5=M. |last6=Žigaitė |first6=Ž. |title=Visualizing and quantifying biomineral preservation in fossil vertebrate dental remains |year=2025 |journal=PeerJ |volume=13 |at=e18763 |doi=10.7717/peerj.18763 |pmid=39763693 |pmc=11700492 |doi-access=free }}
- Evidence from the study of Devonian-Carboniferous boundary sections in Canada and China, interpreted as indicative of occurrence of photic zone euxinia linked to extinctions of marine organisms during the Hangenberg event, is presented by Wang et al. (2025).{{Cite journal|last1=Wang |first1=X. |last2=Grasby |first2=S. E. |last3=Cawood |first3=P. A. |last4=Zhao |first4=H. |last5=Chen |first5=Z.-Q. |last6=Hedhli |first6=M. |last7=Lyu |first7=Z. |last8=Sun |first8=G. |last9=Hao |first9=F. |year=2025 |title=Photic-zone euxinia had a major role in the Devonian-Carboniferous boundary mass extinction |journal=Communications Earth & Environment |volume=6 |issue=1 |at=283 |doi=10.1038/s43247-025-02260-x |doi-access=free |bibcode=2025ComEE...6..283W }}
- Mann et al. (2025) study the depositional setting of the lost vertebrate deposit southwest of the Danville city (Illinois, United States), preserving some of the oldest known diadectomorph and captorhinid fossils reported to date, and assign the fossil assemblage from the studied site to the Inglefield Sandstone Member below the Macoupin Limestone Member of the Patoka Formation (Kasimovian, Carboniferous).{{Cite journal|last1=Mann |first1=A. |last2=Nelson |first2=W. J. |last3=Hook |first3=R. W. |last4=Elrick |first4=S. D. |year=2025 |title=The lost Permo-Carboniferous vertebrate deposit of Horseshoe Bend near Danville, Vermilion County, Illinois |journal=Journal of Paleontology |volume=98 |issue=5 |pages=838–854 |doi=10.1017/jpa.2024.30 |doi-access=free }}
- Evidence indicating that the volcanic activity that formed the Ontong Java Nui basaltic plateau complex was synchronous with the Selli Event is presented by Matsumoto et al. (2025).{{Cite journal|last1=Matsumoto |first1=H. |last2=Shirai |first2=K. |last3=Ishikawa |first3=A. |last4=Ohkouchi |first4=N. |last5=Ogawa |first5=N. O. |last6=Tejada |first6=M. L. G. |last7=Ando |first7=A. |last8=Kuroda |first8=J. |last9=Suzuki |first9=K. |title=Multidisciplinary evidence for synchroneity between Ontong Java Nui volcanism and early Aptian oceanic anoxic event 1a |year=2025 |journal=Science Advances |volume=11 |issue=9 |at=eadt0204 |doi=10.1126/sciadv.adt0204 |pmid=40009661 |pmc=11864177 |doi-access=free |bibcode=2025SciA...11..204M }}
- Albert et al. (2025) provide new information on the Cretaceous Densuș-Ciula Formation (Romania), reporting evidence indicating that the lower part of the formation covers part of the Campanian, and evidence indicating that the shift from marine to continental deposition recorded in the formation happened by middle late Campanian.{{Cite journal|last1=Albert |first1=G. |last2=Budai |first2=S. |last3=Csiki-Sava |first3=Z. |last4=Makádi |first4=L. |last5=Ţabără |first5=D. |last6=Árvai |first6=V. |last7=Bălc |first7=R. |last8=Bindiu-Haitonic |first8=R. |last9=Ducea |first9=M. N. |last10=Botfalvai |first10=G. |title=Age and palaeoenvironmental constraints on the earliest dinosaur-bearing strata of the Densuș-Ciula Formation (Hațeg Basin, Romania): evidence of their late Campanian-early Maastrichtian syntectonic deposition |year=2025 |journal=Cretaceous Research |volume=170 |at=106095 |doi=10.1016/j.cretres.2025.106095 |doi-access=free |bibcode=2025CrRes.17006095A }}
- Evidence of a link between large-scale Deccan Traps volcanism and global changes in climate near the end of the Cretaceous is presented by Westerhold et al. (2025).{{Cite journal|last1=Westerhold |first1=T. |last2=Dallanave |first2=E. |last3=Penman |first3=D. |last4=Schoene |first4=B. |last5=Röhl |first5=U. |last6=Gussone |first6=N. |last7=Kuroda |first7=J. |title=Earth orbital rhythms links timing of Deccan trap volcanism phases and global climate change |year=2025 |journal=Science Advances |volume=11 |issue=10 |at=eadr8584 |doi=10.1126/sciadv.adr8584 |pmid=40053583 |pmc=11887795 |doi-access=free |bibcode=2025SciA...11R8584W }}
- Rodiouchkina et al. (2025) report evidence interpreted as indicating that the amount of sulfur released by Chicxulub impact was approximately 5 times lower than inferred from previous estimates, resulting in milder impact winter scenario during the Cretaceous-Paleogene transition.{{Cite journal|last1=Rodiouchkina |first1=K. |last2=Goderis |first2=S. |last3=Senel |first3=C. B. |last4=Kaskes |first4=P. |last5=Karatekin |first5=Ö. |last6=Böttcher |first6=M. E. |last7=Rodushkin |first7=I. |last8=Vellekoop |first8=J. |last9=Claeys |first9=P. |last10=Vanhaecke |first10=F. |year=2025 |title=Reduced contribution of sulfur to the mass extinction associated with the Chicxulub impact event |journal=Nature Communications |volume=16 |issue=1 |at=620 |doi=10.1038/s41467-024-55145-6 |pmid=39819896 |pmc=11739411 |doi-access=free |bibcode=2025NatCo..16..620R }}
- Bai et al. (2025) study the lithostratigraphy and biostratigraphy of the Eocene fossil assemblage from the deposits of the Bayan Obo and Jhama Obo sections in the Shara Murun region (Inner Mongolia, China), correlate them with other Paleogene sections from the Erlian Basin, and propose the subdivision of the Ulangochuian Asian land mammal age.{{Cite journal|last1=Bai |first1=B. |last2=Li |first2=Q. |last3=Zhou |first3=X.-Y. |last4=Wang |first4=X.-Y. |last5=Xu |first5=R.-C. |last6=Zhang |first6=X.-Y. |last7=Quan |first7=S.-S. |last8=Meng |first8=J. |last9=Wang |first9=Y.-Q. |year=2025 |title=Litho- and biostratigraphy of the East Mesa in Shara Murun region of the Erlian Basin, Inner Mongolia, China, and the subdivision of the Ulangochuian Asian Land Mammal Age |journal=American Museum Novitates |issue=4034 |pages=1–32 |doi=10.1206/4034.1 |doi-access=free |hdl=2246/7431 }}
- New information on the chronology of the Miocene fossil sites from central Anatolia (Turkey) is provided by Tholt et al. (2025).{{Cite journal|last1=Tholt |first1=A. |last2=Başoğlu |first2=O. |last3=Bektaş |first3=Y. |last4=Bernor |first4=R. |last5=Carlson |first5=J. P. |last6=Dağ |first6=Ö. |last7=Doğan |first7=U. |last8=Erkman |first8=A. C. |last9=Kaya |first9=F. |last10=Kaymakçı |first10=N. |last11=Gözlük Kırmızıoğlu |first11=P. |last12=Meijers |first12=M. J. M. |last13=Kahya Parıldar |first13=Ö. |last14=Pehlevan |first14=C. |last15=Şimşek |first15=E. |last16=White |first16=T. |last17=Renne |first17=P. |year=2025 |title=Building better biochronology: New fossils and 40Ar/39Ar radioisotopic dates from Central Anatolia |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=122 |issue=12 |at=e2424428122 |doi=10.1073/pnas.2424428122 |doi-access=free |pmid=40096598 |pmc=11962512 }}
- Lindahl et al. (2025) review the utility of paleogenomics for the studies of biodiversity trends throughout the Quaternary.{{cite journal|last1=Lindahl |first1=A. |last2=Epp |first2=L. S. |last3=Boessenkool |first3=S. |last4=Pedersen |first4=M. W. |last5=Brace |first5=S. |last6=Heintzman |first6=P. D. |last7=Dalén |first7=L. |last8=Díez del Molino |first8=D. |year=2025 |title=Palaeogenomic inference of biodiversity dynamics across Quaternary timescales |journal=Nature Reviews Biodiversity |volume=1 |issue=4 |pages=233–247 |doi=10.1038/s44358-025-00033-0 }}
- A new integrative script for TNT which can be used to analyze the phylogenetic placement of fossil taxa on a reference tree is presented by Catalano et al. (2025).{{Cite journal|last1=Catalano |first1=S. A. |last2=Escapa |first2=I. |last3=Pugh |first3=K. D. |last4=Hammond |first4=A. S. |last5=Goloboff |first5=P. |last6=Almécija |first6=S. |year=2025 |title=PlaceMyFossils: An Integrative Approach to Analyze and Visualize the Phylogenetic Placement of Fossils Using Backbone Trees |journal=Systematic Biology |doi=10.1093/sysbio/syaf025 |doi-access=free |pmid=40244059 }}
=Paleoclimate=
- Evidence of low atmospheric CO2 levels throughout the main phase of the late Paleozoic icehouse, and of rapid increase in atmospheric CO2 between 296 and 291 million years ago, is presented by Jurikova et al. (2025).{{cite journal|last1=Jurikova |first1=H. |last2=Garbelli |first2=C. |last3=Whiteford |first3=R. |last4=Reeves |first4=T. |last5=Laker |first5=G. M. |last6=Liebetrau |first6=V. |last7=Gutjahr |first7=M. |last8=Eisenhauer |first8=A. |last9=Savickaite |first9=K. |last10=Leng |first10=M. J. |last11=Iurino |first11=D. A. |last12=Viaretti |first12=M. |last13=Tomašových |first13=A. |last14=Zhang |first14=Y. |last15=Wang |first15=W. |last16=Shi |first16=G. R. |last17=Shen |first17=S. |last18=Rae |first18=J. W. B. |last19=Angiolini |first19=L. |year=2025 |title=Rapid rise in atmospheric CO2 marked the end of the Late Palaeozoic Ice Age |journal=Nature Geoscience |volume=18 |issue=1 |pages=91–97 |doi=10.1038/s41561-024-01610-2 |doi-access=free |pmid=39822309 |pmc=11732749 |bibcode=2025NatGe..18...91J }}
- A study on the climate and environmental changes in the Yanliao region (China) during the Middle Jurassic is published by Hao et al. (2025), who report evidence of a shift from wet to sub-humid conditions during the Bathonian, interpreted by the authors as likely driving the diversification of the Yanliao Biota.{{Cite journal|last1=Hao |first1=W. |last2=Yang |first2=J. |last3=Wang |first3=H. |last4=Mitchell |first4=R. N. |last5=Zhang |first5=C. |last6=Qiu |first6=R. |last7=Guo |first7=J. |last8=Zhang |first8=W. |last9=Bao |first9=X. |last10=Deng |first10=C. |last11=Wang |first11=X. |last12=Hu |first12=Y. |last13=Yang |first13=J.-H. |last14=Zhu |first14=G. |last15=Zhou |first15=Z. |last16=Zhu |first16=R. |year=2025 |title=Climate change enhanced habitat diversification for the Middle Jurassic Yanliao Biota in East Asia |journal=National Science Review |doi=10.1093/nsr/nwaf194 }}
- Lu et al. (2025) report evidence from the study of palynological assemblages and clay mineralogy of the Kazuo Basin (Liaoning, China) indicative of a dry and hot climatic event during the early Aptian, interpreted as likely synchronous with the Selli Event.{{Cite journal|last1=Lu |first1=C. |last2=Lin |first2=M.-Q. |last3=Shen |first3=J. |last4=Ji |first4=X.-K. |last5=Yang |first5=C.-M. |last6=Zhang |first6=Z.-H. |last7=He |first7=Q. |last8=Sun |first8=M.-D. |last9=Xu |first9=Y.-G. |title=A continental record of Early Cretaceous (Aptian) vegetation and climate change based on palynology and clay mineralogy from the North China Craton |year=2025 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=662 |at=112750 |doi=10.1016/j.palaeo.2025.112750 |bibcode=2025PPP...66212750L }}
- Evidence from the study of lizard and snake fossils from Eocene localities in Wyoming and North Dakota (United States), interpreted as indicative of warmer and wetter climate in mid-latitude North America during the late Eocene than indicated by earlier studies, is presented by Smith & Bruch (2025), who argue that there is no evidence of exceptionally high climate sensitivity to the atmospheric concentration of CO2 during the early Eocene.{{Cite journal|last1=Smith |first1=K. T. |last2=Bruch |first2=A. A. |year=2025 |title=Persistent greenhouse conditions in Eocene North America point to lower climate sensitivity |journal=Communications Earth & Environment |volume=6 |issue=1 |at=352 |doi=10.1038/s43247-025-02288-z |doi-access=free |bibcode=2025ComEE...6..352S }}
- Evidence indicating that climate and geographic changes in the Miocene resulted in vegetation changes that in turn caused climate change feedbacks that impacted cooling and precipitation changes during the late Miocene climate transition is presented by Zhang et al. (2025).{{Cite journal|last1=Zhang |first1=R. |last2=Guo |first2=J. |last3=Bradshaw |first3=C. D. |last4=Xu |first4=X. |last5=Shen |first5=T. |last6=Li |first6=S. |last7=Nie |first7=J. |last8=Zhang |first8=C. |last9=Li |first9=X. |last10=Liu |first10=Z. |last11=Zhang |first11=J. |last12=Jiang |first12=D. |last13=Hu |first13=Y. |last14=Sun |first14=J. |title=Vegetation feedbacks accelerated the late Miocene climate transition |year=2025 |journal=Science Advances |volume=11 |issue=18 |at=eads4268 |doi=10.1126/sciadv.ads4268 |pmid=40315310 |pmc=12047422 |doi-access=free |bibcode=2025SciA...11S4268Z }}
- Markowska et al. (2025) present evidence of recurrent humid intervals in the arid Arabian interior over the past 8 million years, and argue that those wet episodes might have enabled dispersals of mammals between Africa and Eurasia.{{Cite journal|last1=Markowska |first1=M. |last2=Vonhof |first2=H. B. |last3=Groucutt |first3=H. S. |last4=Breeze |first4=P. S. |last5=Drake |first5=N. |last6=Stewart |first6=M. |last7=Albert |first7=R. |last8=Andrieux |first8=E. |last9=Blinkhorn |first9=J. |last10=Boivin |first10=N. |last11=Budsky |first11=A. |last12=Clark-Wilson |first12=R. |last13=Fleitmann |first13=D. |last14=Gerdes |first14=A. |last15=Martin |first15=A. N. |last16=Martínez-García |first16=A. |last17=Nicholson |first17=S. L. |last18=Price |first18=G. J. |last19=Scerri |first19=E. M. L. |last20=Scholz |first20=D. |last21=Vanwezer |first21=N. |last22=Weber |first22=M. |last23=Alsharekh |first23=A. M. |last24=Al Omari |first24=A. A. |last25=Al-Mufarreh |first25=Y. S. A. |last26=Al-Jibreen |first26=F. |last27=Alqahtani |first27=M. |last28=Al-Shanti |first28=M. |last29=Zalmout |first29=I. |last30=Petraglia |first30=M. D. |last31=Haug |first31=G. H. |year=2025 |title=Recurrent humid phases in Arabia over the past 8 million years |journal=Nature |volume=640 |issue=8060 |pages=954–961 |doi=10.1038/s41586-025-08859-6 |pmid=40205061 |pmc=12018461 |doi-access=free |bibcode=2025Natur.640..954M }}
- Evidence indicating that abrupt climate changes during the Last Glacial Period increased pyrogenic methane emissions and global wildfire extent is presented by Riddell-Young et al. (2025).{{Cite journal|last1=Riddell-Young |first1=B. |last2=Lee |first2=J. E. |last3=Brook |first3=E. J. |last4=Schmitt |first4=J. |last5=Fischer |first5=H. |last6=Bauska |first6=T. K. |last7=Menking |first7=J. A. |last8=Iseli |first8=R. |last9=Clark |first9=J. R. |year=2025 |title=Abrupt changes in biomass burning during the last glacial period |journal=Nature |volume=637 |issue=8044 |pages=91–96 |doi=10.1038/s41586-024-08363-3 |pmid=39743610 |bibcode=2025Natur.637...91R }}
- Geochemical evidence from the study of a speleothem from the Herbstlabyrinth Cave (Germany), interpreted as indicating that the Laacher See eruption was not directly linked to the Younger Dryas cooling in Greenland and Europe, is presented by Warken et al. (2025).{{Cite journal|last1=Warken |first1=S. F. |last2=Schmitt |first2=A. K. |last3=Scholz |first3=D. |last4=Hertwig |first4=A. |last5=Weber |first5=M. |last6=Mertz-Kraus |first6=R. |last7=Reinig |first7=F. |last8=Esper |first8=J. |last9=Sigl |first9=M. |title=Discovery of Laacher See eruption in speleothem record synchronizes Greenland and central European Late Glacial climate change |year=2025 |journal=Science Advances |volume=11 |issue=3 |at=eadt4057 |doi=10.1126/sciadv.adt4057 |pmid=39813351 |pmc=11734736 |doi-access=free |bibcode=2025SciA...11.4057W }}
References
{{reflist}}